Example #1
0
static int jffs2_scan_dirent_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, __u32 *ofs)
{
	struct jffs2_raw_node_ref *raw;
	struct jffs2_full_dirent *fd;
	struct jffs2_inode_cache *ic;
	struct jffs2_raw_dirent rd;
	__u16 oldnodetype;
	int ret;
	__u32 crc;
	ssize_t retlen;

	D1(printk(KERN_DEBUG "jffs2_scan_dirent_node(): Node at 0x%08x\n", *ofs));

	ret = c->mtd->read(c->mtd, *ofs, sizeof(rd), &retlen, (char *)&rd);
	if (ret) {
		printk(KERN_NOTICE "jffs2_scan_dirent_node(): Read error at 0x%08x: %d\n", *ofs, ret);
		return ret;
	}
	if (retlen != sizeof(rd)) {
		printk(KERN_NOTICE "Short read: 0x%x bytes at 0x%08x instead of requested %x\n", 
		       retlen, *ofs, sizeof(rd));
		return -EIO;
	}

	/* We sort of assume that the node was accurate when it was 
	   first written to the medium :) */
	oldnodetype = rd.nodetype;
	rd.nodetype |= JFFS2_NODE_ACCURATE;
	crc = crc32(0, &rd, sizeof(rd)-8);
	rd.nodetype = oldnodetype;

	if (crc != rd.node_crc) {
		printk(KERN_NOTICE "jffs2_scan_dirent_node(): Node CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
		       *ofs, rd.node_crc, crc);
		/* FIXME: Why do we believe totlen? */
		DIRTY_SPACE(4);
		*ofs += 4;
		return 0;
	}

	pseudo_random += rd.version;

	fd = jffs2_alloc_full_dirent(rd.nsize+1);
	if (!fd) {
		return -ENOMEM;
}
	ret = c->mtd->read(c->mtd, *ofs + sizeof(rd), rd.nsize, &retlen, &fd->name[0]);
	if (ret) {
		jffs2_free_full_dirent(fd);
		printk(KERN_NOTICE "jffs2_scan_dirent_node(): Read error at 0x%08x: %d\n", 
		       *ofs + sizeof(rd), ret);
		return ret;
	}
	if (retlen != rd.nsize) {
		jffs2_free_full_dirent(fd);
		printk(KERN_NOTICE "Short read: 0x%x bytes at 0x%08x instead of requested %x\n", 
		       retlen, *ofs + sizeof(rd), rd.nsize);
		return -EIO;
	}
	crc = crc32(0, fd->name, rd.nsize);
	if (crc != rd.name_crc) {
		printk(KERN_NOTICE "jffs2_scan_dirent_node(): Name CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
		       *ofs, rd.name_crc, crc);	
		fd->name[rd.nsize]=0;
		D1(printk(KERN_NOTICE "Name for which CRC failed is (now) '%s', ino #%d\n", fd->name, rd.ino));
		jffs2_free_full_dirent(fd);
		/* FIXME: Why do we believe totlen? */
		DIRTY_SPACE(PAD(rd.totlen));
		*ofs += PAD(rd.totlen);
		return 0;
	}
	raw = jffs2_alloc_raw_node_ref();
	if (!raw) {
		jffs2_free_full_dirent(fd);
		printk(KERN_NOTICE "jffs2_scan_dirent_node(): allocation of node reference failed\n");
		return -ENOMEM;
	}
	ic = jffs2_scan_make_ino_cache(c, rd.pino);
	if (!ic) {
		jffs2_free_full_dirent(fd);
		jffs2_free_raw_node_ref(raw);
		return -ENOMEM;
	}
	
	raw->totlen = PAD(rd.totlen);
	raw->flash_offset = *ofs;
	raw->next_phys = NULL;
	raw->next_in_ino = ic->nodes;
	ic->nodes = raw;
	if (!jeb->first_node)
		jeb->first_node = raw;
	if (jeb->last_node)
		jeb->last_node->next_phys = raw;
	jeb->last_node = raw;

	if (rd.nodetype & JFFS2_NODE_ACCURATE) {
		fd->raw = raw;
		fd->next = NULL;
		fd->version = rd.version;
		fd->ino = rd.ino;
		fd->name[rd.nsize]=0;
		fd->nhash = full_name_hash(fd->name, rd.nsize);
		fd->type = rd.type;

		USED_SPACE(PAD(rd.totlen));
		jffs2_add_fd_to_list(c, fd, &ic->scan->dents);
	} else {
		raw->flash_offset |= 1;
		jffs2_free_full_dirent(fd);

		DIRTY_SPACE(PAD(rd.totlen));
	} 
	*ofs += PAD(rd.totlen);
	return 0;
}
Example #2
0
static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) {
	struct jffs2_unknown_node node;
	__u32 ofs, prevofs;
	__u32 hdr_crc, nodetype;
	int err;
	int noise = 0;

	ofs = jeb->offset;
	prevofs = jeb->offset - 1;

	D1(printk(KERN_DEBUG "jffs2_scan_eraseblock(): Scanning block at 0x%x\n", ofs));

	err = jffs2_scan_empty(c, jeb, &ofs, &noise);
	if (err) return err;
	if (ofs == jeb->offset + c->sector_size) {
		D1(printk(KERN_DEBUG "Block at 0x%08x is empty (erased)\n", jeb->offset));
		return 1;	/* special return code */
	}
	
	noise = 10;

	while(ofs < jeb->offset + c->sector_size) {
		ssize_t retlen;
		ACCT_PARANOIA_CHECK(jeb);
		
		if (ofs & 3) {
			printk(KERN_WARNING "Eep. ofs 0x%08x not word-aligned!\n", ofs);
			ofs = (ofs+3)&~3;
			continue;
		}
		if (ofs == prevofs) {
			printk(KERN_WARNING "ofs 0x%08x has already been seen. Skipping\n", ofs);
			DIRTY_SPACE(4);
			ofs += 4;
			continue;
		}
		prevofs = ofs;
		
		if (jeb->offset + c->sector_size < ofs + sizeof(node)) {
			D1(printk(KERN_DEBUG "Fewer than %d bytes left to end of block. Not reading\n", sizeof(struct jffs2_unknown_node)));
			DIRTY_SPACE((jeb->offset + c->sector_size)-ofs);
			break;
		}

		err = c->mtd->read(c->mtd, ofs, sizeof(node), &retlen, (char *)&node);
		
		if (err) {
			D1(printk(KERN_WARNING "mtd->read(0x%x bytes from 0x%x) returned %d\n", sizeof(node), ofs, err));
			return err;
		}
		if (retlen < sizeof(node)) {
			D1(printk(KERN_WARNING "Read at 0x%x gave only 0x%x bytes\n", ofs, retlen));
			DIRTY_SPACE(retlen);
			ofs += retlen;
			continue;
		}

		if (node.magic == JFFS2_EMPTY_BITMASK && node.nodetype == JFFS2_EMPTY_BITMASK) {
			D1(printk(KERN_DEBUG "Found empty flash at 0x%x\n", ofs));
			err = jffs2_scan_empty(c, jeb, &ofs, &noise);
			if (err) return err;
			continue;
		}

		if (ofs == jeb->offset && node.magic == KSAMTIB_CIGAM_2SFFJ) {
			printk(KERN_WARNING "Magic bitmask is backwards at offset 0x%08x. Wrong endian filesystem?\n", ofs);
			DIRTY_SPACE(4);
			ofs += 4;
			continue;
		}
		if (node.magic == JFFS2_DIRTY_BITMASK) {
			D1(printk(KERN_DEBUG "Empty bitmask at 0x%08x\n", ofs));
			DIRTY_SPACE(4);
			ofs += 4;
			continue;
		}
		if (node.magic == JFFS2_OLD_MAGIC_BITMASK) {
			printk(KERN_WARNING "Old JFFS2 bitmask found at 0x%08x\n", ofs);
			printk(KERN_WARNING "You cannot use older JFFS2 filesystems with newer kernels\n");
			DIRTY_SPACE(4);
			ofs += 4;
			continue;
		}
		if (node.magic != JFFS2_MAGIC_BITMASK) {
			/* OK. We're out of possibilities. Whinge and move on */
			noisy_printk(&noise, "jffs2_scan_eraseblock(): Magic bitmask 0x%04x not found at 0x%08x: 0x%04x instead\n", JFFS2_MAGIC_BITMASK, ofs, node.magic);
			DIRTY_SPACE(4);
			ofs += 4;
			continue;
		}
		/* We seem to have a node of sorts. Check the CRC */
		nodetype = node.nodetype;
		node.nodetype |= JFFS2_NODE_ACCURATE;
		hdr_crc = crc32(0, &node, sizeof(node)-4);
		node.nodetype = nodetype;
		if (hdr_crc != node.hdr_crc) {
			noisy_printk(&noise, "jffs2_scan_eraseblock(): Node at 0x%08x {0x%04x, 0x%04x, 0x%08x) has invalid CRC 0x%08x (calculated 0x%08x)\n",
				     ofs, node.magic, node.nodetype, node.totlen, node.hdr_crc, hdr_crc);
			DIRTY_SPACE(4);
			ofs += 4;
			continue;
		}

		if (ofs + node.totlen > jeb->offset + c->sector_size) {
			/* Eep. Node goes over the end of the erase block. */
			printk(KERN_WARNING "Node at 0x%08x with length 0x%08x would run over the end of the erase block\n",
			       ofs, node.totlen);
			printk(KERN_WARNING "Perhaps the file system was created with the wrong erase size?\n");
			DIRTY_SPACE(4);
			ofs += 4;
			continue;
		}

		switch(node.nodetype | JFFS2_NODE_ACCURATE) {
		case JFFS2_NODETYPE_INODE:
			err = jffs2_scan_inode_node(c, jeb, &ofs);
			if (err) return err;
			break;
			
		case JFFS2_NODETYPE_DIRENT:
			err = jffs2_scan_dirent_node(c, jeb, &ofs);
			if (err) return err;
			break;

		case JFFS2_NODETYPE_CLEANMARKER:
			if (node.totlen != sizeof(struct jffs2_unknown_node)) {
				printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x has totlen 0x%x != normal 0x%x\n", 
				       ofs, node.totlen, sizeof(struct jffs2_unknown_node));
				DIRTY_SPACE(PAD(sizeof(struct jffs2_unknown_node)));
			} else if (jeb->first_node) {
				printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x, not first node in block (0x%08x)\n", ofs, jeb->offset);
				DIRTY_SPACE(PAD(sizeof(struct jffs2_unknown_node)));
				ofs += PAD(sizeof(struct jffs2_unknown_node));
				continue;
			} else {
				struct jffs2_raw_node_ref *marker_ref = jffs2_alloc_raw_node_ref();
				if (!marker_ref) {
					printk(KERN_NOTICE "Failed to allocate node ref for clean marker\n");
					return -ENOMEM;
				}
				marker_ref->next_in_ino = NULL;
				marker_ref->next_phys = NULL;
				marker_ref->flash_offset = ofs;
				marker_ref->totlen = sizeof(struct jffs2_unknown_node);
				jeb->first_node = jeb->last_node = marker_ref;
			     
				USED_SPACE(PAD(sizeof(struct jffs2_unknown_node)));
			}
			ofs += PAD(sizeof(struct jffs2_unknown_node));
			break;

		default:
			switch (node.nodetype & JFFS2_COMPAT_MASK) {
			case JFFS2_FEATURE_ROCOMPAT:
				printk(KERN_NOTICE "Read-only compatible feature node (0x%04x) found at offset 0x%08x\n", node.nodetype, ofs);
			        c->flags |= JFFS2_SB_FLAG_RO;
				if (!(OFNI_BS_2SFFJ(c)->s_flags & MS_RDONLY))
					return -EROFS;
				DIRTY_SPACE(PAD(node.totlen));
				ofs += PAD(node.totlen);
				continue;

			case JFFS2_FEATURE_INCOMPAT:
				printk(KERN_NOTICE "Incompatible feature node (0x%04x) found at offset 0x%08x\n", node.nodetype, ofs);
				return -EINVAL;

			case JFFS2_FEATURE_RWCOMPAT_DELETE:
				printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", node.nodetype, ofs);
				DIRTY_SPACE(PAD(node.totlen));
				ofs += PAD(node.totlen);
				break;

			case JFFS2_FEATURE_RWCOMPAT_COPY:
				printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", node.nodetype, ofs);
				USED_SPACE(PAD(node.totlen));
				ofs += PAD(node.totlen);
				break;
			}
		}
	}
	D1(printk(KERN_DEBUG "Block at 0x%08x: free 0x%08x, dirty 0x%08x, used 0x%08x\n", jeb->offset, 
		  jeb->free_size, jeb->dirty_size, jeb->used_size));
	return 0;
}
Example #3
0
static int jffs2_scan_inode_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, __u32 *ofs)
{
	struct jffs2_raw_node_ref *raw;
	struct jffs2_full_dnode *fn;
	struct jffs2_tmp_dnode_info *tn, **tn_list;
	struct jffs2_inode_cache *ic;
	struct jffs2_raw_inode ri;
	__u32 crc;
	__u16 oldnodetype;
	int ret;
	ssize_t retlen;

	D1(printk(KERN_DEBUG "jffs2_scan_inode_node(): Node at 0x%08x\n", *ofs));

	ret = c->mtd->read(c->mtd, *ofs, sizeof(ri), &retlen, (char *)&ri);
	if (ret) {
		printk(KERN_NOTICE "jffs2_scan_inode_node(): Read error at 0x%08x: %d\n", *ofs, ret);
		return ret;
	}
	if (retlen != sizeof(ri)) {
		printk(KERN_NOTICE "Short read: 0x%x bytes at 0x%08x instead of requested %x\n", 
		       retlen, *ofs, sizeof(ri));
		return -EIO;
	}

	/* We sort of assume that the node was accurate when it was 
	   first written to the medium :) */
	oldnodetype = ri.nodetype;
	ri.nodetype |= JFFS2_NODE_ACCURATE;
	crc = crc32(0, &ri, sizeof(ri)-8);
	ri.nodetype = oldnodetype;

	if(crc != ri.node_crc) {
		printk(KERN_NOTICE "jffs2_scan_inode_node(): CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
		       *ofs, ri.node_crc, crc);
		/* FIXME: Why do we believe totlen? */
		DIRTY_SPACE(4);
		*ofs += 4;
		return 0;
	}
	/* There was a bug where we wrote hole nodes out with csize/dsize
	   swapped. Deal with it */
	if (ri.compr == JFFS2_COMPR_ZERO && !ri.dsize && ri.csize) {
		ri.dsize = ri.csize;
		ri.csize = 0;
	}

	if (ri.csize) {
		/* Check data CRC too */
		unsigned char *dbuf;
		__u32 crc;

		dbuf = kmalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
		if (!dbuf) {
			printk(KERN_NOTICE "jffs2_scan_inode_node(): allocation of temporary data buffer for CRC check failed\n");
			return -ENOMEM;
		}
		ret = c->mtd->read(c->mtd, *ofs+sizeof(ri), ri.csize, &retlen, dbuf);
		if (ret) {
			printk(KERN_NOTICE "jffs2_scan_inode_node(): Read error at 0x%08x: %d\n", *ofs+sizeof(ri), ret);
			kfree(dbuf);
			return ret;
		}
		if (retlen != ri.csize) {
			printk(KERN_NOTICE "Short read: 0x%x bytes at 0x%08x instead of requested %x\n", 
			       retlen, *ofs+ sizeof(ri), ri.csize);
			kfree(dbuf);
			return -EIO;
		}
		crc = crc32(0, dbuf, ri.csize);
		kfree(dbuf);
		if (crc != ri.data_crc) {
			printk(KERN_NOTICE "jffs2_scan_inode_node(): Data CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
			       *ofs, ri.data_crc, crc);
			DIRTY_SPACE(PAD(ri.totlen));
			*ofs += PAD(ri.totlen);
			return 0;
		}
	}

	/* Wheee. It worked */
	raw = jffs2_alloc_raw_node_ref();
	if (!raw) {
		printk(KERN_NOTICE "jffs2_scan_inode_node(): allocation of node reference failed\n");
		return -ENOMEM;
	}
	tn = jffs2_alloc_tmp_dnode_info();
	if (!tn) {
		jffs2_free_raw_node_ref(raw);
		return -ENOMEM;
	}
	fn = jffs2_alloc_full_dnode();
	if (!fn) {
		jffs2_free_tmp_dnode_info(tn);
		jffs2_free_raw_node_ref(raw);
		return -ENOMEM;
	}
	ic = jffs2_scan_make_ino_cache(c, ri.ino);
	if (!ic) {
		jffs2_free_full_dnode(fn);
		jffs2_free_tmp_dnode_info(tn);
		jffs2_free_raw_node_ref(raw);
		return -ENOMEM;
	}

	/* Build the data structures and file them for later */
	raw->flash_offset = *ofs;
	raw->totlen = PAD(ri.totlen);
	raw->next_phys = NULL;
	raw->next_in_ino = ic->nodes;
	ic->nodes = raw;
	if (!jeb->first_node)
		jeb->first_node = raw;
	if (jeb->last_node)
		jeb->last_node->next_phys = raw;
	jeb->last_node = raw;

	D1(printk(KERN_DEBUG "Node is ino #%u, version %d. Range 0x%x-0x%x\n", 
		  ri.ino, ri.version, ri.offset, ri.offset+ri.dsize));

	pseudo_random += ri.version;

	for (tn_list = &ic->scan->tmpnodes; *tn_list; tn_list = &((*tn_list)->next)) {
		if ((*tn_list)->version < ri.version)
			continue;
		if ((*tn_list)->version > ri.version) 
			break;
		/* Wheee. We've found another instance of the same version number.
		   We should obsolete one of them. 
		*/
		D1(printk(KERN_DEBUG "Duplicate version %d found in ino #%u. Previous one is at 0x%08x\n", ri.version, ic->ino, (*tn_list)->fn->raw->flash_offset &~3));
		if (!jeb->used_size) {
			D1(printk(KERN_DEBUG "No valid nodes yet found in this eraseblock 0x%08x, so obsoleting the new instance at 0x%08x\n", 
				  jeb->offset, raw->flash_offset & ~3));
			ri.nodetype &= ~JFFS2_NODE_ACCURATE;
			/* Perhaps we could also mark it as such on the medium. Maybe later */
		}
		break;
	}

	if (ri.nodetype & JFFS2_NODE_ACCURATE) {
		memset(fn,0,sizeof(*fn));

		fn->ofs = ri.offset;
		fn->size = ri.dsize;
		fn->frags = 0;
		fn->raw = raw;

		tn->next = NULL;
		tn->fn = fn;
		tn->version = ri.version;

		USED_SPACE(PAD(ri.totlen));
		jffs2_add_tn_to_list(tn, &ic->scan->tmpnodes);
		/* Make sure the one we just added is the _last_ in the list
		   with this version number, so the older ones get obsoleted */
		while (tn->next && tn->next->version == tn->version) {

			D1(printk(KERN_DEBUG "Shifting new node at 0x%08x after other node at 0x%08x for version %d in list\n",
				  fn->raw->flash_offset&~3, tn->next->fn->raw->flash_offset &~3, ri.version));

			if(tn->fn != fn)
				BUG();
			tn->fn = tn->next->fn;
			tn->next->fn = fn;
			tn = tn->next;
		}
	} else {
		jffs2_free_full_dnode(fn);
		jffs2_free_tmp_dnode_info(tn);
		raw->flash_offset |= 1;
		DIRTY_SPACE(PAD(ri.totlen));
	}		
	*ofs += PAD(ri.totlen);
	return 0;
}
Example #4
0
static int jffs2_scan_dirent_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, 
				  struct jffs2_raw_dirent *rd, uint32_t ofs)
{
	struct jffs2_raw_node_ref *raw;
	struct jffs2_full_dirent *fd;
	struct jffs2_inode_cache *ic;
	uint32_t crc;

	D1(printk(KERN_DEBUG "jffs2_scan_dirent_node(): Node at 0x%08x\n", ofs));

	/* We don't get here unless the node is still valid, so we don't have to
	   mask in the ACCURATE bit any more. */
	crc = crc32(0, rd, sizeof(*rd)-8);

	if (crc != je32_to_cpu(rd->node_crc)) {
		printk(KERN_NOTICE "jffs2_scan_dirent_node(): Node CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
		       ofs, je32_to_cpu(rd->node_crc), crc);
		/* We believe totlen because the CRC on the node _header_ was OK, just the node itself failed. */
		DIRTY_SPACE(PAD(je32_to_cpu(rd->totlen)));
		return 0;
	}

	pseudo_random += je32_to_cpu(rd->version);

	fd = jffs2_alloc_full_dirent(rd->nsize+1);
	if (!fd) {
		return -ENOMEM;
	}
	memcpy(&fd->name, rd->name, rd->nsize);
	fd->name[rd->nsize] = 0;

	crc = crc32(0, fd->name, rd->nsize);
	if (crc != je32_to_cpu(rd->name_crc)) {
		printk(KERN_NOTICE "jffs2_scan_dirent_node(): Name CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
		       ofs, je32_to_cpu(rd->name_crc), crc);	
		D1(printk(KERN_NOTICE "Name for which CRC failed is (now) '%s', ino #%d\n", fd->name, je32_to_cpu(rd->ino)));
		jffs2_free_full_dirent(fd);
		/* FIXME: Why do we believe totlen? */
		/* We believe totlen because the CRC on the node _header_ was OK, just the name failed. */
		DIRTY_SPACE(PAD(je32_to_cpu(rd->totlen)));
		return 0;
	}
	raw = jffs2_alloc_raw_node_ref();
	if (!raw) {
		jffs2_free_full_dirent(fd);
		printk(KERN_NOTICE "jffs2_scan_dirent_node(): allocation of node reference failed\n");
		return -ENOMEM;
	}
	ic = jffs2_scan_make_ino_cache(c, je32_to_cpu(rd->pino));
	if (!ic) {
		jffs2_free_full_dirent(fd);
		jffs2_free_raw_node_ref(raw);
		return -ENOMEM;
	}
	
	raw->totlen = PAD(je32_to_cpu(rd->totlen));
	raw->flash_offset = ofs | REF_PRISTINE;
	raw->next_phys = NULL;
	raw->next_in_ino = ic->nodes;
	ic->nodes = raw;
	if (!jeb->first_node)
		jeb->first_node = raw;
	if (jeb->last_node)
		jeb->last_node->next_phys = raw;
	jeb->last_node = raw;

	fd->raw = raw;
	fd->next = NULL;
	fd->version = je32_to_cpu(rd->version);
	fd->ino = je32_to_cpu(rd->ino);
	fd->nhash = full_name_hash(fd->name, rd->nsize);
	fd->type = rd->type;
	USED_SPACE(PAD(je32_to_cpu(rd->totlen)));
	jffs2_add_fd_to_list(c, fd, &ic->scan_dents);

	return 0;
}
Example #5
0
static int jffs2_scan_inode_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, 
				 struct jffs2_raw_inode *ri, uint32_t ofs)
{
	struct jffs2_raw_node_ref *raw;
	struct jffs2_inode_cache *ic;
	uint32_t ino = je32_to_cpu(ri->ino);

	D1(printk(KERN_DEBUG "jffs2_scan_inode_node(): Node at 0x%08x\n", ofs));

	/* We do very little here now. Just check the ino# to which we should attribute
	   this node; we can do all the CRC checking etc. later. There's a tradeoff here -- 
	   we used to scan the flash once only, reading everything we want from it into
	   memory, then building all our in-core data structures and freeing the extra
	   information. Now we allow the first part of the mount to complete a lot quicker,
	   but we have to go _back_ to the flash in order to finish the CRC checking, etc. 
	   Which means that the _full_ amount of time to get to proper write mode with GC
	   operational may actually be _longer_ than before. Sucks to be me. */

	raw = jffs2_alloc_raw_node_ref();
	if (!raw) {
		printk(KERN_NOTICE "jffs2_scan_inode_node(): allocation of node reference failed\n");
		return -ENOMEM;
	}

	ic = jffs2_get_ino_cache(c, ino);
	if (!ic) {
		/* Inocache get failed. Either we read a bogus ino# or it's just genuinely the
		   first node we found for this inode. Do a CRC check to protect against the former
		   case */
		uint32_t crc = crc32(0, ri, sizeof(*ri)-8);

		if (crc != je32_to_cpu(ri->node_crc)) {
			printk(KERN_NOTICE "jffs2_scan_inode_node(): CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n",
			       ofs, je32_to_cpu(ri->node_crc), crc);
			/* We believe totlen because the CRC on the node _header_ was OK, just the node itself failed. */
			DIRTY_SPACE(PAD(je32_to_cpu(ri->totlen)));
			return 0;
		}
		ic = jffs2_scan_make_ino_cache(c, ino);
		if (!ic) {
			jffs2_free_raw_node_ref(raw);
			return -ENOMEM;
		}
	}

	/* Wheee. It worked */

	raw->flash_offset = ofs | REF_UNCHECKED;
	raw->totlen = PAD(je32_to_cpu(ri->totlen));
	raw->next_phys = NULL;
	raw->next_in_ino = ic->nodes;

	ic->nodes = raw;
	if (!jeb->first_node)
		jeb->first_node = raw;
	if (jeb->last_node)
		jeb->last_node->next_phys = raw;
	jeb->last_node = raw;

	D1(printk(KERN_DEBUG "Node is ino #%u, version %d. Range 0x%x-0x%x\n", 
		  je32_to_cpu(ri->ino), je32_to_cpu(ri->version),
		  je32_to_cpu(ri->offset),
		  je32_to_cpu(ri->offset)+je32_to_cpu(ri->dsize)));

	pseudo_random += je32_to_cpu(ri->version);

	UNCHECKED_SPACE(PAD(je32_to_cpu(ri->totlen)));
	return 0;
}
Example #6
0
static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
				  unsigned char *buf, uint32_t buf_size) {
	struct jffs2_unknown_node *node;
	struct jffs2_unknown_node crcnode;
	uint32_t ofs, prevofs;
	uint32_t hdr_crc, buf_ofs, buf_len;
	int err;
	int noise = 0;
	int wasempty = 0;
	uint32_t empty_start = 0;
#ifdef CONFIG_JFFS2_FS_NAND
	int cleanmarkerfound = 0;
#endif

	ofs = jeb->offset;
	prevofs = jeb->offset - 1;

	D1(printk(KERN_DEBUG "jffs2_scan_eraseblock(): Scanning block at 0x%x\n", ofs));

#ifdef CONFIG_JFFS2_FS_NAND
	if (jffs2_cleanmarker_oob(c)) {
		int ret = jffs2_check_nand_cleanmarker(c, jeb);
		D2(printk(KERN_NOTICE "jffs_check_nand_cleanmarker returned %d\n",ret));
		/* Even if it's not found, we still scan to see
		   if the block is empty. We use this information
		   to decide whether to erase it or not. */
		switch (ret) {
		case 0:		cleanmarkerfound = 1; break;
		case 1: 	break;
		case 2: 	return BLK_STATE_BADBLOCK;
		case 3:		return BLK_STATE_ALLDIRTY; /* Block has failed to erase min. once */
		default: 	return ret;
		}
	}
#endif
	buf_ofs = jeb->offset;

	if (!buf_size) {
		buf_len = c->sector_size;
	} else {
		buf_len = EMPTY_SCAN_SIZE;
		err = jffs2_fill_scan_buf(c, buf, buf_ofs, buf_len);
		if (err)
			return err;
	}
	
	/* We temporarily use 'ofs' as a pointer into the buffer/jeb */
	ofs = 0;

	/* Scan only 4KiB of 0xFF before declaring it's empty */
	while(ofs < EMPTY_SCAN_SIZE && *(uint32_t *)(&buf[ofs]) == 0xFFFFFFFF)
		ofs += 4;

	if (ofs == EMPTY_SCAN_SIZE) {
#ifdef CONFIG_JFFS2_FS_NAND
		if (jffs2_cleanmarker_oob(c)) {
			/* scan oob, take care of cleanmarker */
			int ret = jffs2_check_oob_empty(c, jeb, cleanmarkerfound);
			D2(printk(KERN_NOTICE "jffs2_check_oob_empty returned %d\n",ret));
			switch (ret) {
			case 0:		return cleanmarkerfound ? BLK_STATE_CLEANMARKER : BLK_STATE_ALLFF;
			case 1: 	return BLK_STATE_ALLDIRTY;
			case 2: 	return BLK_STATE_BADBLOCK; /* case 2/3 are paranoia checks */
			case 3:		return BLK_STATE_ALLDIRTY; /* Block has failed to erase min. once */
			default: 	return ret;
			}
		}
#endif
		D1(printk(KERN_DEBUG "Block at 0x%08x is empty (erased)\n", jeb->offset));
		return BLK_STATE_ALLFF;	/* OK to erase if all blocks are like this */
	}
	if (ofs) {
		D1(printk(KERN_DEBUG "Free space at %08x ends at %08x\n", jeb->offset,
			  jeb->offset + ofs));
		DIRTY_SPACE(ofs);
	}

	/* Now ofs is a complete physical flash offset as it always was... */
	ofs += jeb->offset;

	noise = 10;

	while(ofs < jeb->offset + c->sector_size) {

		D1(ACCT_PARANOIA_CHECK(jeb));

		cond_resched();

		if (ofs & 3) {
			printk(KERN_WARNING "Eep. ofs 0x%08x not word-aligned!\n", ofs);
			ofs = (ofs+3)&~3;
			continue;
		}
		if (ofs == prevofs) {
			printk(KERN_WARNING "ofs 0x%08x has already been seen. Skipping\n", ofs);
			DIRTY_SPACE(4);
			ofs += 4;
			continue;
		}
		prevofs = ofs;

		if (jeb->offset + c->sector_size < ofs + sizeof(*node)) {
			D1(printk(KERN_DEBUG "Fewer than %zd bytes left to end of block. (%x+%x<%x+%zx) Not reading\n", sizeof(struct jffs2_unknown_node),
				  jeb->offset, c->sector_size, ofs, sizeof(*node)));
			DIRTY_SPACE((jeb->offset + c->sector_size)-ofs);
			break;
		}

		if (buf_ofs + buf_len < ofs + sizeof(*node)) {
			buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
			D1(printk(KERN_DEBUG "Fewer than %zd bytes (node header) left to end of buf. Reading 0x%x at 0x%08x\n",
				  sizeof(struct jffs2_unknown_node), buf_len, ofs));
			err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
			if (err)
				return err;
			buf_ofs = ofs;
		}

		node = (struct jffs2_unknown_node *)&buf[ofs-buf_ofs];

		if (*(uint32_t *)(&buf[ofs-buf_ofs]) == 0xffffffff) {
			uint32_t inbuf_ofs = ofs - buf_ofs + 4;
			uint32_t scanend;

			empty_start = ofs;
			ofs += 4;

			/* If scanning empty space after only a cleanmarker, don't
			   bother scanning the whole block */
			if (unlikely(empty_start == jeb->offset + c->cleanmarker_size &&
				     jeb->offset + EMPTY_SCAN_SIZE < buf_ofs + buf_len))
				scanend = jeb->offset + EMPTY_SCAN_SIZE - buf_ofs;
			else
				scanend = buf_len;

			D1(printk(KERN_DEBUG "Found empty flash at 0x%08x\n", ofs));
			while (inbuf_ofs < scanend) {
				if (*(uint32_t *)(&buf[inbuf_ofs]) != 0xffffffff)
					goto emptyends;

				inbuf_ofs+=4;
				ofs += 4;
			}
			/* Ran off end. */
			D1(printk(KERN_DEBUG "Empty flash ends normally at 0x%08x\n", ofs));

			if (buf_ofs == jeb->offset && jeb->used_size == PAD(c->cleanmarker_size) && 
			    !jeb->first_node->next_in_ino && !jeb->dirty_size)
				return BLK_STATE_CLEANMARKER;
			wasempty = 1;
			continue;
		} else if (wasempty) {
		emptyends:
			printk(KERN_WARNING "Empty flash at 0x%08x ends at 0x%08x\n", empty_start, ofs);
			DIRTY_SPACE(ofs-empty_start);
			wasempty = 0;
			continue;
		}

		if (ofs == jeb->offset && je16_to_cpu(node->magic) == KSAMTIB_CIGAM_2SFFJ) {
			printk(KERN_WARNING "Magic bitmask is backwards at offset 0x%08x. Wrong endian filesystem?\n", ofs);
			DIRTY_SPACE(4);
			ofs += 4;
			continue;
		}
		if (je16_to_cpu(node->magic) == JFFS2_DIRTY_BITMASK) {
			D1(printk(KERN_DEBUG "Empty bitmask at 0x%08x\n", ofs));
			DIRTY_SPACE(4);
			ofs += 4;
			continue;
		}
		if (je16_to_cpu(node->magic) == JFFS2_OLD_MAGIC_BITMASK) {
			printk(KERN_WARNING "Old JFFS2 bitmask found at 0x%08x\n", ofs);
			printk(KERN_WARNING "You cannot use older JFFS2 filesystems with newer kernels\n");
			DIRTY_SPACE(4);
			ofs += 4;
			continue;
		}
		if (je16_to_cpu(node->magic) != JFFS2_MAGIC_BITMASK) {
			/* OK. We're out of possibilities. Whinge and move on */
			noisy_printk(&noise, "jffs2_scan_eraseblock(): Magic bitmask 0x%04x not found at 0x%08x: 0x%04x instead\n", 
				     JFFS2_MAGIC_BITMASK, ofs, 
				     je16_to_cpu(node->magic));
			DIRTY_SPACE(4);
			ofs += 4;
			continue;
		}
		/* We seem to have a node of sorts. Check the CRC */
		crcnode.magic = node->magic;
		crcnode.nodetype = cpu_to_je16( je16_to_cpu(node->nodetype) | JFFS2_NODE_ACCURATE);
		crcnode.totlen = node->totlen;
		hdr_crc = crc32(0, &crcnode, sizeof(crcnode)-4);

		if (hdr_crc != je32_to_cpu(node->hdr_crc)) {
			noisy_printk(&noise, "jffs2_scan_eraseblock(): Node at 0x%08x {0x%04x, 0x%04x, 0x%08x) has invalid CRC 0x%08x (calculated 0x%08x)\n",
				     ofs, je16_to_cpu(node->magic),
				     je16_to_cpu(node->nodetype), 
				     je32_to_cpu(node->totlen),
				     je32_to_cpu(node->hdr_crc),
				     hdr_crc);
			DIRTY_SPACE(4);
			ofs += 4;
			continue;
		}

		if (ofs + je32_to_cpu(node->totlen) > 
		    jeb->offset + c->sector_size) {
			/* Eep. Node goes over the end of the erase block. */
			printk(KERN_WARNING "Node at 0x%08x with length 0x%08x would run over the end of the erase block\n",
			       ofs, je32_to_cpu(node->totlen));
			printk(KERN_WARNING "Perhaps the file system was created with the wrong erase size?\n");
			DIRTY_SPACE(4);
			ofs += 4;
			continue;
		}

		if (!(je16_to_cpu(node->nodetype) & JFFS2_NODE_ACCURATE)) {
			/* Wheee. This is an obsoleted node */
			D2(printk(KERN_DEBUG "Node at 0x%08x is obsolete. Skipping\n", ofs));
			DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
			ofs += PAD(je32_to_cpu(node->totlen));
			continue;
		}

		switch(je16_to_cpu(node->nodetype)) {
		case JFFS2_NODETYPE_INODE:
			if (buf_ofs + buf_len < ofs + sizeof(struct jffs2_raw_inode)) {
				buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
				D1(printk(KERN_DEBUG "Fewer than %zd bytes (inode node) left to end of buf. Reading 0x%x at 0x%08x\n",
					  sizeof(struct jffs2_raw_inode), buf_len, ofs));
				err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
				if (err)
					return err;
				buf_ofs = ofs;
				node = (void *)buf;
			}
			err = jffs2_scan_inode_node(c, jeb, (void *)node, ofs);
			if (err) return err;
			ofs += PAD(je32_to_cpu(node->totlen));
			break;
			
		case JFFS2_NODETYPE_DIRENT:
			if (buf_ofs + buf_len < ofs + je32_to_cpu(node->totlen)) {
				buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
				D1(printk(KERN_DEBUG "Fewer than %d bytes (dirent node) left to end of buf. Reading 0x%x at 0x%08x\n",
					  je32_to_cpu(node->totlen), buf_len, ofs));
				err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
				if (err)
					return err;
				buf_ofs = ofs;
				node = (void *)buf;
			}
			err = jffs2_scan_dirent_node(c, jeb, (void *)node, ofs);
			if (err) return err;
			ofs += PAD(je32_to_cpu(node->totlen));
			break;

		case JFFS2_NODETYPE_CLEANMARKER:
			D1(printk(KERN_DEBUG "CLEANMARKER node found at 0x%08x\n", ofs));
			if (je32_to_cpu(node->totlen) != c->cleanmarker_size) {
				printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x has totlen 0x%x != normal 0x%x\n", 
				       ofs, je32_to_cpu(node->totlen), c->cleanmarker_size);
				DIRTY_SPACE(PAD(sizeof(struct jffs2_unknown_node)));
				ofs += PAD(sizeof(struct jffs2_unknown_node));
			} else if (jeb->first_node) {
				printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x, not first node in block (0x%08x)\n", ofs, jeb->offset);
				DIRTY_SPACE(PAD(sizeof(struct jffs2_unknown_node)));
				ofs += PAD(sizeof(struct jffs2_unknown_node));
			} else {
				struct jffs2_raw_node_ref *marker_ref = jffs2_alloc_raw_node_ref();
				if (!marker_ref) {
					printk(KERN_NOTICE "Failed to allocate node ref for clean marker\n");
					return -ENOMEM;
				}
				marker_ref->next_in_ino = NULL;
				marker_ref->next_phys = NULL;
				marker_ref->flash_offset = ofs | REF_NORMAL;
				marker_ref->totlen = c->cleanmarker_size;
				jeb->first_node = jeb->last_node = marker_ref;
			     
				USED_SPACE(PAD(c->cleanmarker_size));
				ofs += PAD(c->cleanmarker_size);
			}
			break;

		case JFFS2_NODETYPE_PADDING:
			DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
			ofs += PAD(je32_to_cpu(node->totlen));
			break;

		default:
			switch (je16_to_cpu(node->nodetype) & JFFS2_COMPAT_MASK) {
			case JFFS2_FEATURE_ROCOMPAT:
				printk(KERN_NOTICE "Read-only compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs);
			        c->flags |= JFFS2_SB_FLAG_RO;
				if (!(jffs2_is_readonly(c)))
					return -EROFS;
				DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
				ofs += PAD(je32_to_cpu(node->totlen));
				break;

			case JFFS2_FEATURE_INCOMPAT:
				printk(KERN_NOTICE "Incompatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs);
				return -EINVAL;

			case JFFS2_FEATURE_RWCOMPAT_DELETE:
				D1(printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs));
				DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
				ofs += PAD(je32_to_cpu(node->totlen));
				break;

			case JFFS2_FEATURE_RWCOMPAT_COPY:
				D1(printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs));
				USED_SPACE(PAD(je32_to_cpu(node->totlen)));
				ofs += PAD(je32_to_cpu(node->totlen));
				break;
			}
		}
	}


	D1(printk(KERN_DEBUG "Block at 0x%08x: free 0x%08x, dirty 0x%08x, unchecked 0x%08x, used 0x%08x\n", jeb->offset, 
		  jeb->free_size, jeb->dirty_size, jeb->unchecked_size, jeb->used_size));

	/* mark_node_obsolete can add to wasted !! */
	if (jeb->wasted_size) {
		jeb->dirty_size += jeb->wasted_size;
		c->dirty_size += jeb->wasted_size;
		c->wasted_size -= jeb->wasted_size;
		jeb->wasted_size = 0;
	}

	if ((jeb->used_size + jeb->unchecked_size) == PAD(c->cleanmarker_size) && !jeb->dirty_size 
		&& (!jeb->first_node || jeb->first_node->next_in_ino) )
		return BLK_STATE_CLEANMARKER;
		
	/* move blocks with max 4 byte dirty space to cleanlist */	
	else if (!ISDIRTY(c->sector_size - (jeb->used_size + jeb->unchecked_size))) {
		c->dirty_size -= jeb->dirty_size;
		c->wasted_size += jeb->dirty_size; 
		jeb->wasted_size += jeb->dirty_size;
		jeb->dirty_size = 0;
		return BLK_STATE_CLEAN;
	} else if (jeb->used_size || jeb->unchecked_size)
		return BLK_STATE_PARTDIRTY;
	else
		return BLK_STATE_ALLDIRTY;
}
Example #7
0
int jffs2_sum_scan_sumnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
				uint32_t ofs, uint32_t *pseudo_random)
{
	struct jffs2_unknown_node crcnode;
	struct jffs2_raw_node_ref *cache_ref;
	struct jffs2_raw_summary *summary;
	int ret, sumsize;
	uint32_t crc;

	sumsize = c->sector_size - ofs;
	ofs += jeb->offset;

	dbg_summary("summary found for 0x%08x at 0x%08x (0x%x bytes)\n",
				jeb->offset, ofs, sumsize);

	summary = kmalloc(sumsize, GFP_KERNEL);

	if (!summary) {
		return -ENOMEM;
	}

	ret = jffs2_fill_scan_buf(c, (unsigned char *)summary, ofs, sumsize);

	if (ret) {
		kfree(summary);
		return ret;
	}

	/* OK, now check for node validity and CRC */
	crcnode.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
	crcnode.nodetype = cpu_to_je16(JFFS2_NODETYPE_SUMMARY);
	crcnode.totlen = summary->totlen;
	crc = crc32(0, &crcnode, sizeof(crcnode)-4);

	if (je32_to_cpu(summary->hdr_crc) != crc) {
		dbg_summary("Summary node header is corrupt (bad CRC or "
				"no summary at all)\n");
		goto crc_err;
	}

	if (je32_to_cpu(summary->totlen) != sumsize) {
		dbg_summary("Summary node is corrupt (wrong erasesize?)\n");
		goto crc_err;
	}

	crc = crc32(0, summary, sizeof(struct jffs2_raw_summary)-8);

	if (je32_to_cpu(summary->node_crc) != crc) {
		dbg_summary("Summary node is corrupt (bad CRC)\n");
		goto crc_err;
	}

	crc = crc32(0, summary->sum, sumsize - sizeof(struct jffs2_raw_summary));

	if (je32_to_cpu(summary->sum_crc) != crc) {
		dbg_summary("Summary node data is corrupt (bad CRC)\n");
		goto crc_err;
	}

	if ( je32_to_cpu(summary->cln_mkr) ) {

		dbg_summary("Summary : CLEANMARKER node \n");

		if (je32_to_cpu(summary->cln_mkr) != c->cleanmarker_size) {
			dbg_summary("CLEANMARKER node has totlen 0x%x != normal 0x%x\n",
				je32_to_cpu(summary->cln_mkr), c->cleanmarker_size);
			UNCHECKED_SPACE(PAD(je32_to_cpu(summary->cln_mkr)));
		} else if (jeb->first_node) {
			dbg_summary("CLEANMARKER node not first node in block "
					"(0x%08x)\n", jeb->offset);
			UNCHECKED_SPACE(PAD(je32_to_cpu(summary->cln_mkr)));
		} else {
			struct jffs2_raw_node_ref *marker_ref = jffs2_alloc_raw_node_ref();

			if (!marker_ref) {
				JFFS2_NOTICE("Failed to allocate node ref for clean marker\n");
				kfree(summary);
				return -ENOMEM;
			}

			marker_ref->next_in_ino = NULL;
			marker_ref->next_phys = NULL;
			marker_ref->flash_offset = jeb->offset | REF_NORMAL;
			marker_ref->__totlen = je32_to_cpu(summary->cln_mkr);
			jeb->first_node = jeb->last_node = marker_ref;

			USED_SPACE( PAD(je32_to_cpu(summary->cln_mkr)) );
		}
	}

	if (je32_to_cpu(summary->padded)) {
		DIRTY_SPACE(je32_to_cpu(summary->padded));
	}

	ret = jffs2_sum_process_sum_data(c, jeb, summary, pseudo_random);
	if (ret)
		return ret;

	/* for PARANOIA_CHECK */
	cache_ref = jffs2_alloc_raw_node_ref();

	if (!cache_ref) {
		JFFS2_NOTICE("Failed to allocate node ref for cache\n");
		return -ENOMEM;
	}

	cache_ref->next_in_ino = NULL;
	cache_ref->next_phys = NULL;
	cache_ref->flash_offset = ofs | REF_NORMAL;
	cache_ref->__totlen = sumsize;

	if (!jeb->first_node)
		jeb->first_node = cache_ref;
	if (jeb->last_node)
		jeb->last_node->next_phys = cache_ref;
	jeb->last_node = cache_ref;

	USED_SPACE(sumsize);

	jeb->wasted_size += jeb->free_size;
	c->wasted_size += jeb->free_size;
	c->free_size -= jeb->free_size;
	jeb->free_size = 0;

	return jffs2_scan_classify_jeb(c, jeb);

crc_err:
	JFFS2_WARNING("Summary node crc error, skipping summary information.\n");

	return 0;
}
Example #8
0
static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb,
				unsigned char *buf, uint32_t buf_size, struct jffs2_summary *s) {
	struct jffs2_unknown_node *node;
	struct jffs2_unknown_node crcnode;
	struct jffs2_sum_marker *sm;
	uint32_t ofs, prevofs;
	uint32_t hdr_crc, buf_ofs, buf_len;
	int err;
	int noise = 0;


#ifdef CONFIG_JFFS2_FS_WRITEBUFFER
	int cleanmarkerfound = 0;
#endif

	ofs = jeb->offset;
	prevofs = jeb->offset - 1;

	D1(printk(KERN_DEBUG "jffs2_scan_eraseblock(): Scanning block at 0x%x\n", ofs));

#ifdef CONFIG_JFFS2_FS_WRITEBUFFER
	if (jffs2_cleanmarker_oob(c)) {
		int ret = jffs2_check_nand_cleanmarker(c, jeb);
		D2(printk(KERN_NOTICE "jffs_check_nand_cleanmarker returned %d\n",ret));
		/* Even if it's not found, we still scan to see
		   if the block is empty. We use this information
		   to decide whether to erase it or not. */
		switch (ret) {
		case 0:		cleanmarkerfound = 1; break;
		case 1: 	break;
		case 2: 	return BLK_STATE_BADBLOCK;
		case 3:		return BLK_STATE_ALLDIRTY; /* Block has failed to erase min. once */
		default: 	return ret;
		}
	}
#endif

	if (jffs2_sum_active()) {
		sm = kmalloc(sizeof(struct jffs2_sum_marker), GFP_KERNEL);
		if (!sm) {
			return -ENOMEM;
		}

		err = jffs2_fill_scan_buf(c, (unsigned char *) sm, jeb->offset + c->sector_size -
					sizeof(struct jffs2_sum_marker), sizeof(struct jffs2_sum_marker));
		if (err) {
			kfree(sm);
			return err;
		}

		if (je32_to_cpu(sm->magic) == JFFS2_SUM_MAGIC ) {
			err = jffs2_sum_scan_sumnode(c, jeb, je32_to_cpu(sm->offset), &pseudo_random);
			if (err) {
				kfree(sm);
				return err;
			}
		}

		kfree(sm);

		ofs = jeb->offset;
		prevofs = jeb->offset - 1;
	}

	buf_ofs = jeb->offset;

	if (!buf_size) {
		buf_len = c->sector_size;

		if (jffs2_sum_active()) {
			/* must reread because of summary test */
			err = jffs2_fill_scan_buf(c, buf, buf_ofs, buf_len);
			if (err)
				return err;
		}

	} else {
		buf_len = EMPTY_SCAN_SIZE(c->sector_size);
		err = jffs2_fill_scan_buf(c, buf, buf_ofs, buf_len);
		if (err)
			return err;
	}

	/* We temporarily use 'ofs' as a pointer into the buffer/jeb */
	ofs = 0;

	/* Scan only 4KiB of 0xFF before declaring it's empty */
	while(ofs < EMPTY_SCAN_SIZE(c->sector_size) && *(uint32_t *)(&buf[ofs]) == 0xFFFFFFFF)
		ofs += 4;

	if (ofs == EMPTY_SCAN_SIZE(c->sector_size)) {
#ifdef CONFIG_JFFS2_FS_WRITEBUFFER
		if (jffs2_cleanmarker_oob(c)) {
			/* scan oob, take care of cleanmarker */
			int ret = jffs2_check_oob_empty(c, jeb, cleanmarkerfound);
			D2(printk(KERN_NOTICE "jffs2_check_oob_empty returned %d\n",ret));
			switch (ret) {
			case 0:		return cleanmarkerfound ? BLK_STATE_CLEANMARKER : BLK_STATE_ALLFF;
			case 1: 	return BLK_STATE_ALLDIRTY;
			default: 	return ret;
			}
		}
#endif
		D1(printk(KERN_DEBUG "Block at 0x%08x is empty (erased)\n", jeb->offset));
		if (c->cleanmarker_size == 0)
			return BLK_STATE_CLEANMARKER;	/* don't bother with re-erase */
		else
			return BLK_STATE_ALLFF;	/* OK to erase if all blocks are like this */
	}
	if (ofs) {
		D1(printk(KERN_DEBUG "Free space at %08x ends at %08x\n", jeb->offset,
			  jeb->offset + ofs));
		DIRTY_SPACE(ofs);
	}

	/* Now ofs is a complete physical flash offset as it always was... */
	ofs += jeb->offset;

	noise = 10;

	dbg_summary("no summary found in jeb 0x%08x. Apply original scan.\n",jeb->offset);

scan_more:
	while(ofs < jeb->offset + c->sector_size) {

		jffs2_dbg_acct_paranoia_check_nolock(c, jeb);

		cond_resched();

		if (ofs & 3) {
			printk(KERN_WARNING "Eep. ofs 0x%08x not word-aligned!\n", ofs);
			ofs = PAD(ofs);
			continue;
		}
		if (ofs == prevofs) {
			printk(KERN_WARNING "ofs 0x%08x has already been seen. Skipping\n", ofs);
			DIRTY_SPACE(4);
			ofs += 4;
			continue;
		}
		prevofs = ofs;

		if (jeb->offset + c->sector_size < ofs + sizeof(*node)) {
			D1(printk(KERN_DEBUG "Fewer than %zd bytes left to end of block. (%x+%x<%x+%zx) Not reading\n", sizeof(struct jffs2_unknown_node),
				  jeb->offset, c->sector_size, ofs, sizeof(*node)));
			DIRTY_SPACE((jeb->offset + c->sector_size)-ofs);
			break;
		}

		if (buf_ofs + buf_len < ofs + sizeof(*node)) {
			buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
			D1(printk(KERN_DEBUG "Fewer than %zd bytes (node header) left to end of buf. Reading 0x%x at 0x%08x\n",
				  sizeof(struct jffs2_unknown_node), buf_len, ofs));
			err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
			if (err)
				return err;
			buf_ofs = ofs;
		}

		node = (struct jffs2_unknown_node *)&buf[ofs-buf_ofs];

		if (*(uint32_t *)(&buf[ofs-buf_ofs]) == 0xffffffff) {
			uint32_t inbuf_ofs;
			uint32_t empty_start;

			empty_start = ofs;
			ofs += 4;

			D1(printk(KERN_DEBUG "Found empty flash at 0x%08x\n", ofs));
		more_empty:
			inbuf_ofs = ofs - buf_ofs;
			while (inbuf_ofs < buf_len) {
				if (*(uint32_t *)(&buf[inbuf_ofs]) != 0xffffffff) {
					printk(KERN_WARNING "Empty flash at 0x%08x ends at 0x%08x\n",
					       empty_start, ofs);
					DIRTY_SPACE(ofs-empty_start);
					goto scan_more;
				}

				inbuf_ofs+=4;
				ofs += 4;
			}
			/* Ran off end. */
			D1(printk(KERN_DEBUG "Empty flash to end of buffer at 0x%08x\n", ofs));

			/* If we're only checking the beginning of a block with a cleanmarker,
			   bail now */
			if (buf_ofs == jeb->offset && jeb->used_size == PAD(c->cleanmarker_size) &&
			    c->cleanmarker_size && !jeb->dirty_size && !jeb->first_node->next_phys) {
				D1(printk(KERN_DEBUG "%d bytes at start of block seems clean... assuming all clean\n", EMPTY_SCAN_SIZE(c->sector_size)));
				return BLK_STATE_CLEANMARKER;
			}

			/* See how much more there is to read in this eraseblock... */
			buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
			if (!buf_len) {
				/* No more to read. Break out of main loop without marking
				   this range of empty space as dirty (because it's not) */
				D1(printk(KERN_DEBUG "Empty flash at %08x runs to end of block. Treating as free_space\n",
					  empty_start));
				break;
			}
			D1(printk(KERN_DEBUG "Reading another 0x%x at 0x%08x\n", buf_len, ofs));
			err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
			if (err)
				return err;
			buf_ofs = ofs;
			goto more_empty;
		}

		if (ofs == jeb->offset && je16_to_cpu(node->magic) == KSAMTIB_CIGAM_2SFFJ) {
			printk(KERN_WARNING "Magic bitmask is backwards at offset 0x%08x. Wrong endian filesystem?\n", ofs);
			DIRTY_SPACE(4);
			ofs += 4;
			continue;
		}
		if (je16_to_cpu(node->magic) == JFFS2_DIRTY_BITMASK) {
			D1(printk(KERN_DEBUG "Dirty bitmask at 0x%08x\n", ofs));
			DIRTY_SPACE(4);
			ofs += 4;
			continue;
		}
		if (je16_to_cpu(node->magic) == JFFS2_OLD_MAGIC_BITMASK) {
			printk(KERN_WARNING "Old JFFS2 bitmask found at 0x%08x\n", ofs);
			printk(KERN_WARNING "You cannot use older JFFS2 filesystems with newer kernels\n");
			DIRTY_SPACE(4);
			ofs += 4;
			continue;
		}
		if (je16_to_cpu(node->magic) != JFFS2_MAGIC_BITMASK) {
			/* OK. We're out of possibilities. Whinge and move on */
			noisy_printk(&noise, "jffs2_scan_eraseblock(): Magic bitmask 0x%04x not found at 0x%08x: 0x%04x instead\n",
				     JFFS2_MAGIC_BITMASK, ofs,
				     je16_to_cpu(node->magic));
			DIRTY_SPACE(4);
			ofs += 4;
			continue;
		}
		/* We seem to have a node of sorts. Check the CRC */
		crcnode.magic = node->magic;
		crcnode.nodetype = cpu_to_je16( je16_to_cpu(node->nodetype) | JFFS2_NODE_ACCURATE);
		crcnode.totlen = node->totlen;
		hdr_crc = crc32(0, &crcnode, sizeof(crcnode)-4);

		if (hdr_crc != je32_to_cpu(node->hdr_crc)) {
			noisy_printk(&noise, "jffs2_scan_eraseblock(): Node at 0x%08x {0x%04x, 0x%04x, 0x%08x) has invalid CRC 0x%08x (calculated 0x%08x)\n",
				     ofs, je16_to_cpu(node->magic),
				     je16_to_cpu(node->nodetype),
				     je32_to_cpu(node->totlen),
				     je32_to_cpu(node->hdr_crc),
				     hdr_crc);
			DIRTY_SPACE(4);
			ofs += 4;
			continue;
		}

		if (ofs + je32_to_cpu(node->totlen) >
		    jeb->offset + c->sector_size) {
			/* Eep. Node goes over the end of the erase block. */
			printk(KERN_WARNING "Node at 0x%08x with length 0x%08x would run over the end of the erase block\n",
			       ofs, je32_to_cpu(node->totlen));
			printk(KERN_WARNING "Perhaps the file system was created with the wrong erase size?\n");
			DIRTY_SPACE(4);
			ofs += 4;
			continue;
		}

		if (!(je16_to_cpu(node->nodetype) & JFFS2_NODE_ACCURATE)) {
			/* Wheee. This is an obsoleted node */
			D2(printk(KERN_DEBUG "Node at 0x%08x is obsolete. Skipping\n", ofs));
			DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
			ofs += PAD(je32_to_cpu(node->totlen));
			continue;
		}

		switch(je16_to_cpu(node->nodetype)) {
		case JFFS2_NODETYPE_INODE:
			if (buf_ofs + buf_len < ofs + sizeof(struct jffs2_raw_inode)) {
				buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
				D1(printk(KERN_DEBUG "Fewer than %zd bytes (inode node) left to end of buf. Reading 0x%x at 0x%08x\n",
					  sizeof(struct jffs2_raw_inode), buf_len, ofs));
				err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
				if (err)
					return err;
				buf_ofs = ofs;
				node = (void *)buf;
			}
			err = jffs2_scan_inode_node(c, jeb, (void *)node, ofs, s);
			if (err) return err;
			ofs += PAD(je32_to_cpu(node->totlen));
			break;

		case JFFS2_NODETYPE_DIRENT:
			if (buf_ofs + buf_len < ofs + je32_to_cpu(node->totlen)) {
				buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs);
				D1(printk(KERN_DEBUG "Fewer than %d bytes (dirent node) left to end of buf. Reading 0x%x at 0x%08x\n",
					  je32_to_cpu(node->totlen), buf_len, ofs));
				err = jffs2_fill_scan_buf(c, buf, ofs, buf_len);
				if (err)
					return err;
				buf_ofs = ofs;
				node = (void *)buf;
			}
			err = jffs2_scan_dirent_node(c, jeb, (void *)node, ofs, s);
			if (err) return err;
			ofs += PAD(je32_to_cpu(node->totlen));
			break;

		case JFFS2_NODETYPE_CLEANMARKER:
			D1(printk(KERN_DEBUG "CLEANMARKER node found at 0x%08x\n", ofs));
			if (je32_to_cpu(node->totlen) != c->cleanmarker_size) {
				printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x has totlen 0x%x != normal 0x%x\n",
				       ofs, je32_to_cpu(node->totlen), c->cleanmarker_size);
				DIRTY_SPACE(PAD(sizeof(struct jffs2_unknown_node)));
				ofs += PAD(sizeof(struct jffs2_unknown_node));
			} else if (jeb->first_node) {
				printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x, not first node in block (0x%08x)\n", ofs, jeb->offset);
				DIRTY_SPACE(PAD(sizeof(struct jffs2_unknown_node)));
				ofs += PAD(sizeof(struct jffs2_unknown_node));
			} else {
				struct jffs2_raw_node_ref *marker_ref = jffs2_alloc_raw_node_ref();
				if (!marker_ref) {
					printk(KERN_NOTICE "Failed to allocate node ref for clean marker\n");
					return -ENOMEM;
				}
				marker_ref->next_in_ino = NULL;
				marker_ref->next_phys = NULL;
				marker_ref->flash_offset = ofs | REF_NORMAL;
				marker_ref->__totlen = c->cleanmarker_size;
				jeb->first_node = jeb->last_node = marker_ref;

				USED_SPACE(PAD(c->cleanmarker_size));
				ofs += PAD(c->cleanmarker_size);
			}
			break;

		case JFFS2_NODETYPE_PADDING:
			if (jffs2_sum_active())
				jffs2_sum_add_padding_mem(s, je32_to_cpu(node->totlen));
			DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
			ofs += PAD(je32_to_cpu(node->totlen));
			break;

		default:
			switch (je16_to_cpu(node->nodetype) & JFFS2_COMPAT_MASK) {
			case JFFS2_FEATURE_ROCOMPAT:
				printk(KERN_NOTICE "Read-only compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs);
			        c->flags |= JFFS2_SB_FLAG_RO;
				if (!(jffs2_is_readonly(c)))
					return -EROFS;
				DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
				ofs += PAD(je32_to_cpu(node->totlen));
				break;

			case JFFS2_FEATURE_INCOMPAT:
				printk(KERN_NOTICE "Incompatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs);
				return -EINVAL;

			case JFFS2_FEATURE_RWCOMPAT_DELETE:
				D1(printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs));
				DIRTY_SPACE(PAD(je32_to_cpu(node->totlen)));
				ofs += PAD(je32_to_cpu(node->totlen));
				break;

			case JFFS2_FEATURE_RWCOMPAT_COPY:
				D1(printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs));
				USED_SPACE(PAD(je32_to_cpu(node->totlen)));
				ofs += PAD(je32_to_cpu(node->totlen));
				break;
			}
		}
	}

	if (jffs2_sum_active()) {
		if (PAD(s->sum_size + JFFS2_SUMMARY_FRAME_SIZE) > jeb->free_size) {
			dbg_summary("There is not enough space for "
				"summary information, disabling for this jeb!\n");
			jffs2_sum_disable_collecting(s);
		}
	}

	D1(printk(KERN_DEBUG "Block at 0x%08x: free 0x%08x, dirty 0x%08x, unchecked 0x%08x, used 0x%08x\n", jeb->offset,
		  jeb->free_size, jeb->dirty_size, jeb->unchecked_size, jeb->used_size));

	/* mark_node_obsolete can add to wasted !! */
	if (jeb->wasted_size) {
		jeb->dirty_size += jeb->wasted_size;
		c->dirty_size += jeb->wasted_size;
		c->wasted_size -= jeb->wasted_size;
		jeb->wasted_size = 0;
	}

	return jffs2_scan_classify_jeb(c, jeb);
}