void CreateNearestNeighborCandidateSet(int K)
{
    Node *From, *To;
    int i;

    if (TraceLevel >= 2)
        printff("Creating nearest neighbor candidate set ... ");
    KDTree = BuildKDTree(1);
    assert(XMin =
           (double *) malloc((1 + DimensionSaved) * sizeof(double)));
    assert(XMax =
           (double *) malloc((1 + DimensionSaved) * sizeof(double)));
    assert(YMin =
           (double *) malloc((1 + DimensionSaved) * sizeof(double)));
    assert(YMax =
           (double *) malloc((1 + DimensionSaved) * sizeof(double)));
    if (CoordType == THREED_COORDS) {
        assert(ZMin =
               (double *) malloc((1 + DimensionSaved) * sizeof(double)));
        assert(ZMax =
               (double *) malloc((1 + DimensionSaved) * sizeof(double)));
    }
    ComputeBounds(0, Dimension - 1);
    Contains = CoordType == THREED_COORDS ? Contains3D : Contains2D;
    BoxOverlaps =
        CoordType == THREED_COORDS ? BoxOverlaps3D : BoxOverlaps2D;
    assert(CandidateSet =
           (Candidate *) malloc((K + 1) * sizeof(Candidate)));

    From = FirstNode;
    do {
        NearestQuadrantNeighbors(From, 0, K);
        for (i = 0; i < Candidates; i++) {
            To = CandidateSet[i].To;
            AddCandidate(From, To, D(From, To), 1);
        }
    } while ((From = From->Suc) != FirstNode);

    free(CandidateSet);
    free(KDTree);
    free(XMin);
    free(XMax);
    free(YMin);
    free(YMax);
    if (CoordType == THREED_COORDS) {
        free(ZMin);
        free(ZMax);
    }
    if (Level == 0 && (WeightType == GEOM || WeightType == GEOM_MEEUS)) {
        Candidate **SavedCandidateSet;
        assert(SavedCandidateSet =
               (Candidate **) malloc((1 + DimensionSaved) *
                                     sizeof(Candidate *)));
        if (TraceLevel >= 2)
            printff("done\n");
        /* Transform longitude (180 and -180 map to 0) */
        From = FirstNode;
        do {
            SavedCandidateSet[From->Id] = From->CandidateSet;
            From->CandidateSet = 0;
            From->Yc = From->Y;
            From->Y += From->Y > 0 ? -180 : 180;
        } while ((From = From->Suc) != FirstNode);
        Level++;
        CreateNearestNeighborCandidateSet(K);
        Level--;
        From = FirstNode;
        do
            From->Y = From->Yc;
        while ((From = From->Suc) != FirstNode);
        do {
            Candidate *QCandidateSet = From->CandidateSet;
            Candidate *NFrom;
            From->CandidateSet = SavedCandidateSet[From->Id];
            for (NFrom = QCandidateSet; (To = NFrom->To); NFrom++)
                AddCandidate(From, To, NFrom->Cost, NFrom->Alpha);
            free(QCandidateSet);
        } while ((From = From->Suc) != FirstNode);
        free(SavedCandidateSet);
    }
    if (Level == 0) {
        ResetCandidateSet();
        AddTourCandidates();
        if (CandidateSetSymmetric)
            SymmetrizeCandidateSet();
        if (TraceLevel >= 2)
            printff("done\n");
    }
}
Example #2
0
void LKH::LKHAlg::CreateCandidateSet()
{
    GainType Cost, MaxAlpha, A;
    Node *Na;
    int CandidatesRead = 0, i;
    double EntryTime = GetTime();

    Norm = 9999;
    if (C == &LKH::LKHAlg::C_EXPLICIT) {
        Na = FirstNode;
        do {
            for (i = 1; i < Na->Id; i++)
                Na->C[i] *= Precision;
        }
        while ((Na = Na->Suc) != FirstNode);
    }
    if (Distance == &LKH::LKHAlg::Distance_1 ||
            (MaxTrials == 0 &&
             (FirstNode->InitialSuc || InitialTourAlgorithm == SIERPINSKI ||
              InitialTourAlgorithm == MOORE))) {
        ReadCandidates(MaxCandidates);
        AddTourCandidates();
        if (ProblemType == HCP || ProblemType == HPP)
            Ascent();
        goto End_CreateCandidateSet;
    }
    if (TraceLevel >= 2)
        printff("Creating candidates ...\n");
    if (MaxCandidates > 0 &&
            (CandidateSetType == QUADRANT || CandidateSetType == NN)) {
        ReadPenalties();
        if (!(CandidatesRead = ReadCandidates(MaxCandidates)) &&
                MaxCandidates > 0) {
            if (CandidateSetType == QUADRANT)
                CreateQuadrantCandidateSet(MaxCandidates);
            else if (CandidateSetType == NN)
                CreateNearestNeighborCandidateSet(MaxCandidates);
        } else {
            AddTourCandidates();
            if (CandidateSetSymmetric)
                SymmetrizeCandidateSet();
        }
        goto End_CreateCandidateSet;
    }
    if (!ReadPenalties()) {
        /* No PiFile specified or available */
        Na = FirstNode;
        do
            Na->Pi = 0;
        while ((Na = Na->Suc) != FirstNode);
        CandidatesRead = ReadCandidates(MaxCandidates);
        Cost = Ascent();
        if (Subgradient && SubproblemSize == 0) {
            WritePenalties();
            PiFile = 0;
        }
    } else if ((CandidatesRead = ReadCandidates(MaxCandidates)) ||
               MaxCandidates == 0) {
        AddTourCandidates();
        if (CandidateSetSymmetric)
            SymmetrizeCandidateSet();
        goto End_CreateCandidateSet;
    } else {
        if (CandidateSetType != DELAUNAY && MaxCandidates > 0) {
            if (TraceLevel >= 2)
                printff("Computing lower bound ... ");
            Cost = Minimum1TreeCost(0);
            if (TraceLevel >= 2)
                printff("done\n");
        } else {
            CreateDelaunayCandidateSet();
            Na = FirstNode;
            do {
                Na->BestPi = Na->Pi;
                Na->Pi = 0;
            }
            while ((Na = Na->Suc) != FirstNode);
            if (TraceLevel >= 2)
                printff("Computing lower bound ... ");
            Cost = Minimum1TreeCost(1);
            if (TraceLevel >= 2)
                printff("done\n");
            Na = FirstNode;
            do {
                Na->Pi = Na->BestPi;
                Cost -= 2 * Na->Pi;
            }
            while ((Na = Na->Suc) != FirstNode);
        }
    }
    LowerBound = (double) Cost / Precision;
    if (TraceLevel >= 1) {
        /*    printff("Lower bound = %0.1f", LowerBound);
            if (Optimum != MINUS_INFINITY && Optimum != 0)
                printff(", Gap = %0.2f%%",
                        100.0 * (Optimum - LowerBound) / Optimum);
            if (!PiFile)
                printff(", Ascent time = %0.2f sec.",
                        fabs(GetTime() - EntryTime));
            printff("\n"); */
        if (Optimum != MINUS_INFINITY && Optimum != 0)
            m_Gap=100.0 * (Optimum - LowerBound) / Optimum;
        if (!PiFile)
            m_AscentTime=fabs(GetTime() - EntryTime);
    }
    MaxAlpha = (GainType) fabs(Excess * Cost);
    if ((A = Optimum * Precision - Cost) > 0 && A < MaxAlpha)
        MaxAlpha = A;
    if (CandidateSetType == DELAUNAY || MaxCandidates == 0)
        OrderCandidateSet(MaxCandidates, MaxAlpha, CandidateSetSymmetric);
    else
        GenerateCandidates(MaxCandidates, MaxAlpha, CandidateSetSymmetric);

End_CreateCandidateSet:
    if (ExtraCandidates > 0) {
        AddExtraCandidates(ExtraCandidates,
                           ExtraCandidateSetType,
                           ExtraCandidateSetSymmetric);
        AddTourCandidates();
    }
    ResetCandidateSet();
    Na = FirstNode;
    do {
        if (!Na->CandidateSet || !Na->CandidateSet[0].To) {
            if (MaxCandidates == 0)
                eprintf("MAX_CANDIDATES = 0: Node %d has no candidates",
                        Na->Id);
            else
                eprintf("Node %d has no candidates", Na->Id);
        }
    }
    while ((Na = Na->Suc) != FirstNode);
    if (!CandidatesRead && SubproblemSize == 0)
        WriteCandidates();
    if (C == &LKH::LKHAlg::C_EXPLICIT) {
        Na = FirstNode;
        do
            for (i = 1; i < Na->Id; i++)
                Na->C[i] += Na->Pi + NodeSet[i].Pi;
        while ((Na = Na->Suc) != FirstNode);
    }
    if (TraceLevel >= 1) {
        CandidateReport();
        //     printff("Preprocessing time = %0.2f sec.\n",
        //           fabs(GetTime() - EntryTime));
    }
}