Example #1
0
void Print2WayRefineStats(ctrl_t *ctrl, graph_t *graph, real_t *ntpwgts,
                          real_t deltabal, idx_t mincutorder)
{
    int i;

    if (mincutorder == -2) {
        printf("Parts: ");
        printf("Nv-Nb[%5"PRIDX" %5"PRIDX"] ICut: %6"PRIDX,
               graph->nvtxs, graph->nbnd, graph->mincut);
        printf(" [");
        for (i=0; i<graph->ncon; i++)
            printf("(%.3"PRREAL" %.3"PRREAL" T:%.3"PRREAL" %.3"PRREAL")",
                   graph->pwgts[i]*graph->invtvwgt[i],
                   graph->pwgts[graph->ncon+i]*graph->invtvwgt[i],
                   ntpwgts[i], ntpwgts[graph->ncon+i]);
        printf("] LB: %.3"PRREAL"(%+.3"PRREAL")\n",
               ComputeLoadImbalance(graph, 2, ctrl->pijbm), deltabal);
    }
    else {
        printf("\tMincut: %6"PRIDX" at %5"PRIDX" NBND %6"PRIDX" NPwgts: [",
               graph->mincut, mincutorder, graph->nbnd);
        for (i=0; i<graph->ncon; i++)
            printf("(%.3"PRREAL" %.3"PRREAL")",
                   graph->pwgts[i]*graph->invtvwgt[i], graph->pwgts[graph->ncon+i]*graph->invtvwgt[i]);
        printf("] LB: %.3"PRREAL"(%+.3"PRREAL")\n",
               ComputeLoadImbalance(graph, 2, ctrl->pijbm), deltabal);
    }
}
Example #2
0
void FM_Mc2WayCutRefine(ctrl_t *ctrl, graph_t *graph, real_t *ntpwgts, idx_t niter)
{
    idx_t i, ii, j, k, l, kwgt, nvtxs, ncon, nbnd, nswaps, from, to, pass,
          me, limit, tmp, cnum;
    idx_t *xadj, *adjncy, *vwgt, *adjwgt, *pwgts, *where, *id, *ed,
          *bndptr, *bndind;
    idx_t *moved, *swaps, *perm, *qnum;
    idx_t higain, mincut, initcut, newcut, mincutorder;
    real_t *invtvwgt, *ubfactors, *minbalv, *newbalv;
    real_t origbal, minbal, newbal, rgain, ffactor;
    rpq_t **queues;

    WCOREPUSH;

    nvtxs    = graph->nvtxs;
    ncon     = graph->ncon;
    xadj     = graph->xadj;
    vwgt     = graph->vwgt;
    adjncy   = graph->adjncy;
    adjwgt   = graph->adjwgt;
    invtvwgt = graph->invtvwgt;
    where    = graph->where;
    id       = graph->id;
    ed       = graph->ed;
    pwgts    = graph->pwgts;
    bndptr   = graph->bndptr;
    bndind   = graph->bndind;

    moved     = iwspacemalloc(ctrl, nvtxs);
    swaps     = iwspacemalloc(ctrl, nvtxs);
    perm      = iwspacemalloc(ctrl, nvtxs);
    qnum      = iwspacemalloc(ctrl, nvtxs);
    ubfactors = rwspacemalloc(ctrl, ncon);
    newbalv   = rwspacemalloc(ctrl, ncon);
    minbalv   = rwspacemalloc(ctrl, ncon);

    limit = gk_min(gk_max(0.01*nvtxs, 25), 150);


    /* Determine a fudge factor to allow the refinement routines to get out
       of tight balancing constraints. */
    ffactor = .5/gk_max(20, nvtxs);

    /* Initialize the queues */
    queues = (rpq_t **)wspacemalloc(ctrl, 2*ncon*sizeof(rpq_t *));
    for (i=0; i<2*ncon; i++)
        queues[i] = rpqCreate(nvtxs);
    for (i=0; i<nvtxs; i++)
        qnum[i] = iargmax_nrm(ncon, vwgt+i*ncon, invtvwgt);

    /* Determine the unbalance tolerance for each constraint. The tolerance is
       equal to the maximum of the original load imbalance and the user-supplied
       allowed tolerance. The rationale behind this approach is to allow the
       refinement routine to improve the cut, without having to worry about fixing
       load imbalance problems. The load imbalance is addressed by the balancing
       routines. */
    origbal = ComputeLoadImbalanceDiffVec(graph, 2, ctrl->pijbm, ctrl->ubfactors, ubfactors);
    for (i=0; i<ncon; i++)
        ubfactors[i] = (ubfactors[i] > 0 ? ctrl->ubfactors[i]+ubfactors[i] : ctrl->ubfactors[i]);


    IFSET(ctrl->dbglvl, METIS_DBG_REFINE,
          Print2WayRefineStats(ctrl, graph, ntpwgts, origbal, -2));

    iset(nvtxs, -1, moved);
    for (pass=0; pass<niter; pass++) { /* Do a number of passes */
        for (i=0; i<2*ncon; i++)
            rpqReset(queues[i]);

        mincutorder = -1;
        newcut = mincut = initcut = graph->mincut;

        minbal = ComputeLoadImbalanceDiffVec(graph, 2, ctrl->pijbm, ubfactors, minbalv);

        ASSERT(ComputeCut(graph, where) == graph->mincut);
        ASSERT(CheckBnd(graph));

        /* Insert boundary nodes in the priority queues */
        nbnd = graph->nbnd;
        irandArrayPermute(nbnd, perm, nbnd/5, 1);
        for (ii=0; ii<nbnd; ii++) {
            i = bndind[perm[ii]];
            ASSERT(ed[i] > 0 || id[i] == 0);
            ASSERT(bndptr[i] != -1);
            //rgain = 1.0*(ed[i]-id[i])/sqrt(vwgt[i*ncon+qnum[i]]+1);
            //rgain = (ed[i]-id[i] > 0 ? 1.0*(ed[i]-id[i])/sqrt(vwgt[i*ncon+qnum[i]]+1) : ed[i]-id[i]);
            rgain = ed[i]-id[i];
            rpqInsert(queues[2*qnum[i]+where[i]], i, rgain);
        }

        for (nswaps=0; nswaps<nvtxs; nswaps++) {
            SelectQueue(graph, ctrl->pijbm, ubfactors, queues, &from, &cnum);

            to = (from+1)%2;

            if (from == -1 || (higain = rpqGetTop(queues[2*cnum+from])) == -1)
                break;
            ASSERT(bndptr[higain] != -1);

            newcut -= (ed[higain]-id[higain]);

            iaxpy(ncon,  1, vwgt+higain*ncon, 1, pwgts+to*ncon,   1);
            iaxpy(ncon, -1, vwgt+higain*ncon, 1, pwgts+from*ncon, 1);
            newbal = ComputeLoadImbalanceDiffVec(graph, 2, ctrl->pijbm, ubfactors, newbalv);

            if ((newcut < mincut && newbal <= ffactor) ||
                    (newcut == mincut && (newbal < minbal ||
                                          (newbal == minbal && BetterBalance2Way(ncon, minbalv, newbalv))))) {
                mincut      = newcut;
                minbal      = newbal;
                mincutorder = nswaps;
                rcopy(ncon, newbalv, minbalv);
            }
            else if (nswaps-mincutorder > limit) { /* We hit the limit, undo last move */
                newcut += (ed[higain]-id[higain]);
                iaxpy(ncon,  1, vwgt+higain*ncon, 1, pwgts+from*ncon, 1);
                iaxpy(ncon, -1, vwgt+higain*ncon, 1, pwgts+to*ncon,   1);
                break;
            }

            where[higain] = to;
            moved[higain] = nswaps;
            swaps[nswaps] = higain;

            if (ctrl->dbglvl&METIS_DBG_MOVEINFO) {
                printf("Moved%6"PRIDX" from %"PRIDX"(%"PRIDX") Gain:%5"PRIDX", "
                       "Cut:%5"PRIDX", NPwgts:", higain, from, cnum, ed[higain]-id[higain], newcut);
                for (l=0; l<ncon; l++)
                    printf("(%.3"PRREAL" %.3"PRREAL")", pwgts[l]*invtvwgt[l], pwgts[ncon+l]*invtvwgt[l]);
                printf(" %+.3"PRREAL" LB: %.3"PRREAL"(%+.3"PRREAL")\n",
                       minbal, ComputeLoadImbalance(graph, 2, ctrl->pijbm), newbal);
            }


            /**************************************************************
            * Update the id[i]/ed[i] values of the affected nodes
            ***************************************************************/
            SWAP(id[higain], ed[higain], tmp);
            if (ed[higain] == 0 && xadj[higain] < xadj[higain+1])
                BNDDelete(nbnd, bndind,  bndptr, higain);

            for (j=xadj[higain]; j<xadj[higain+1]; j++) {
                k = adjncy[j];

                kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]);
                INC_DEC(id[k], ed[k], kwgt);

                /* Update its boundary information and queue position */
                if (bndptr[k] != -1) { /* If k was a boundary vertex */
                    if (ed[k] == 0) { /* Not a boundary vertex any more */
                        BNDDelete(nbnd, bndind, bndptr, k);
                        if (moved[k] == -1)  /* Remove it if in the queues */
                            rpqDelete(queues[2*qnum[k]+where[k]], k);
                    }
                    else { /* If it has not been moved, update its position in the queue */
                        if (moved[k] == -1) {
                            //rgain = 1.0*(ed[k]-id[k])/sqrt(vwgt[k*ncon+qnum[k]]+1);
                            //rgain = (ed[k]-id[k] > 0 ?
                            //              1.0*(ed[k]-id[k])/sqrt(vwgt[k*ncon+qnum[k]]+1) : ed[k]-id[k]);
                            rgain = ed[k]-id[k];
                            rpqUpdate(queues[2*qnum[k]+where[k]], k, rgain);
                        }
                    }
                }
                else {
                    if (ed[k] > 0) {  /* It will now become a boundary vertex */
                        BNDInsert(nbnd, bndind, bndptr, k);
                        if (moved[k] == -1) {
                            //rgain = 1.0*(ed[k]-id[k])/sqrt(vwgt[k*ncon+qnum[k]]+1);
                            //rgain = (ed[k]-id[k] > 0 ?
                            //              1.0*(ed[k]-id[k])/sqrt(vwgt[k*ncon+qnum[k]]+1) : ed[k]-id[k]);
                            rgain = ed[k]-id[k];
                            rpqInsert(queues[2*qnum[k]+where[k]], k, rgain);
                        }
                    }
                }
            }

        }


        /****************************************************************
        * Roll back computations
        *****************************************************************/
        for (i=0; i<nswaps; i++)
            moved[swaps[i]] = -1;  /* reset moved array */
        for (nswaps--; nswaps>mincutorder; nswaps--) {
            higain = swaps[nswaps];

            to = where[higain] = (where[higain]+1)%2;
            SWAP(id[higain], ed[higain], tmp);
            if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1])
                BNDDelete(nbnd, bndind,  bndptr, higain);
            else if (ed[higain] > 0 && bndptr[higain] == -1)
                BNDInsert(nbnd, bndind,  bndptr, higain);

            iaxpy(ncon,  1, vwgt+higain*ncon, 1, pwgts+to*ncon,         1);
            iaxpy(ncon, -1, vwgt+higain*ncon, 1, pwgts+((to+1)%2)*ncon, 1);
            for (j=xadj[higain]; j<xadj[higain+1]; j++) {
                k = adjncy[j];

                kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]);
                INC_DEC(id[k], ed[k], kwgt);

                if (bndptr[k] != -1 && ed[k] == 0)
                    BNDDelete(nbnd, bndind, bndptr, k);
                if (bndptr[k] == -1 && ed[k] > 0)
                    BNDInsert(nbnd, bndind, bndptr, k);
            }
        }

        graph->mincut = mincut;
        graph->nbnd   = nbnd;

        IFSET(ctrl->dbglvl, METIS_DBG_REFINE,
              Print2WayRefineStats(ctrl, graph, ntpwgts, minbal, mincutorder));

        if (mincutorder <= 0 || mincut == initcut)
            break;
    }

    for (i=0; i<2*ncon; i++)
        rpqDestroy(queues[i]);

    WCOREPOP;
}
Example #3
0
/*************************************************************************
* This function balances two partitions by moving the highest gain 
* (including negative gain) vertices to the other domain.
* It is used only when tha unbalance is due to non contigous
* subdomains. That is, the are no boundary vertices.
* It moves vertices from the domain that is overweight to the one that 
* is underweight.
**************************************************************************/
void MocInit2WayBalance2(CtrlType *ctrl, GraphType *graph, float *tpwgts, float *ubvec)
{
  int i, ii, j, k, l, kwgt, nvtxs, nbnd, ncon, nswaps, from, to, pass, me, cnum, tmp, imin;
  idxtype *xadj, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind;
  idxtype *moved, *perm, *qnum;
  float *nvwgt, *npwgts, minwgt;
  PQueueType parts[MAXNCON][2];
  int higain, oldgain, mincut;

  nvtxs = graph->nvtxs;
  ncon = graph->ncon;
  xadj = graph->xadj;
  adjncy = graph->adjncy;
  nvwgt = graph->nvwgt;
  adjwgt = graph->adjwgt;
  where = graph->where;
  id = graph->id;
  ed = graph->ed;
  npwgts = graph->npwgts;
  bndptr = graph->bndptr;
  bndind = graph->bndind;

  moved = idxwspacemalloc(ctrl, nvtxs);
  perm = idxwspacemalloc(ctrl, nvtxs);
  qnum = idxwspacemalloc(ctrl, nvtxs);

  /* This is called for initial partitioning so we know from where to pick nodes */
  from = 1;
  to = (from+1)%2;

  if (ctrl->dbglvl&DBG_REFINE) {
    printf("Parts: [");
    for (l=0; l<ncon; l++)
      printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]);
    printf("] T[%.3f %.3f], Nv-Nb[%5d, %5d]. ICut: %6d, LB: %.3f [B]\n", tpwgts[0], tpwgts[1], graph->nvtxs, graph->nbnd, graph->mincut, ComputeLoadImbalance(ncon, 2, npwgts, tpwgts));
  }

  for (i=0; i<ncon; i++) {
    PQueueInit(ctrl, &parts[i][0], nvtxs, PLUS_GAINSPAN+1);
    PQueueInit(ctrl, &parts[i][1], nvtxs, PLUS_GAINSPAN+1);
  }

  idxset(nvtxs, -1, moved);

  ASSERT(ComputeCut(graph, where) == graph->mincut);
  ASSERT(CheckBnd(graph));
  ASSERT(CheckGraph(graph));

  /* Compute the queues in which each vertex will be assigned to */
  for (i=0; i<nvtxs; i++)
    qnum[i] = samax(ncon, nvwgt+i*ncon);

  /* Insert the nodes of the proper partition in the appropriate priority queue */
  RandomPermute(nvtxs, perm, 1);
  for (ii=0; ii<nvtxs; ii++) {
    i = perm[ii];
    if (where[i] == from) {
      if (ed[i] > 0)
        PQueueInsert(&parts[qnum[i]][0], i, ed[i]-id[i]);
      else
        PQueueInsert(&parts[qnum[i]][1], i, ed[i]-id[i]);
    }
  }

/*
  for (i=0; i<ncon; i++)
    printf("Queue #%d has %d %d\n", i, parts[i][0].nnodes, parts[i][1].nnodes);
*/

  /* Determine the termination criterion */
  imin = 0;
  for (i=1; i<ncon; i++) 
    imin = (ubvec[i] < ubvec[imin] ? i : imin);
  minwgt = .5/ubvec[imin];

  mincut = graph->mincut;
  nbnd = graph->nbnd;
  for (nswaps=0; nswaps<nvtxs; nswaps++) {
    /* Exit as soon as the minimum weight crossed over */
    if (npwgts[to*ncon+imin] > minwgt)  
      break;

    if ((cnum = SelectQueueOneWay2(ncon, npwgts+to*ncon, parts, ubvec)) == -1)
      break;

    if ((higain = PQueueGetMax(&parts[cnum][0])) == -1)
      higain = PQueueGetMax(&parts[cnum][1]);

    mincut -= (ed[higain]-id[higain]);
    saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1);
    saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1);

    where[higain] = to;
    moved[higain] = nswaps;

    if (ctrl->dbglvl&DBG_MOVEINFO) {
      printf("Moved %6d from %d(%d). [%5d] %5d, NPwgts: ", higain, from, cnum, ed[higain]-id[higain], mincut);
      for (l=0; l<ncon; l++) 
        printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]);
      printf(", LB: %.3f\n", ComputeLoadImbalance(ncon, 2, npwgts, tpwgts));
      if (ed[higain] == 0 && id[higain] > 0)
        printf("\t Pulled from the interior!\n");
    }


    /**************************************************************
    * Update the id[i]/ed[i] values of the affected nodes
    ***************************************************************/
    SWAP(id[higain], ed[higain], tmp);
    if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1]) 
      BNDDelete(nbnd, bndind,  bndptr, higain);
    if (ed[higain] > 0 && bndptr[higain] == -1)
      BNDInsert(nbnd, bndind,  bndptr, higain);

    for (j=xadj[higain]; j<xadj[higain+1]; j++) {
      k = adjncy[j];
      oldgain = ed[k]-id[k];

      kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]);
      INC_DEC(id[k], ed[k], kwgt);

      /* Update the queue position */
      if (moved[k] == -1 && where[k] == from) {
        if (ed[k] > 0 && bndptr[k] == -1) {  /* It moves in boundary */
          PQueueDelete(&parts[qnum[k]][1], k, oldgain);
          PQueueInsert(&parts[qnum[k]][0], k, ed[k]-id[k]);
        }
        else { /* It must be in the boundary already */
          if (bndptr[k] == -1)
            printf("What you thought was wrong!\n");
          PQueueUpdate(&parts[qnum[k]][0], k, oldgain, ed[k]-id[k]);
        }
      }

      /* Update its boundary information */
      if (ed[k] == 0 && bndptr[k] != -1) 
        BNDDelete(nbnd, bndind, bndptr, k);
      else if (ed[k] > 0 && bndptr[k] == -1)  
        BNDInsert(nbnd, bndind, bndptr, k);
    }

    ASSERTP(ComputeCut(graph, where) == mincut, ("%d != %d\n", ComputeCut(graph, where), mincut));

  }

  if (ctrl->dbglvl&DBG_REFINE) {
    printf("\tMincut: %6d, NBND: %6d, NPwgts: ", mincut, nbnd);
    for (l=0; l<ncon; l++)
      printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]);
    printf(", LB: %.3f\n", ComputeLoadImbalance(ncon, 2, npwgts, tpwgts));
  }

  graph->mincut = mincut;
  graph->nbnd = nbnd;

  for (i=0; i<ncon; i++) {
    PQueueFree(ctrl, &parts[i][0]);
    PQueueFree(ctrl, &parts[i][1]);
  }

  ASSERT(ComputeCut(graph, where) == graph->mincut);
  ASSERT(CheckBnd(graph));

  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs);
  idxwspacefree(ctrl, nvtxs);
}