Example #1
0
/* Pack Announce message into out buffer of ppi */
static int msg_pack_announce(struct pp_instance *ppi)
{
	void *buf;

	buf = ppi->tx_ptp;
	/* changes in header */
	*(char *)(buf + 0) = *(char *)(buf + 0) & 0xF0;
	/* RAZ messageType */
	*(char *)(buf + 0) = *(char *)(buf + 0) | 0x0B;
	/* Table 19 */
	*(UInteger16 *) (buf + 2) = htons(PP_ANNOUNCE_LENGTH);
	ppi->sent_seq[PPM_ANNOUNCE]++;
	*(UInteger16 *) (buf + 30) = htons(ppi->sent_seq[PPM_ANNOUNCE]);
	*(UInteger8 *) (buf + 32) = 0x05;
	/* Table 23 */
	*(Integer8 *) (buf + 33) = DSPOR(ppi)->logAnnounceInterval;

	/* Announce message */
	memset((buf + 34), 0, 10);
	*(Integer16 *) (buf + 44) = htons(DSPRO(ppi)->currentUtcOffset);
	*(UInteger8 *) (buf + 47) = DSPAR(ppi)->grandmasterPriority1;
	*(UInteger8 *) (buf + 48) = DSDEF(ppi)->clockQuality.clockClass;
	*(Enumeration8 *) (buf + 49) = DSDEF(ppi)->clockQuality.clockAccuracy;
	*(UInteger16 *) (buf + 50) =
		htons(DSDEF(ppi)->clockQuality.offsetScaledLogVariance);
	*(UInteger8 *) (buf + 52) = DSPAR(ppi)->grandmasterPriority2;
	memcpy((buf + 53), &DSPAR(ppi)->grandmasterIdentity,
	       PP_CLOCK_IDENTITY_LENGTH);
	*(UInteger16 *) (buf + 61) = htons(DSCUR(ppi)->stepsRemoved);
	*(Enumeration8 *) (buf + 63) = DSPRO(ppi)->timeSource;

	if (pp_hooks.pack_announce)
		return pp_hooks.pack_announce(ppi);
	return PP_ANNOUNCE_LENGTH;
}
Example #2
0
void pp_timeout_rand(struct pp_instance *ppi, int index, int logval)
{
	static uint32_t seed;
	uint32_t rval;
	int millisec;

	if (!seed) {
		uint32_t *p;
		/* use the least 32 bits of the mac address as seed */
		p = (void *)(&DSDEF(ppi)->clockIdentity)
			+ sizeof(ClockIdentity) - 4;
		seed = *p;
	}
	/* From uclibc: they make 11 + 10 + 10 bits, we stop at 21 */
	seed *= 1103515245;
	seed += 12345;
	rval = (unsigned int) (seed / 65536) % 2048;

	seed *= 1103515245;
	seed += 12345;
	rval <<= 10;
	rval ^= (unsigned int) (seed / 65536) % 1024;

	millisec = (1 << logval) * 400; /* This is 40% of the nominal value */
	millisec = (millisec * 2) + rval % millisec;

	pp_timeout_set(ppi, index, millisec);
}
Example #3
0
/* Copy local data set into header and ann message. 9.3.4 table 12. */
static void copy_d0(struct pp_instance *ppi, struct pp_frgn_master *m)
{
	struct DSDefault *defds = DSDEF(ppi);
	struct MsgHeader *hdr = &m->hdr;
	struct MsgAnnounce *ann = &m->ann;

	ann->grandmasterIdentity = defds->clockIdentity;
	ann->grandmasterClockQuality = defds->clockQuality;
	ann->grandmasterPriority1 = defds->priority1;
	ann->grandmasterPriority2 = defds->priority2;
	ann->stepsRemoved = 0;
	hdr->sourcePortIdentity.clockIdentity = defds->clockIdentity;
}
Example #4
0
/* Pack header message into out buffer of ppi */
void msg_pack_header(struct pp_instance *ppi, void *buf)
{
	/* (spec annex D and F) */
	*(UInteger8 *) (buf + 0) = 0; /* message type changed later */
	*(UInteger4 *) (buf + 1) = DSPOR(ppi)->versionNumber;
	*(UInteger8 *) (buf + 4) = DSDEF(ppi)->domainNumber;

	*(UInteger8 *) (buf + 6) = PP_TWO_STEP_FLAG;

	memset((buf + 8), 0, 8);
	memcpy((buf + 20), &DSPOR(ppi)->portIdentity.clockIdentity,
	       PP_CLOCK_IDENTITY_LENGTH);
	*(UInteger16 *) (buf + 28) =
				htons(DSPOR(ppi)->portIdentity.portNumber);
	*(UInteger8 *) (buf + 33) = 0x7F;
	/* Default value(spec Table 24) */
}
Example #5
0
/* ppi->port_idx port is becoming Master. Table 13 (9.3.5) of the spec. */
void m1(struct pp_instance *ppi)
{
	struct DSParent *parent = DSPAR(ppi);
	struct DSDefault *defds = DSDEF(ppi);

	/* Current data set update */
	DSCUR(ppi)->stepsRemoved = 0;
	clear_TimeInternal(&DSCUR(ppi)->offsetFromMaster);
	clear_TimeInternal(&DSCUR(ppi)->meanPathDelay);

	/* Parent data set: we are the parent */
	memset(parent, 0, sizeof(*parent));
	parent->parentPortIdentity.clockIdentity = defds->clockIdentity;
	/* FIXME: the port? */

	/* Copy grandmaster params from our defds (FIXME: is ir right?) */
	parent->grandmasterIdentity = defds->clockIdentity;
	parent->grandmasterClockQuality = defds->clockQuality;
	parent->grandmasterPriority1 = defds->priority1;
	parent->grandmasterPriority2 = defds->priority2;

	/* Time Properties data set */
	DSPRO(ppi)->timeSource = INTERNAL_OSCILLATOR;
}
Example #6
0
/* State decision algorithm 9.3.3 Fig 26 */
static int bmc_state_decision(struct pp_instance *ppi,
							  struct pp_frgn_master *m)
{
	int cmpres;
	struct pp_frgn_master myself;

	if (ppi->master_only)
		goto master;

	if (ppi->slave_only)
		goto slave;

	if ((!ppi->frgn_rec_num) && (ppi->state == PPS_LISTENING))
		return PPS_LISTENING;

	/* copy local information to a foreign_master structure */
	copy_d0(ppi, &myself);

	/* dataset_cmp is "a - b" but lower values win */
	cmpres = bmc_dataset_cmp(ppi, &myself, m);

	if (DSDEF(ppi)->clockQuality.clockClass < 128) {
		if (cmpres < 0)
			goto master;
		if (cmpres > 0)
			goto passive;
	}
	if (cmpres < 0)
		goto master;
	if (cmpres > 0) {
		if (DSDEF(ppi)->numberPorts == 1)
			goto slave; /* directly skip to ordinary clock handling */
		else
			goto check_boundary_clk;
	}

	pp_diag(ppi, bmc, 1,"%s: error\n", __func__);

	/*  MB: Is this the return code below correct? */
	/*  Anyway, it's a valid return code. */
	return PPS_FAULTY;

check_boundary_clk:
	if (ppi->port_idx == GLBS(ppi)->ebest_idx) /* This port is the Ebest */
		goto slave;

	/* If idcmp returns 0, it means that this port is not the best because
		* Ebest is better by topology than Erbest */
	if (!idcmp(&myself.ann.grandmasterIdentity,
			&m->ann.grandmasterIdentity))
		goto passive;
	else
		goto master;

passive:
	p1(ppi, &m->hdr, &m->ann);
	pp_diag(ppi, bmc, 1,"%s: passive\n", __func__);
	return PPS_PASSIVE;

master:
	m1(ppi);
	pp_diag(ppi, bmc, 1,"%s: master\n", __func__);
	return PPS_MASTER;

slave:
	s1(ppi, &m->hdr, &m->ann);
	pp_diag(ppi, bmc, 1,"%s: slave\n", __func__);
	return PPS_SLAVE;

}
int pp_master(struct pp_instance *ppi, unsigned char *pkt, int plen)
{
	int msgtype, d1, d2;
	int e = 0; /* error var, to check errors in msg handling */

	if (ppi->is_new_state) {
		pp_timeout_rand(ppi, PP_TO_SYNC, DSPOR(ppi)->logSyncInterval);
		pp_timeout_rand(ppi, PP_TO_ANN_INTERVAL,
				DSPOR(ppi)->logAnnounceInterval);

		/* Send an announce immediately, when becomes master */
		if ((e = msg_issue_announce(ppi)) < 0)
			goto out;
	}

	if (pp_timeout_z(ppi, PP_TO_SYNC)) {
		if ((e = msg_issue_sync_followup(ppi) < 0))
			goto out;

		/* Restart the timeout for next time */
		pp_timeout_rand(ppi, PP_TO_SYNC, DSPOR(ppi)->logSyncInterval);
	}

	if (pp_timeout_z(ppi, PP_TO_ANN_INTERVAL)) {
		if ((e = msg_issue_announce(ppi) < 0))
			goto out;

		/* Restart the timeout for next time */
		pp_timeout_rand(ppi, PP_TO_ANN_INTERVAL,
				DSPOR(ppi)->logAnnounceInterval);
	}

	if (plen == 0)
		goto out;

	/*
	 * An extension can do special treatment of this message type,
	 * possibly returning error or eating the message by returning
	 * PPM_NOTHING_TO_DO
	 */
	msgtype = ppi->received_ptp_header.messageType;
	if (pp_hooks.master_msg)
		msgtype = pp_hooks.master_msg(ppi, pkt, plen, msgtype);
	if (msgtype < 0) {
		e = msgtype;
		goto out;
	}

	switch (msgtype) {

	case PPM_NOTHING_TO_DO:
		break;

	case PPM_ANNOUNCE:
		e = st_com_master_handle_announce(ppi, pkt, plen);
		break;

	case PPM_SYNC:
		e = st_com_master_handle_sync(ppi, pkt, plen);
		break;

	case PPM_DELAY_REQ:
		msg_issue_delay_resp(ppi, &ppi->last_rcv_time);
		break;

	/*
	 * We are not supporting pdelay (not configured to, see
	 * 9.5.13.1, p 106), so all the code about pdelay is removed
	 * as a whole by one commit in our history. It can be recoverd
	 * and fixed if needed
	 */

	default:
		/* disregard, nothing to do */
		break;
	}

out:
	if (e == 0) {
		if (DSDEF(ppi)->clockQuality.clockClass == PP_CLASS_SLAVE_ONLY
		    || (ppi->role == PPSI_ROLE_SLAVE))
			ppi->next_state = PPS_LISTENING;
	} else {
		ppi->next_state = PPS_FAULTY;
	}

	d1 = pp_ms_to_timeout(ppi, PP_TO_ANN_INTERVAL);
	d2 = pp_ms_to_timeout(ppi, PP_TO_SYNC);
	ppi->next_delay = d1 < d2 ? d1 : d2;
	return 0;
}
Example #8
0
int pp_initializing(struct pp_instance *ppi, unsigned char *pkt, int plen)
{
	unsigned char *id, *mac;
	struct DSPort *port = DSPOR(ppi);
	struct pp_runtime_opts *opt = OPTS(ppi);
	int ret = 0;

	if (ppi->n_ops->init(ppi) < 0) /* it must handle being called twice */
		goto failure;

	/* Clock identity comes from mac address with 0xff:0xfe intermixed */
	id = (unsigned char *)&DSDEF(ppi)->clockIdentity;
	mac = NP(ppi)->ch[PP_NP_GEN].addr;
	id[0] = mac[0];
	id[1] = mac[1];
	id[2] = mac[2];
	id[3] = 0xff;
	id[4] = 0xfe;
	id[5] = mac[3];
	id[6] = mac[4];
	id[7] = mac[5];

	/*
	 * Initialize port data set
	 */
	memcpy(&port->portIdentity.clockIdentity,
		&DSDEF(ppi)->clockIdentity, PP_CLOCK_IDENTITY_LENGTH);
	port->portIdentity.portNumber = 1;
	port->logMinDelayReqInterval = PP_DEFAULT_DELAYREQ_INTERVAL;
	port->logAnnounceInterval = opt->announce_intvl;
	port->announceReceiptTimeout = PP_DEFAULT_ANNOUNCE_RECEIPT_TIMEOUT;
	port->logSyncInterval = opt->sync_intvl;
	port->versionNumber = PP_VERSION_PTP;

	if (pp_hooks.init)
		ret = pp_hooks.init(ppi, pkt, plen);
	if (ret) {
		pp_diag(ppi, ext, 1, "%s: can't init extension\n", __func__);
		goto failure;
	}

	if (ret) {
		pp_diag(ppi, time, 1, "%s: can't init timers\n", __func__);
		goto failure;
	}
	pp_init_clock(ppi);

	pp_diag(ppi, bmc, 1, "clock class = %d\n",
			DSDEF(ppi)->clockQuality.clockClass);
	pp_diag(ppi, bmc, 1, "clock accuracy = %d\n",
			DSDEF(ppi)->clockQuality.clockAccuracy);

	m1(ppi);

	msg_pack_header(ppi, ppi->tx_ptp); /* This is used for all tx */

	if (!ppi->master_only)
		ppi->next_state = PPS_LISTENING;
	else
		ppi->next_state = PPS_MASTER;
	return 0;

failure:
	ppi->next_delay = 1000; /* wait 1s before retrying */
	return 0;
}