Example #1
0
//-----------------------------------------------------------------------------
// Computes the surrounding collision bounds based on whatever algorithm we want...
//-----------------------------------------------------------------------------
void CCollisionProperty::ComputeSurroundingBox( Vector *pVecWorldMins, Vector *pVecWorldMaxs )
{
	if (( GetSolid() == SOLID_CUSTOM ) && (m_nSurroundType != USE_GAME_CODE ))
	{
		// NOTE: This can only happen in transition periods, say during network
		// reception on the client. We expect USE_GAME_CODE to be used with SOLID_CUSTOM
		*pVecWorldMins = GetCollisionOrigin();
		*pVecWorldMaxs = *pVecWorldMins;
		return;
	}

	switch( m_nSurroundType )
	{
	case USE_OBB_COLLISION_BOUNDS:
		{
			Assert( GetSolid() != SOLID_CUSTOM );
			bool bUseVPhysics = false;
			if ( ( GetSolid() == SOLID_VPHYSICS ) && ( GetOuter()->GetMoveType() == MOVETYPE_VPHYSICS ) )
			{
				// UNDONE: This may not be necessary any more.
				IPhysicsObject *pPhysics = GetOuter()->VPhysicsGetObject();
				bUseVPhysics = pPhysics && pPhysics->IsAsleep();
			}
			ComputeCollisionSurroundingBox( bUseVPhysics, pVecWorldMins, pVecWorldMaxs );
		}
		break;

	case USE_BEST_COLLISION_BOUNDS:
		Assert( GetSolid() != SOLID_CUSTOM );
		ComputeCollisionSurroundingBox( (GetSolid() == SOLID_VPHYSICS), pVecWorldMins, pVecWorldMaxs );
		break;

	case USE_COLLISION_BOUNDS_NEVER_VPHYSICS:
		Assert( GetSolid() != SOLID_CUSTOM );
		ComputeCollisionSurroundingBox( false, pVecWorldMins, pVecWorldMaxs );
		break;

	case USE_HITBOXES:
		ComputeHitboxSurroundingBox( pVecWorldMins, pVecWorldMaxs );
		break;

	case USE_ROTATION_EXPANDED_BOUNDS:
		ComputeRotationExpandedBounds( pVecWorldMins, pVecWorldMaxs );
		break;

	case USE_SPECIFIED_BOUNDS:
		VectorAdd( GetCollisionOrigin(), m_vecSpecifiedSurroundingMins, *pVecWorldMins );
		VectorAdd( GetCollisionOrigin(), m_vecSpecifiedSurroundingMaxs, *pVecWorldMaxs );
		break;

	case USE_GAME_CODE:
		GetOuter()->ComputeWorldSpaceSurroundingBox( pVecWorldMins, pVecWorldMaxs );
		Assert( pVecWorldMins->x <= pVecWorldMaxs->x );
		Assert( pVecWorldMins->y <= pVecWorldMaxs->y );
		Assert( pVecWorldMins->z <= pVecWorldMaxs->z );
		return;
	}

#ifdef DEBUG
	/*
	// For debugging purposes, make sure the bounds actually does surround the thing.
	// Otherwise the optimization we were using isn't really all that great, is it?
	Vector vecTestMins, vecTestMaxs;
	ComputeCollisionSurroundingBox( (GetSolid() == SOLID_VPHYSICS), &vecTestMins, &vecTestMaxs );

	// Now that we have the basics, let's expand for hitboxes if appropriate
	Vector vecWorldHitboxMins, vecWorldHitboxMaxs;
	if ( ComputeHitboxSurroundingBox( &vecWorldHitboxMins, &vecWorldHitboxMaxs ) )
	{
		VectorMin( vecWorldHitboxMaxs, vecTestMins, vecTestMins );
		VectorMax( vecWorldHitboxMaxs, vecTestMaxs, vecTestMaxs );
	}

	Assert( vecTestMins.x >= pVecWorldMins->x && vecTestMins.y >= pVecWorldMins->y && vecTestMins.z >= pVecWorldMins->z );
	Assert( vecTestMaxs.x <= pVecWorldMaxs->x && vecTestMaxs.y <= pVecWorldMaxs->y && vecTestMaxs.z <= pVecWorldMaxs->z );
	*/
#endif
}
void CCollisionProperty::ComputeSurroundingBox( Vector *pVecWorldMins, Vector *pVecWorldMaxs )
{
	if (( GetSolid() == SOLID_CUSTOM ) && (m_nSurroundType != USE_GAME_CODE ))
	{
		// NOTE: This can only happen in transition periods, say during network
		// reception on the client. We expect USE_GAME_CODE to be used with SOLID_CUSTOM
		*pVecWorldMins = GetCollisionOrigin();
		*pVecWorldMaxs = *pVecWorldMins;
		return;
	}

	switch( m_nSurroundType )
	{
	case USE_OBB_COLLISION_BOUNDS:
		Assert( GetSolid() != SOLID_CUSTOM );
		ComputeOBBBounds( pVecWorldMins, pVecWorldMaxs );
		break;

	case USE_BEST_COLLISION_BOUNDS:
		Assert( GetSolid() != SOLID_CUSTOM );
		ComputeCollisionSurroundingBox( (GetSolid() == SOLID_VPHYSICS), pVecWorldMins, pVecWorldMaxs );
		break;

	case USE_ROTATION_EXPANDED_SEQUENCE_BOUNDS:
		ComputeRotationExpandedSequenceBounds( pVecWorldMins, pVecWorldMaxs );
		break;

	case USE_COLLISION_BOUNDS_NEVER_VPHYSICS:
		Assert( GetSolid() != SOLID_CUSTOM );
		ComputeCollisionSurroundingBox( false, pVecWorldMins, pVecWorldMaxs );
		break;

	case USE_HITBOXES:
		ComputeHitboxSurroundingBox( pVecWorldMins, pVecWorldMaxs );
		break;

	case USE_ROTATION_EXPANDED_BOUNDS:
		ComputeRotationExpandedBounds( pVecWorldMins, pVecWorldMaxs );
		break;

	case USE_SPECIFIED_BOUNDS:
		VectorAdd( GetCollisionOrigin(), m_vecSpecifiedSurroundingMins, *pVecWorldMins );
		VectorAdd( GetCollisionOrigin(), m_vecSpecifiedSurroundingMaxs, *pVecWorldMaxs );
		break;

	case USE_GAME_CODE:
		GetOuter()->ComputeWorldSpaceSurroundingBox( pVecWorldMins, pVecWorldMaxs );
		Assert( pVecWorldMins->x <= pVecWorldMaxs->x );
		Assert( pVecWorldMins->y <= pVecWorldMaxs->y );
		Assert( pVecWorldMins->z <= pVecWorldMaxs->z );
		return;
	}

//#ifdef DEBUG
#ifdef CLIENT_DLL
	if ( cl_show_bounds_errors.GetBool() && ( m_nSurroundType == USE_ROTATION_EXPANDED_SEQUENCE_BOUNDS ) )
	{ 
		// For debugging purposes, make sure the bounds actually does surround the thing.
		// Otherwise the optimization we were using isn't really all that great, is it?
		Vector vecTestMins, vecTestMaxs;
		if ( GetOuter()->GetBaseAnimating() )
		{
			GetOuter()->GetBaseAnimating()->InvalidateBoneCache();
		}
		ComputeHitboxSurroundingBox( &vecTestMins, &vecTestMaxs );
		
		Assert( vecTestMins.x >= pVecWorldMins->x && vecTestMins.y >= pVecWorldMins->y && vecTestMins.z >= pVecWorldMins->z );
		Assert( vecTestMaxs.x <= pVecWorldMaxs->x && vecTestMaxs.y <= pVecWorldMaxs->y && vecTestMaxs.z <= pVecWorldMaxs->z );

		if ( vecTestMins.x < pVecWorldMins->x || vecTestMins.y < pVecWorldMins->y || vecTestMins.z < pVecWorldMins->z ||
			 vecTestMaxs.x > pVecWorldMaxs->x || vecTestMaxs.y > pVecWorldMaxs->y || vecTestMaxs.z > pVecWorldMaxs->z )
		{
			const char *pSeqName = "<unknown seq>";
			C_BaseAnimating *pAnim = GetOuter()->GetBaseAnimating();
			if ( pAnim )
			{
				int nSequence = pAnim->GetSequence();
				pSeqName = pAnim->GetSequenceName( nSequence );
			}

			Warning( "*** Bounds problem, index %d Eng %s, Seqeuence %s ", GetOuter()->entindex(), GetOuter()->GetClassname(), pSeqName );
			Vector vecDelta = *pVecWorldMins - vecTestMins;
			Vector vecDelta2 = vecTestMaxs - *pVecWorldMaxs;
			if ( vecDelta.x > 0.0f || vecDelta2.x > 0.0f || vecDelta.y > 0.0f || vecDelta2.y > 0.0f )
			{
				Msg( "Outside X/Y by %.2f ", MAX( MAX( vecDelta.x, vecDelta2.x ), MAX( vecDelta.y, vecDelta2.y ) ) );
			}
			if ( vecDelta.z > 0.0f || vecDelta2.z > 0.0f )
			{
				Msg( "Outside Z by (below) %.2f, (above) %.2f ", MAX( vecDelta.z, 0.0f ), MAX( vecDelta2.z, 0.0f ) );
			}
			Msg( "\n" );

			char pTemp[MAX_PATH];
			Q_snprintf( pTemp, sizeof(pTemp), "%s [seq: %s]", GetOuter()->GetClassname(), pSeqName ); 

			debugoverlay->AddBoxOverlay( vec3_origin, vecTestMins, vecTestMaxs, vec3_angle, 255, 0, 0, 0, 2 );
			debugoverlay->AddBoxOverlay( vec3_origin, *pVecWorldMins, *pVecWorldMaxs, vec3_angle, 0, 0, 255, 0, 2 );
			debugoverlay->AddTextOverlay( ( vecTestMins + vecTestMaxs ) * 0.5f, 2, pTemp );
		}
	}
#endif
//#endif
}