Example #1
0
/*======================================================================
   Purpose:	Remove a file.
   Returns:	TRUE	file removed
				FALSE	unable to remove file
   Notes:	
   Revised:
		15Dec04	PLD	remove check for open file; sopen not *nix-compatible
							after all
		08Dec04	PLD	add check for open file: attempt to open it with
							exclusive access.
----------------------------------------------------------------------*/
static BOOL RemoveEventFile(CHAR *path)
   {

   ASSERT(path != NULL);

   /* Delete the file... */
   if (remove(path) < 0)
      {
      ArchiveLog(ARC_LOG_ERRORS, "Purge: unable to remove file: %s", path);
      return FALSE;
      }

   /* Remove emtpy stream directory */
   if (!TrimPath(path, 1))
      return FALSE;
   if (!PathEmpty(path))
      return TRUE;
   ArchiveLog(ARC_LOG_VERBOSE, "Purge: removing %s", path);
   if (!DestroyPath(path))
      {
      ArchiveLog(ARC_LOG_ERRORS, "Purge: unable to remove directory: %s - %s", path, FileErrorString(FileLastError()));
      return FALSE;
      }

   /* Remove empty unit directory */
   if (!TrimPath(path, 1))
      return FALSE;
   if (!PathEmpty(path))
      return TRUE;
   ArchiveLog(ARC_LOG_VERBOSE, "Purge: removing %s", path);
   if (!DestroyPath(path))
      {
      ArchiveLog(ARC_LOG_ERRORS, "Purge: unable to remove directory: %s - %s", path, FileErrorString(FileLastError()));
      return FALSE;
      }

   /* Remove empty day directory */
   if (!TrimPath(path, 1))
      return FALSE;
   if (!PathEmpty(path))
      return TRUE;
   ArchiveLog(ARC_LOG_VERBOSE, "Purge: removing %s", path);
   if (!DestroyPath(path))
      {
      ArchiveLog(ARC_LOG_ERRORS, "Purge: unable to remove directory: %s - %s", path, FileErrorString(FileLastError()));
      return FALSE;
      }

   return TRUE;
   }  /* end RemoveEventFile() */
void TestSparsePerformance(bool outputMap)
{
	int cellSize = 16;
	int w = 40;
	int h = 100;
	double map = CreateSparseMap(w*cellSize,h*cellSize,cellSize);
	//map = CreateMap(w*cellSize,h*cellSize,cellSize);
	SetCellMap(map, 4*cellSize, 4*cellSize, 1);
	SetCellMap(map, 5*cellSize, 4*cellSize, 1);
	SetCellMap(map, 5*cellSize, 5*cellSize, 1);
	SetCellMap(map, 5*cellSize, 6*cellSize, 1);
	SetCellMap(map, 5*cellSize, 7*cellSize, 1);
	SetCellMap(map, 4*cellSize, 7*cellSize, 1);
	SetCellMapRegion(map, (w/2)*cellSize, 0*cellSize, 2*cellSize, (h*0.75)*cellSize, 1);
	//SetCellMapRegion(map, (w/2)*cellSize, (h/2+1)*cellSize, 2*cellSize, (h/2-2)*cellSize, 1);
#ifndef _DEBUG
	double pathFinder = CreatePathFinder(map);
#else
	double mapDebug = CreateMap(w*cellSize,h*cellSize,cellSize);
	double pathFinder = CreatePathFinderDebug(map, mapDebug);
#endif	
	double path = FindPath(pathFinder, 2.0*cellSize, 8.0*cellSize, (w-2)*cellSize, 2.0*cellSize);

	if (outputMap)
	{
		OutputPath(map, path);
	}

	DestroyMap(map);
	DestroyPathFinder(pathFinder);
	DestroyPath(path);
#ifdef _DEBUG
	DestroyMap(mapDebug);
#endif
}
Example #3
0
// Immediately jump off of our ladder, if we're on one
void CCSBot::GetOffLadder()
{
	if (IsUsingLadder())
	{
		Jump(MUST_JUMP);
		DestroyPath();
	}
}
void FindPathTest(double map, double pathFinder, int w, int h, int cellSize, bool outputMap)
{
	double path = FindPath(pathFinder, 2.0*cellSize, 8.0*cellSize, (w-2)*cellSize, 2.0*cellSize);
    //double path = FindPath(pathFinder, (w-2)*cellSize, 2.0*cellSize, 2.0*cellSize, 8.0*cellSize);

	if (outputMap)
	{
		OutputPath(map, path);
	}

	DestroyPath(path);
}
void TestGmInterface()
{
	int cellSize = 10;
	double map = CreateMap(10*cellSize,10*cellSize,cellSize);
	SetCellMap(map, 4*cellSize, 4*cellSize, 1);
	SetCellMap(map, 5*cellSize, 4*cellSize, 1);
	SetCellMap(map, 5*cellSize, 5*cellSize, 1);
	SetCellMap(map, 5*cellSize, 6*cellSize, 1);
	SetCellMap(map, 5*cellSize, 7*cellSize, 1);
	SetCellMap(map, 4*cellSize, 7*cellSize, 1);
	
	double pathFinder = CreatePathFinder(map);
	
	double path = FindPath(pathFinder, 2.0*cellSize, 8.0*cellSize, 8.0*cellSize, 3.0*cellSize);
	double n = static_cast<int>(GetNPath(path));

	DestroyMap(map);
	DestroyPathFinder(pathFinder);
	DestroyPath(path);
}
Example #6
0
// Navigate our current ladder. Return true if we are doing ladder navigation.
// TODO: Need Push() and Pop() for run/walk context to keep ladder speed contained.
bool CCSBot::UpdateLadderMovement()
{
	if (!m_pathLadder)
		return false;

	bool giveUp = false;

	// check for timeout
	const float ladderTimeoutDuration = 10.0f;
	if (gpGlobals->time - m_pathLadderTimestamp > ladderTimeoutDuration)
	{
		PrintIfWatched("Ladder timeout!\n");
		giveUp = true;
	}

	else if (m_pathLadderState == APPROACH_ASCENDING_LADDER
		|| m_pathLadderState == APPROACH_DESCENDING_LADDER
		|| m_pathLadderState == ASCEND_LADDER
		|| m_pathLadderState == DESCEND_LADDER
		|| m_pathLadderState == DISMOUNT_ASCENDING_LADDER
		|| m_pathLadderState == MOVE_TO_DESTINATION)
	{
		if (m_isStuck)
		{
			PrintIfWatched("Giving up ladder - stuck\n");
			giveUp = true;
		}
	}

	if (giveUp)
	{
		// jump off ladder and give up
		Jump(MUST_JUMP);
		Wiggle();
		ResetStuckMonitor();
		DestroyPath();
		Run();
		return false;
	}

	ResetStuckMonitor();

	// check if somehow we totally missed the ladder
	switch (m_pathLadderState)
	{
	case MOUNT_ASCENDING_LADDER:
	case MOUNT_DESCENDING_LADDER:
	case ASCEND_LADDER:
	case DESCEND_LADDER:
	{
		const float farAway = 200.0f;
		Vector2D d = (m_pathLadder->m_top - pev->origin).Make2D();
		if (d.IsLengthGreaterThan(farAway))
		{
			PrintIfWatched("Missed ladder\n");
			Jump(MUST_JUMP);
			DestroyPath();
			Run();
			return false;
		}
		break;
	}
	}

	m_areaEnteredTimestamp = gpGlobals->time;

	const float tolerance = 10.0f;
	const float closeToGoal = 25.0f;

	switch (m_pathLadderState)
	{
	case APPROACH_ASCENDING_LADDER:
	{
		bool approached = false;
		Vector2D d(pev->origin.x - m_goalPosition.x, pev->origin.y - m_goalPosition.y);

		if (d.x * m_pathLadder->m_dirVector.x + d.y * m_pathLadder->m_dirVector.y < 0.0f)
		{
			Vector2D perp(-m_pathLadder->m_dirVector.y, m_pathLadder->m_dirVector.x);

#ifdef REGAMEDLL_FIXES
			if (Q_abs(d.x * perp.x + d.y * perp.y) < tolerance && d.Length() < closeToGoal)
#else
			if (Q_abs(int64(d.x * perp.x + d.y * perp.y)) < tolerance && d.Length() < closeToGoal)
#endif
				approached = true;
		}

		// small radius will just slow them down a little for more accuracy in hitting their spot
		const float walkRange = 50.0f;
		if (d.IsLengthLessThan(walkRange))
		{
			Walk();
			StandUp();
		}

		// TODO: Check that we are on the ladder we think we are
		if (IsOnLadder())
		{
			m_pathLadderState = ASCEND_LADDER;
			PrintIfWatched("ASCEND_LADDER\n");

			// find actual top in case m_pathLadder penetrates the ceiling
			ComputeLadderEndpoint(true);
		}
		else if (approached)
		{
			// face the m_pathLadder
			m_pathLadderState = FACE_ASCENDING_LADDER;
			PrintIfWatched("FACE_ASCENDING_LADDER\n");
		}
		else
		{
			// move toward ladder mount point
			MoveTowardsPosition(&m_goalPosition);
		}
		break;
	}
	case APPROACH_DESCENDING_LADDER:
	{
		// fall check
		if (GetFeetZ() <= m_pathLadder->m_bottom.z + HalfHumanHeight)
		{
			PrintIfWatched("Fell from ladder.\n");

			m_pathLadderState = MOVE_TO_DESTINATION;
			m_path[m_pathIndex].area->GetClosestPointOnArea(&m_pathLadder->m_bottom, &m_goalPosition);

			AddDirectionVector(&m_goalPosition, m_pathLadder->m_dir, HalfHumanWidth);
			PrintIfWatched("MOVE_TO_DESTINATION\n");
		}
		else
		{
			bool approached = false;
			Vector2D d(pev->origin.x - m_goalPosition.x, pev->origin.y - m_goalPosition.y);

			if (d.x * m_pathLadder->m_dirVector.x + d.y * m_pathLadder->m_dirVector.y > 0.0f)
			{
				Vector2D perp(-m_pathLadder->m_dirVector.y, m_pathLadder->m_dirVector.x);

				if (Q_abs(int64(d.x * perp.x + d.y * perp.y)) < tolerance && d.Length() < closeToGoal)
					approached = true;
			}

			// if approaching ladder from the side or "ahead", walk
			if (m_pathLadder->m_topBehindArea != m_lastKnownArea)
			{
				const float walkRange = 150.0f;
				if (!IsCrouching() && d.IsLengthLessThan(walkRange))
					Walk();
			}

			// TODO: Check that we are on the ladder we think we are
			if (IsOnLadder())
			{
				// we slipped onto the ladder - climb it
				m_pathLadderState = DESCEND_LADDER;
				Run();
				PrintIfWatched("DESCEND_LADDER\n");

				// find actual bottom in case m_pathLadder penetrates the floor
				ComputeLadderEndpoint(false);
			}
			else if (approached)
			{
				// face the ladder
				m_pathLadderState = FACE_DESCENDING_LADDER;
				PrintIfWatched("FACE_DESCENDING_LADDER\n");
			}
			else
			{
				// move toward ladder mount point
				MoveTowardsPosition(&m_goalPosition);
			}
		}
		break;
	}
	case FACE_ASCENDING_LADDER:
	{
		// find yaw to directly aim at ladder
		Vector to = m_pathLadder->m_bottom - pev->origin;
		Vector idealAngle = UTIL_VecToAngles(to);

		const float angleTolerance = 5.0f;
		if (AnglesAreEqual(pev->v_angle.y, idealAngle.y, angleTolerance))
		{
			// move toward ladder until we become "on" it
			Run();
			ResetStuckMonitor();
			m_pathLadderState = MOUNT_ASCENDING_LADDER;
			PrintIfWatched("MOUNT_ASCENDING_LADDER\n");
		}
		break;
	}
	case FACE_DESCENDING_LADDER:
	{
		// find yaw to directly aim at ladder
		Vector to = m_pathLadder->m_top - pev->origin;
		Vector idealAngle = UTIL_VecToAngles(to);

		const float angleTolerance = 5.0f;
		if (AnglesAreEqual(pev->v_angle.y, idealAngle.y, angleTolerance))
		{
			// move toward ladder until we become "on" it
			m_pathLadderState = MOUNT_DESCENDING_LADDER;
			ResetStuckMonitor();
			PrintIfWatched("MOUNT_DESCENDING_LADDER\n");
		}
		break;
	}
	case MOUNT_ASCENDING_LADDER:
	{
		if (IsOnLadder())
		{
			m_pathLadderState = ASCEND_LADDER;
			PrintIfWatched("ASCEND_LADDER\n");

			// find actual top in case m_pathLadder penetrates the ceiling
			ComputeLadderEndpoint(true);
		}

		MoveForward();
		break;
	}
	case MOUNT_DESCENDING_LADDER:
	{
		// fall check
		if (GetFeetZ() <= m_pathLadder->m_bottom.z + HalfHumanHeight)
		{
			PrintIfWatched("Fell from ladder.\n");

			m_pathLadderState = MOVE_TO_DESTINATION;
			m_path[m_pathIndex].area->GetClosestPointOnArea(&m_pathLadder->m_bottom, &m_goalPosition);

			AddDirectionVector(&m_goalPosition, m_pathLadder->m_dir, HalfHumanWidth);
			PrintIfWatched("MOVE_TO_DESTINATION\n");
		}
		else
		{
			if (IsOnLadder())
			{
				m_pathLadderState = DESCEND_LADDER;
				PrintIfWatched("DESCEND_LADDER\n");

				// find actual bottom in case m_pathLadder penetrates the floor
				ComputeLadderEndpoint(false);
			}

			// move toward ladder mount point
			MoveForward();
		}
		break;
	}
	case ASCEND_LADDER:
	{
		// run, so we can make our dismount jump to the side, if necessary
		Run();

		// if our destination area requires us to crouch, do it
		if (m_path[m_pathIndex].area->GetAttributes() & NAV_CROUCH)
			Crouch();

		// did we reach the top?
		if (GetFeetZ() >= m_pathLadderEnd)
		{
			// we reached the top - dismount
			m_pathLadderState = DISMOUNT_ASCENDING_LADDER;
			PrintIfWatched("DISMOUNT_ASCENDING_LADDER\n");

			if (m_path[m_pathIndex].area == m_pathLadder->m_topForwardArea)
				m_pathLadderDismountDir = FORWARD;
			else if (m_path[m_pathIndex].area == m_pathLadder->m_topLeftArea)
				m_pathLadderDismountDir = LEFT;
			else if (m_path[m_pathIndex].area == m_pathLadder->m_topRightArea)
				m_pathLadderDismountDir = RIGHT;

			m_pathLadderDismountTimestamp = gpGlobals->time;
		}
		else if (!IsOnLadder())
		{
			// we fall off the ladder, repath
			DestroyPath();
			return false;
		}

		// move up ladder
		MoveForward();
		break;
	}
	case DESCEND_LADDER:
	{
		Run();

		float destHeight = m_pathLadderEnd + HalfHumanHeight;
		if (!IsOnLadder() || GetFeetZ() <= destHeight)
		{
			// we reached the bottom, or we fell off - dismount
			m_pathLadderState = MOVE_TO_DESTINATION;
			m_path[m_pathIndex].area->GetClosestPointOnArea(&m_pathLadder->m_bottom, &m_goalPosition);

			AddDirectionVector(&m_goalPosition, m_pathLadder->m_dir, HalfHumanWidth);
			PrintIfWatched("MOVE_TO_DESTINATION\n");
		}

		// Move down ladder
		MoveForward();
		break;
	}
	case DISMOUNT_ASCENDING_LADDER:
	{
		if (gpGlobals->time - m_pathLadderDismountTimestamp >= 0.4f)
		{
			m_pathLadderState = MOVE_TO_DESTINATION;
			m_path[m_pathIndex].area->GetClosestPointOnArea(&pev->origin, &m_goalPosition);
			PrintIfWatched("MOVE_TO_DESTINATION\n");
		}

		// We should already be facing the dismount point
		if (m_pathLadderFaceIn)
		{
			switch (m_pathLadderDismountDir)
			{
			case LEFT:    StrafeLeft(); break;
			case RIGHT:   StrafeRight(); break;
			case FORWARD: MoveForward(); break;
			}
		}
		else
		{
			switch (m_pathLadderDismountDir)
			{
			case LEFT:    StrafeRight();  break;
			case RIGHT:   StrafeLeft();   break;
			case FORWARD: MoveBackward(); break;
			}
		}
		break;
	}
	case MOVE_TO_DESTINATION:
	{
		if (m_path[m_pathIndex].area->Contains(&pev->origin))
		{
			// successfully traversed ladder and reached destination area
			// exit ladder state machine
			PrintIfWatched("Ladder traversed.\n");
			m_pathLadder = nullptr;

			// incrememnt path index to next step beyond this ladder
			SetPathIndex(m_pathIndex + 1);

			return false;
		}

		MoveTowardsPosition(&m_goalPosition);
		break;
	}
	}

	return true;
}
Example #7
0
// Compute shortest path to goal position via A* algorithm
// If 'goalArea' is NULL, path will get as close as it can.
bool CCSBot::ComputePath(CNavArea *goalArea, const Vector *goal, RouteType route)
{
	// Throttle re-pathing
	if (!m_repathTimer.IsElapsed())
		return false;

	// randomize to distribute CPU load
	m_repathTimer.Start(RANDOM_FLOAT(0.4f, 0.6f));

	DestroyPath();

	CNavArea *startArea = m_lastKnownArea;
	if (!startArea)
		return false;

	// note final specific position
	Vector pathEndPosition;

	if (!goal && !goalArea)
		return false;

	if (!goal)
		pathEndPosition = *goalArea->GetCenter();
	else
		pathEndPosition = *goal;

	// make sure path end position is on the ground
	if (goalArea)
		pathEndPosition.z = goalArea->GetZ(&pathEndPosition);
	else
		GetGroundHeight(&pathEndPosition, &pathEndPosition.z);

	// if we are already in the goal area, build trivial path
	if (startArea == goalArea)
	{
		BuildTrivialPath(&pathEndPosition);
		return true;
	}

	// Compute shortest path to goal
	CNavArea *closestArea = nullptr;
	PathCost pathCost(this, route);
	bool pathToGoalExists = NavAreaBuildPath(startArea, goalArea, goal, pathCost, &closestArea);

	CNavArea *effectiveGoalArea = (pathToGoalExists) ? goalArea : closestArea;

	// Build path by following parent links
	// get count
	int count = 0;
	CNavArea *area;
	for (area = effectiveGoalArea; area; area = area->GetParent())
	{
		count++;
	}

	// save room for endpoint
	if (count > MAX_PATH_LENGTH - 1)
		count = MAX_PATH_LENGTH - 1;

	if (count == 0)
		return false;

	if (count == 1)
	{
		BuildTrivialPath(&pathEndPosition);
		return true;
	}

	// build path
	m_pathLength = count;
	for (area = effectiveGoalArea; count && area; area = area->GetParent())
	{
		count--;
		m_path[count].area = area;
		m_path[count].how = area->GetParentHow();
	}

	// compute path positions
	if (ComputePathPositions() == false)
	{
		PrintIfWatched("Error building path\n");
		DestroyPath();
		return false;
	}

	if (!goal)
	{
		switch (m_path[m_pathLength - 1].how)
		{
		case GO_NORTH:
		case GO_SOUTH:
			pathEndPosition.x = m_path[m_pathLength - 1].pos.x;
			pathEndPosition.y = effectiveGoalArea->GetCenter()->y;
			break;

		case GO_EAST:
		case GO_WEST:
			pathEndPosition.x = effectiveGoalArea->GetCenter()->x;
			pathEndPosition.y = m_path[m_pathLength - 1].pos.y;
			break;
		}

		GetGroundHeight(&pathEndPosition, &pathEndPosition.z);
	}

	// append path end position
	m_path[m_pathLength].area = effectiveGoalArea;
	m_path[m_pathLength].pos = pathEndPosition;
	m_path[m_pathLength].ladder = nullptr;
	m_path[m_pathLength].how = NUM_TRAVERSE_TYPES;
	m_pathLength++;

	// do movement setup
	m_pathIndex = 1;
	m_areaEnteredTimestamp = gpGlobals->time;
	m_spotEncounter = nullptr;
	m_goalPosition = m_path[1].pos;

	if (m_path[1].ladder)
		SetupLadderMovement();
	else
		m_pathLadder = nullptr;

	return true;
}
Example #8
0
// Move along the path. Return false if end of path reached.
CCSBot::PathResult CCSBot::UpdatePathMovement(bool allowSpeedChange)
{
	if (m_pathLength == 0)
		return PATH_FAILURE;

	if (cv_bot_walk.value != 0.0f)
		Walk();

	// If we are navigating a ladder, it overrides all other path movement until complete
	if (UpdateLadderMovement())
		return PROGRESSING;

	// ladder failure can destroy the path
	if (m_pathLength == 0)
		return PATH_FAILURE;

	// we are not supposed to be on a ladder - if we are, jump off
	if (IsOnLadder())
		Jump(MUST_JUMP);

	assert(m_pathIndex < m_pathLength);

	// Check if reached the end of the path
	bool nearEndOfPath = false;
	if (m_pathIndex >= m_pathLength - 1)
	{
		Vector toEnd(pev->origin.x, pev->origin.y, GetFeetZ());
		Vector d = GetPathEndpoint() - toEnd; // can't use 2D because path end may be below us (jump down)

		const float walkRange = 200.0f;

		// walk as we get close to the goal position to ensure we hit it
		if (d.IsLengthLessThan(walkRange))
		{
			// don't walk if crouching - too slow
			if (allowSpeedChange && !IsCrouching())
				Walk();

			// note if we are near the end of the path
			const float nearEndRange = 50.0f;
			if (d.IsLengthLessThan(nearEndRange))
				nearEndOfPath = true;

			const float closeEpsilon = 20.0f;
			if (d.IsLengthLessThan(closeEpsilon))
			{
				// reached goal position - path complete
				DestroyPath();

				// TODO: We should push and pop walk state here, in case we want to continue walking after reaching goal
				if (allowSpeedChange)
					Run();

				return END_OF_PATH;
			}
		}
	}

	// To keep us moving smoothly, we will move towards
	// a point farther ahead of us down our path.
	int prevIndex = 0;				// closest index on path just prior to where we are now
	const float aheadRange = 300.0f;
	int newIndex = FindPathPoint(aheadRange, &m_goalPosition, &prevIndex);

	// BOTPORT: Why is prevIndex sometimes -1?
	if (prevIndex < 0)
		prevIndex = 0;

	// if goal position is near to us, we must be about to go around a corner - so look ahead!
	const float nearCornerRange = 100.0f;
	if (m_pathIndex < m_pathLength - 1 && (m_goalPosition - pev->origin).IsLengthLessThan(nearCornerRange))
	{
		ClearLookAt();
		InhibitLookAround(0.5f);
	}

	// if we moved to a new node on the path, setup movement
	if (newIndex > m_pathIndex)
	{
		SetPathIndex(newIndex);
	}

	if (!IsUsingLadder())
	{
		// Crouching

		// if we are approaching a crouch area, crouch
		// if there are no crouch areas coming up, stand
		const float crouchRange = 50.0f;
		bool didCrouch = false;
		for (int i = prevIndex; i < m_pathLength; i++)
		{
			const CNavArea *to = m_path[i].area;

			// if there is a jump area on the way to the crouch area, don't crouch as it messes up the jump
			// unless we are already higher than the jump area - we must've jumped already but not moved into next area
			if ((to->GetAttributes() & NAV_JUMP)/* && to->GetCenter()->z > GetFeetZ()*/)
				break;

			Vector close;
			to->GetClosestPointOnArea(&pev->origin, &close);

			if ((close - pev->origin).Make2D().IsLengthGreaterThan(crouchRange))
				break;

			if (to->GetAttributes() & NAV_CROUCH)
			{
				Crouch();
				didCrouch = true;
				break;
			}
		}

		if (!didCrouch && !IsJumping())
		{
			// no crouch areas coming up
			StandUp();
		}
		// end crouching logic
	}

	// compute our forward facing angle
	m_forwardAngle = UTIL_VecToYaw(m_goalPosition - pev->origin);

	// Look farther down the path to "lead" our view around corners
	Vector toGoal;

	if (m_pathIndex == 0)
	{
		toGoal = m_path[1].pos;
	}
	else if (m_pathIndex < m_pathLength)
	{
		toGoal = m_path[m_pathIndex].pos - pev->origin;

		// actually aim our view farther down the path
		const float lookAheadRange = 500.0f;
		if (!m_path[m_pathIndex].ladder && !IsNearJump() && toGoal.Make2D().IsLengthLessThan(lookAheadRange))
		{
			float along = toGoal.Length2D();
			int i;
			for (i = m_pathIndex + 1; i < m_pathLength; i++)
			{
				Vector delta = m_path[i].pos - m_path[i - 1].pos;
				float segmentLength = delta.Length2D();

				if (along + segmentLength >= lookAheadRange)
				{
					// interpolate between points to keep look ahead point at fixed distance
					float t = (lookAheadRange - along) / (segmentLength + along);
					Vector target;

					if (t <= 0.0f)
						target = m_path[i - 1].pos;
					else if (t >= 1.0f)
						target = m_path[i].pos;
					else
						target = m_path[i - 1].pos + t * delta;

					toGoal = target - pev->origin;
					break;
				}

				// if we are coming up to a ladder or a jump, look at it
				if (m_path[i].ladder || (m_path[i].area->GetAttributes() & NAV_JUMP))
				{
					toGoal = m_path[i].pos - pev->origin;
					break;
				}

				along += segmentLength;
			}

			if (i == m_pathLength)
			{
				toGoal = GetPathEndpoint() - pev->origin;
			}
		}
	}
	else
	{
		toGoal = GetPathEndpoint() - pev->origin;
	}

	m_lookAheadAngle = UTIL_VecToYaw(toGoal);

	// initialize "adjusted" goal to current goal
	Vector adjustedGoal = m_goalPosition;

	// Use short "feelers" to veer away from close-range obstacles
	// Feelers come from our ankles, just above StepHeight, so we avoid short walls, too
	// Don't use feelers if very near the end of the path, or about to jump
	// TODO: Consider having feelers at several heights to deal with overhangs, etc.
	if (!nearEndOfPath && !IsNearJump() && !IsJumping())
	{
		FeelerReflexAdjustment(&adjustedGoal);
	}

	// draw debug visualization
	if ((cv_bot_traceview.value == 1.0f && IsLocalPlayerWatchingMe()) || cv_bot_traceview.value == 10.0f)
	{
		DrawPath();

		const Vector *pos = &m_path[m_pathIndex].pos;
		UTIL_DrawBeamPoints(*pos, *pos + Vector(0, 0, 50), 1, 255, 255, 0);
		UTIL_DrawBeamPoints(adjustedGoal, adjustedGoal + Vector(0, 0, 50), 1, 255, 0, 255);
		UTIL_DrawBeamPoints(pev->origin, adjustedGoal + Vector(0, 0, 50), 1, 255, 0, 255);
	}

	// dont use adjustedGoal, as it can vary wildly from the feeler adjustment
	if (!IsAttacking() && IsFriendInTheWay(&m_goalPosition))
	{
		if (!m_isWaitingBehindFriend)
		{
			m_isWaitingBehindFriend = true;

			const float politeDuration = 5.0f - 3.0f * GetProfile()->GetAggression();
			m_politeTimer.Start(politeDuration);
		}
		else if (m_politeTimer.IsElapsed())
		{
			// we have run out of patience
			m_isWaitingBehindFriend = false;
			ResetStuckMonitor();

			// repath to avoid clump of friends in the way
			DestroyPath();
		}
	}
	else if (m_isWaitingBehindFriend)
	{
		// we're done waiting for our friend to move
		m_isWaitingBehindFriend = false;
		ResetStuckMonitor();
	}

	// Move along our path if there are no friends blocking our way,
	// or we have run out of patience
	if (!m_isWaitingBehindFriend || m_politeTimer.IsElapsed())
	{
		// Move along path
		MoveTowardsPosition(&adjustedGoal);

		// Stuck check
		if (m_isStuck && !IsJumping())
		{
			Wiggle();
		}
	}

	// if our goal is high above us, we must have fallen
	bool didFall = false;
	if (m_goalPosition.z - GetFeetZ() > JumpCrouchHeight)
	{
		const float closeRange = 75.0f;
		Vector2D to(pev->origin.x - m_goalPosition.x, pev->origin.y - m_goalPosition.y);
		if (to.IsLengthLessThan(closeRange))
		{
			// we can't reach the goal position
			// check if we can reach the next node, in case this was a "jump down" situation
			if (m_pathIndex < m_pathLength - 1)
			{
				if (m_path[m_pathIndex + 1].pos.z - GetFeetZ() > JumpCrouchHeight)
				{
					// the next node is too high, too - we really did fall of the path
					didFall = true;
				}
			}
			else
			{
				// fell trying to get to the last node in the path
				didFall = true;
			}
		}
	}

	// This timeout check is needed if the bot somehow slips way off
	// of its path and cannot progress, but also moves around
	// enough that it never becomes "stuck"
	const float giveUpDuration = 5.0f; // 4.0f
	if (didFall || gpGlobals->time - m_areaEnteredTimestamp > giveUpDuration)
	{
		if (didFall)
		{
			PrintIfWatched("I fell off!\n");
		}

		// if we havent made any progress in a long time, give up
		if (m_pathIndex < m_pathLength - 1)
		{
			PrintIfWatched("Giving up trying to get to area #%d\n", m_path[m_pathIndex].area->GetID());
		}
		else
		{
			PrintIfWatched("Giving up trying to get to end of path\n");
		}

		Run();
		StandUp();
		DestroyPath();

		return PATH_FAILURE;
	}

	return PROGRESSING;
}