Example #1
0
//Move misclassified nodes from source graph (src) to destiny graph (dst)
void opf_MoveMisclassifiedNodes(Subgraph **src, Subgraph **dst,  int *p){
  int i, j, k, num_of_misclassified=0;
  Subgraph *newsrc = NULL, *newdst = NULL;

  for (i=0; i < (*src)->nnodes; i++){
    if ((*src)->node[i].truelabel != (*src)->node[i].label)
      num_of_misclassified++;
  }
  *p = num_of_misclassified;

  if (num_of_misclassified>0){
    newsrc = CreateSubgraph((*src)->nnodes-num_of_misclassified);
    newdst = CreateSubgraph((*dst)->nnodes+num_of_misclassified);

    newsrc->nfeats = (*src)->nfeats; newdst->nfeats = (*dst)->nfeats;
    newsrc->nlabels = (*src)->nlabels; newdst->nlabels = (*dst)->nlabels;

    for (i = 0; i < (*dst)->nnodes; i++)
      CopySNode(&(newdst->node[i]), &((*dst)->node[i]), newdst->nfeats);
    j=i;

    k = 0;
    for (i=0; i < (*src)->nnodes; i++){
      if ((*src)->node[i].truelabel == (*src)->node[i].label)// misclassified node
	CopySNode(&(newsrc->node[k++]), &((*src)->node[i]), newsrc->nfeats);
      else
	CopySNode(&(newdst->node[j++]), &((*src)->node[i]), newdst->nfeats);
		}
    DestroySubgraph(&(*src));
    DestroySubgraph(&(*dst));
    *src = newsrc;
    *dst = newdst;
  }
}
Example #2
0
int main(int argc, char **argv){
	fflush(stdout);
	fprintf(stdout, "\nProgram that generates training, evaluation and test sets for the OPF classifier\n");
	fprintf(stdout, "\nIf you have any problem, please contact: ");
	fprintf(stdout, "\n- [email protected]");
	fprintf(stdout, "\n- [email protected]\n");
	fprintf(stdout, "\nLibOPF version 2.0 (2009)\n");
	fprintf(stdout, "\n"); fflush(stdout);

	if(argc != 6){
		fprintf(stderr, "\nusage opf_split <P1> <P2> <P3> <P4> <P5>");
		fprintf(stderr, "\nP1: input dataset in the OPF file format");
		fprintf(stderr, "\nP2: percentage for the training set size [0,1]");
		fprintf(stderr, "\nP3: percentage for the evaluation set size [0,1] (leave 0 in the case of no learning)");
		fprintf(stderr, "\nP4: percentage for the test set size [0,1]");
		fprintf(stderr, "\nP5: normalize features? 1 - Yes  0 - No\n\n");
		exit(-1);
	}
	Subgraph *g = NULL, *gAux = NULL, *gTraining = NULL, *gEvaluating = NULL, *gTesting = NULL;
	float training_p = atof(argv[2]), evaluating_p = atof(argv[3]), testing_p = atof(argv[4]);
	int normalize = atoi(argv[5]);

	CheckInputData(training_p, evaluating_p, testing_p);

	fprintf(stdout, "\nReading data set ..."); fflush(stdout);
	g = ReadSubgraph(argv[1]);
	fprintf(stdout, " OK"); fflush(stdout);

	if(normalize) opf_NormalizeFeatures(g);

	fprintf(stdout, "\nSplitting data set ..."); fflush(stdout);
	opf_SplitSubgraph(g, &gAux, &gTesting, training_p+evaluating_p);

	if (evaluating_p > 0)
	  opf_SplitSubgraph(gAux, &gTraining, &gEvaluating, training_p/(training_p+evaluating_p));
	else gTraining = CopySubgraph(gAux);

	fprintf(stdout, " OK"); fflush(stdout);

	fprintf(stdout, "\nWriting data sets to disk ..."); fflush(stdout);
	WriteSubgraph(gTraining, "training.dat");
	WriteSubgraphPrototype(gTraining, "trainingp.dat");
	if (evaluating_p > 0) {
		WriteSubgraph(gEvaluating, "evaluating.dat");
		WriteSubgraphPrototype(gEvaluating, "evaluatingp.dat");
	}
	WriteSubgraph(gTesting, "testing.dat");
	WriteSubgraphPrototype(gTesting, "testingp.dat");
	fprintf(stdout, " OK"); fflush(stdout);

	fprintf(stdout, "\nDeallocating memory ...");
	DestroySubgraph(&g);
	DestroySubgraph(&gAux);
	DestroySubgraph(&gTraining);
	DestroySubgraph(&gEvaluating);
	DestroySubgraph(&gTesting);
	fprintf(stdout, " OK\n");

	return 0;
}
Example #3
0
// Remove irrelevant nodes
void opf_RemoveIrrelevantNodes(Subgraph **sg){
  Subgraph *newsg = NULL;
  int i,k,num_of_irrelevants=0;

  for (i=0; i < (*sg)->nnodes; i++) {
    if (!(*sg)->node[i].relevant)
      num_of_irrelevants++;
  }

  if (num_of_irrelevants>0){
    newsg = CreateSubgraph((*sg)->nnodes - num_of_irrelevants);
    newsg->nfeats = (*sg)->nfeats;
//    for (i=0; i < newsg->nnodes; i++)
//      newsg->node[i].feat = AllocFloatArray(newsg->nfeats);

    k=0;
    newsg->nlabels = (*sg)->nlabels;
    for (i=0; i < (*sg)->nnodes; i++){
      if ((*sg)->node[i].relevant){// relevant node
	CopySNode(&(newsg->node[k]), &((*sg)->node[i]), newsg->nfeats);
	k++;
      }
    }
    newsg->nlabels=(*sg)->nlabels;
    DestroySubgraph(sg);
    *sg=newsg;
  }
}
Example #4
0
int main(int argc, char**argv){
	if(argc != 3){
		fprintf(stderr, "\nusage opf2ann <input libopf file> <output fann file>\n");
		exit(-1);
	}

	Subgraph *g = ReadSubgraph(argv[1]);
	WriteSubgraph2FANNFormat(g, argv[2]);
	DestroySubgraph(&g);

	return 0;
}
Example #5
0
//Move irrelevant nodes from source graph (src) to destiny graph (dst)
void opf_MoveIrrelevantNodes(Subgraph **src, Subgraph **dst){
  int i, j, k, num_of_irrelevants=0;
  Subgraph *newsrc = NULL, *newdst = NULL;

  for (i=0; i < (*src)->nnodes; i++){
    if (!(*src)->node[i].relevant)
      num_of_irrelevants++;
  }

  if (num_of_irrelevants>0){
    newsrc = CreateSubgraph((*src)->nnodes-num_of_irrelevants);
    newdst = CreateSubgraph((*dst)->nnodes+num_of_irrelevants);

    newsrc->nfeats = (*src)->nfeats; newdst->nfeats = (*dst)->nfeats;
    newsrc->nlabels = (*src)->nlabels; newdst->nlabels = (*dst)->nlabels;

//    for (i=0; i < newsrc->nnodes; i++)
//      newsrc->node[i].feat = AllocFloatArray(newsrc->nfeats);

//    for (i=0; i < newdst->nnodes; i++)
//      newdst->node[i].feat = AllocFloatArray(newdst->nfeats);

    for (i = 0; i < (*dst)->nnodes; i++)
      CopySNode(&(newdst->node[i]), &((*dst)->node[i]), newdst->nfeats);
    j=i;

    k = 0;
    for (i=0; i < (*src)->nnodes; i++){
      if ((*src)->node[i].relevant)// relevant node
	CopySNode(&(newsrc->node[k++]), &((*src)->node[i]), newsrc->nfeats);
      else
	CopySNode(&(newdst->node[j++]), &((*src)->node[i]), newdst->nfeats);
		}
    DestroySubgraph(&(*src));
    DestroySubgraph(&(*dst));
    *src = newsrc;
    *dst = newdst;
  }
}
Example #6
0
//Learning function: it executes the learning procedure for CompGraph replacing the
//missclassified samples in the evaluation set by non prototypes from
//training set -----
void opf_OPFLearning(Subgraph **sgtrain, Subgraph **sgeval){
	int i = 0, iterations = 10;
	float Acc = FLT_MIN, AccAnt = FLT_MIN,MaxAcc=FLT_MIN, delta;
	Subgraph *sg=NULL;

	do{
		AccAnt = Acc;
		fflush(stdout); fprintf(stdout, "\nrunning iteration ... %d ", i);
		opf_OPFTraining(*sgtrain);
		opf_OPFClassifying(*sgtrain, *sgeval);
		Acc = opf_Accuracy(*sgeval);
		if (Acc > MaxAcc){
		  MaxAcc = Acc;
		  if (sg!=NULL) DestroySubgraph(&sg);
		  sg = CopySubgraph(*sgtrain);
		}
		opf_SwapErrorsbyNonPrototypes(&(*sgtrain), &(*sgeval));
		fflush(stdout); fprintf(stdout,"opf_Accuracy in the evaluation set: %.2f %%\n", Acc*100);
		i++;
		delta = fabs(Acc-AccAnt);
	}while ((delta > 0.0001) && (i <= iterations));
	DestroySubgraph(&(*sgtrain));
	*sgtrain = sg;
}
int main(int argc, char**argv){
	if(argc != 3){
		fprintf(stderr, "\nusage opf2svmtorch <input libopf file> <output svmtorch file>\n");
		exit(-1);
	}

	Subgraph *g = ReadSubgraph(argv[1]);

	if(g->nlabels == 2)
		WriteSubgraph2SVMTorchFormat(g,argv[2]);
	else
		WriteSubgraph2SVMTorchFormatMC(g,argv[2]);

	DestroySubgraph(&g);

	return 0;
}
int main(int argc, char **argv){
	fflush(stdout);
	fprintf(stdout, "\nProgram that gives information about the OPF file\n");
	fprintf(stdout, "\nIf you have any problem, please contact: ");
	fprintf(stdout, "\n- [email protected]");
	fprintf(stdout, "\n- [email protected]\n");
	fprintf(stdout, "\nLibOPF version 2.0 (2009)\n");
	fprintf(stdout, "\n"); fflush(stdout);

	if(argc != 2) {
		fprintf(stderr, "\nusage opf_train <P1>");
		fprintf(stderr, "\nP1: OPF file");
		exit(-1);
	}

	Subgraph *g = NULL;
	FILE *fp = NULL;
	int ndata, nfeats, nlabels;
	size_t result;
	char msg[128];
	
	if((fp = fopen(argv[1], "rb")) == NULL){
		sprintf(msg, "%s%s", "Unable to open file ", argv[1]);
		Error(msg,"opf_info");
	}

	result = fread(&ndata, sizeof(int), 1, fp);
	result = fread(&nlabels, sizeof(int), 1, fp);
	result = fread(&nfeats, sizeof(int), 1, fp);
	
	fprintf(stdout, "\nInformations about %s file\n --------------------------------", argv[1]);
	fprintf(stdout,"\nData size: %d",ndata);
	fprintf(stdout,"\nFeatures size: %d",nfeats);
	fprintf(stdout,"\nLabels number: %d",nlabels);
	fprintf(stdout, "\n--------------------------------\n");

	DestroySubgraph(&g);
	fclose(fp);

	return 0;
}
void OPFScore::predict(Data *data)
{
	Subgraph *g = data2Subgraph(data);
	int	cntSamples,
	nSamples;
	destroyScores();

	scoreSize = data->getNSamples();
	scoresNumClasses = subgraph->nlabels;

	scores = new float*[scoreSize];
	for (int i = 0; i < scoreSize; i++)
		scores[i] = new float[scoresNumClasses]; 

	opf_OPFClassifyingScore(subgraph, g, scores);

	for(cntSamples = 0, nSamples = data->getNSamples(); cntSamples < nSamples; ++cntSamples){
		data->setClassificationLabel(cntSamples, g->node[cntSamples].label);
	}
	DestroySubgraph(&g);

	//this->predictedData = data->clone();
}
int main(int argc, char **argv){
	fflush(stdout);
	fprintf(stdout, "\nProgram that generates the precomputed distance file for the OPF classifier\n");
	fprintf(stdout, "\nIf you have any problem, please contact: ");
	fprintf(stdout, "\n- [email protected]");
	fprintf(stdout, "\n- [email protected]\n");
	fprintf(stdout, "\nLibOPF version 2.0 (2009)\n");
	fprintf(stdout, "\n"); fflush(stdout);

	if(argc != 4){
		fprintf(stderr, "\nusage opf_distance <P1> <P2> <P3>");
		fprintf(stderr, "\nP1: Dataset in the OPF file format");
		fprintf(stderr, "\nP2: Distance ID\n");
		fprintf(stderr, "\n	1 - Euclidean");
		fprintf(stderr, "\n	2 - Chi-Square");
		fprintf(stderr, "\n	3 - Manhattan (L1)");
		fprintf(stderr, "\n	4 - Canberra");
		fprintf(stderr, "\n	5 - Squared Chord");
		fprintf(stderr,"\n	6 - Squared Chi-Squared");
		fprintf(stderr,"\n	7 - BrayCurtis");
		fprintf(stderr,"\n	8 - dLog");
		fprintf(stderr, "\nP3: Distance normalization? 1- yes 0 - no");
		exit(-1);
	}

	Subgraph *sg = ReadSubgraph(argv[1]);
	FILE *fp = fopen("distances.dat", "wb");
	int i, j, distance = atoi(argv[2]), normalize = atoi(argv[3]);
	float **Distances = NULL, max = FLT_MIN;
	size_t result;

	result = fwrite(&sg->nnodes, sizeof(int), 1, fp);

	
	fprintf(stdout, "\n	Stack %u...", stackavail());
	Distances  = (float **)malloc(sg->nnodes*sizeof(float *));
	for (i = 0; i < sg->nnodes; i++)
		Distances[i] = (float *)calloc(sizeof(float),sg->nnodes);
	fprintf(stdout, "\n	Stack after %u...", stackavail());
		
	switch(distance){
		case 1:
			fprintf(stdout, "\n	Computing euclidean distance ...");
			for (i = 0; i < sg->nnodes; i++){
				for (j = 0; j < sg->nnodes; j++){
					if(i == j) Distances[i][j] = 0.0;
					else Distances[sg->node[i].position][sg->node[j].position] = opf_EuclDist(sg->node[i].feat, sg->node[j].feat, sg->nfeats);
					if(Distances[sg->node[i].position][sg->node[j].position] > max) max = Distances[sg->node[i].position][sg->node[j].position];
				}
			}
		break;
		case 2:
			fprintf(stdout, "\n	Computing chi-square distance ...\n");
			for (i = 0; i < sg->nnodes; i++){
				for (j = 0; j < sg->nnodes; j++){
					if(i == j) Distances[i][j] = 0.0;
					else Distances[sg->node[i].position][sg->node[j].position] = opf_ChiSquaredDist(sg->node[i].feat, sg->node[j].feat, sg->nfeats);
					if(Distances[sg->node[i].position][sg->node[j].position] > max) max = Distances[sg->node[i].position][sg->node[j].position];
				}
			}
		break;
		case 3:
			fprintf(stdout, "\n	Computing Manhattan distance ...\n");
			for (i = 0; i < sg->nnodes; i++){
				for (j = 0; j < sg->nnodes; j++){
					if(i == j) Distances[i][j] = 0.0;
					else Distances[sg->node[i].position][sg->node[j].position] = opf_ManhattanDist(sg->node[i].feat, sg->node[j].feat, sg->nfeats);
					if(Distances[sg->node[i].position][sg->node[j].position] > max) max = Distances[sg->node[i].position][sg->node[j].position];
				}
			}
		break;
		case 4:
			fprintf(stdout, "\n	Computing Canberra distance ...\n");
			for (i = 0; i < sg->nnodes; i++){
				for (j = 0; j < sg->nnodes; j++){
					if(i == j) Distances[i][j] = 0.0;
					else Distances[sg->node[i].position][sg->node[j].position] = opf_CanberraDist(sg->node[i].feat, sg->node[j].feat, sg->nfeats);
					if(Distances[sg->node[i].position][sg->node[j].position] > max) max = Distances[sg->node[i].position][sg->node[j].position];
				}
			}
		break;
			case 5:
			fprintf(stdout, "\n	Computing Squared Chord distance ...\n");
			for (i = 0; i < sg->nnodes; i++){
				for (j = 0; j < sg->nnodes; j++){
					if(i == j) Distances[i][j] = 0.0;
					else Distances[sg->node[i].position][sg->node[j].position] = opf_SquaredChordDist(sg->node[i].feat, sg->node[j].feat, sg->nfeats);
					if(Distances[sg->node[i].position][sg->node[j].position] > max) max = Distances[sg->node[i].position][sg->node[j].position];
				}
			}
		break;
		case 6:
			fprintf(stdout, "\n	Computing Squared Chi-squared distance ...\n");
			for (i = 0; i < sg->nnodes; i++){
				for (j = 0; j < sg->nnodes; j++){
					if(i == j) Distances[i][j] = 0.0;
					else Distances[sg->node[i].position][sg->node[j].position] = opf_SquaredChiSquaredDist(sg->node[i].feat, sg->node[j].feat, sg->nfeats);
					if(Distances[sg->node[i].position][sg->node[j].position] > max) max = Distances[sg->node[i].position][sg->node[j].position];
				}
			}
		break;
		case 7:
			fprintf(stdout, "\n	Computing Bray Curtis distance ...\n");
			for (i = 0; i < sg->nnodes; i++){
				for (j = 0; j < sg->nnodes; j++){
					if(i == j) Distances[i][j] = 0.0;
					else Distances[sg->node[i].position][sg->node[j].position] = opf_BrayCurtisDist(sg->node[i].feat, sg->node[j].feat, sg->nfeats);
					if(Distances[sg->node[i].position][sg->node[j].position] > max) max = Distances[sg->node[i].position][sg->node[j].position];
				}
			}
		case 8:
			fprintf(stdout, "\n	Computing dLog ...\n");
			for (i = 0; i < sg->nnodes; i++){
				for (j = 0; j < sg->nnodes; j++){
					if(i == j) Distances[i][j] = 0.0;
					else Distances[sg->node[i].position][sg->node[j].position] = opf_dLog(sg->node[i].feat, sg->node[j].feat, sg->nfeats);
					if(Distances[sg->node[i].position][sg->node[j].position] > max) max = Distances[sg->node[i].position][sg->node[j].position];
				}
				//fprintf(stdout, "\t[%d] %.2f", i, Distances[i][1]);
			}
		break;
		default:
			fprintf(stderr, "\nInvalid distance ID ...\n");
	}

	fprintf(stdout, "\n	Writing matrix file ...\n"); fflush(stdout); getchar();
	if (!normalize) max = 1.0;
	for (i = 0; i < sg->nnodes; i++){
		for (j = 0; j < sg->nnodes; j++){
			Distances[i][j]/=max;
			result = fwrite(&Distances[i][j], sizeof(float), 1, fp);
		}
	}

	fprintf(stdout, "\n\nDistances generated ...\n"); fflush(stdout);
	fprintf(stdout, "\n\nDeallocating memory ...\n");
	for (i = 0; i < sg->nnodes; i++)
		free(Distances[i]);
	free(Distances);

	DestroySubgraph(&sg);
	fclose(fp);


	return 0;
}
Example #11
0
int main(int argc, char **argv) {
    fflush(stdout);
    fprintf(stdout, "\nProgram that executes the test phase of the OPF classifier\n");
    fprintf(stdout, "\nIf you have any problem, please contact: ");
    fprintf(stdout, "\n- [email protected]");
    fprintf(stdout, "\n- [email protected]\n");
    fprintf(stdout, "\nLibOPF version 3.0 (2013)\n");
    fprintf(stdout, "\n");
    fflush(stdout);

    if((argc != 3) && (argc != 2)) {
        fprintf(stderr, "\nusage opf_classify <P1> <P2>");
        fprintf(stderr, "\nP1: test set in the OPF file format");
        fprintf(stderr, "\nP2: precomputed distance file (leave it in blank if you are not using this resource\n");
        exit(-1);
    }

    int n,i;
    float time;
    char fileName[256];
    FILE *f = NULL;
    timer tic, toc;

    if(argc == 3) opf_PrecomputedDistance = 1;
    fprintf(stdout, "\nReading data files ...");
    fflush(stdout);
    Subgraph *gTest = ReadSubgraph(argv[1]), *gTrain = opf_ReadModelFile("classifier.opf");
    fprintf(stdout, " OK");
    fflush(stdout);

    if(opf_PrecomputedDistance)
        opf_DistanceValue = opf_ReadDistances(argv[2], &n);

    fprintf(stdout, "\nClassifying test set ...");
    fflush(stdout);
    gettimeofday(&tic,NULL);
    opf_OPFClassifying(gTrain, gTest);
    gettimeofday(&toc,NULL);
    fprintf(stdout, " OK");
    fflush(stdout);

    fprintf(stdout, "\nWriting output file ...");
    fflush(stdout);
    sprintf(fileName,"%s.out",argv[1]);
    f = fopen(fileName,"w");
    for (i = 0; i < gTest->nnodes; i++)
        fprintf(f,"%d\n",gTest->node[i].label);
    fclose(f);
    fprintf(stdout, " OK");
    fflush(stdout);

    fprintf(stdout, "\nDeallocating memory ...");
    DestroySubgraph(&gTrain);
    DestroySubgraph(&gTest);
    if(opf_PrecomputedDistance) {
        for (i = 0; i < n; i++)
            free(opf_DistanceValue[i]);
        free(opf_DistanceValue);
    }
    fprintf(stdout, " OK\n");

    time = ((toc.tv_sec-tic.tv_sec)*1000.0 + (toc.tv_usec-tic.tv_usec)*0.001)/1000.0;
    fprintf(stdout, "\nTesting time: %f seconds\n", time);
    fflush(stdout);

    sprintf(fileName,"%s.time",argv[1]);
    f = fopen(fileName,"a");
    fprintf(f,"%f\n",time);
    fclose(f);

    return 0;
}
Example #12
0
int main(int argc, char **argv)
{

    if (argc != 5)
    {
        fprintf(stderr, "\nusage FeatureSelection <training set> <evaluating set> <testing set> <search space configuration file>\n");
        exit(-1);
    }

    SearchSpace *s = NULL;
    int i;
    double time_opt, time_classify, classification_error;
    timer tic, toc;
    FILE *f = NULL;
    TransferFunc optTransfer = NULL;
    Subgraph *Train = NULL, *Evaluate = NULL, *Merge = NULL, *Test = NULL, *newTrain = NULL, *newTest = NULL;

    Train = ReadSubgraph(argv[1]);
    Evaluate = ReadSubgraph(argv[2]);
    Test = ReadSubgraph(argv[3]);
    s = ReadSearchSpaceFromFile(argv[4], _WCA_);
    optTransfer = S2TransferFunction;

    for (i = 0; i < Train->nfeats; i++)
    {
        s->LB[i] = -20;
        s->LB[i] = 20;
    }

    fprintf(stderr, "\nInitializing search space ... ");
    InitializeSearchSpace(s, _WCA_);
    fprintf(stderr, "\nOk\n");

    fflush(stderr);
    fprintf(stderr, "\nRunning WCA ... ");
    gettimeofday(&tic, NULL);
    runWCA(s, FeatureSelectionOPF, Train, Evaluate, optTransfer);
    gettimeofday(&toc, NULL);
    fflush(stderr);
    fprintf(stderr, "\nOK\n");

    time_opt = ((toc.tv_sec - tic.tv_sec) * 1000.0 + (toc.tv_usec - tic.tv_usec) * 0.001) / 1000.0;
    fprintf(stdout, "\nOptimization time: %f seconds\n", time_opt);
    fflush(stderr);

    Merge = opf_MergeSubgraph(Train, Evaluate);

    fflush(stderr);
    fprintf(stderr, "\nWriting new training and testing sets ...\n");
    newTrain = CreateSubgraphFromSelectedFeatures(Merge, s->g);
    newTest = CreateSubgraphFromSelectedFeatures(Test, s->g);
    fprintf(stderr, "\nTraining set\n");
    WriteSubgraph(newTrain, "training.wca.dat");
    fprintf(stderr, "\n\nTesting set\n");
    WriteSubgraph(newTest, "testing.wca.dat");
    fflush(stderr);
    fprintf(stderr, "\nOK\n");

    opf_OPFTraining(newTrain);
    gettimeofday(&tic, NULL);
    opf_OPFClassifying(newTrain, newTest);
    gettimeofday(&toc, NULL);
    classification_error = opf_Accuracy(newTest);

    time_classify = ((toc.tv_sec - tic.tv_sec) * 1000.0 + (toc.tv_usec - tic.tv_usec) * 0.001) / 1000.0;
    fprintf(stdout, "\nClassification time: %f seconds\n", time_classify);
    fflush(stderr);

    f = fopen("best_feats.txt", "a");
    fprintf(f, "%d %d", newTrain->nfeats, (int)s->g[0]);
    for (i = 1; i < Train->nfeats; i++)
    {
        fprintf(f, " %d", (int)s->g[i]);
    }
    fprintf(f, "\n");
    fclose(f);

    fprintf(stderr, "\nAccuracy: %.2lf%%\n", 100 * classification_error);
    f = fopen("final_accuracy.txt", "a");
    fprintf(f, "%lf\n", classification_error);
    fclose(f);

    fflush(stderr);
    fprintf(stderr, "\nDeallocating memory ...");
    DestroySubgraph(&Train);
    DestroySubgraph(&Evaluate);
    DestroySubgraph(&Merge);
    DestroySubgraph(&Test);
    DestroySubgraph(&newTrain);
    DestroySubgraph(&newTest);
    fflush(stderr);
    fprintf(stderr, "\nOK\n");

    f = fopen("optimization.time", "a");
    fprintf(f, "%f %f\n", time_opt, time_classify);
    fclose(f);

    DestroySearchSpace(&s, _WCA_);

    return 0;
}
Example #13
0
int main(int argc, char **argv)
{
	fflush(stdout);
	fprintf(stdout, "\nProgram that executes the training phase of the OPF classifier with knn adjacency\n");
	fprintf(stdout, "\nIf you have any problem, please contact: ");
	fprintf(stdout, "\n- [email protected]");
	fprintf(stdout, "\n- [email protected]\n");
	fprintf(stdout, "\nLibOPF version 2.0 (2009)\n");
	fprintf(stdout, "\n");
	fflush(stdout);

	if ((argc != 5) && (argc != 4))
	{
		fprintf(stderr, "\nusage opf_train <P1> <P2>");
		fprintf(stderr, "\nP1: training set in the OPF file format");
		fprintf(stderr, "\nP2: evaluating set in the OPF file format (used to learn k)");
		fprintf(stderr, "\nP3: kmax");
		fprintf(stderr, "\nP4: precomputed distance file (leave it in blank if you are not using this resource)\n");
		exit(-1);
	}

	int n, i, kmax = atoi(argv[3]);
	char fileName[256];
	FILE *f = NULL;
	timer tic, toc;
	double time;

	if (argc == 5)
		opf_PrecomputedDistance = 1;

	fprintf(stdout, "\nReading data file ...");
	fflush(stdout);
	Subgraph *Train = ReadSubgraph(argv[1]);
	Subgraph *Eval = ReadSubgraph(argv[2]);
	fprintf(stdout, " OK");
	fflush(stdout);

	if (opf_PrecomputedDistance)
		opf_DistanceValue = opf_ReadDistances(argv[4], &n);

	fprintf(stdout, "\nTraining OPF classifier ...");
	fflush(stdout);
	gettimeofday(&tic, NULL);
	opf_OPFknnTraining(Train, Eval, kmax);
	gettimeofday(&toc, NULL);
	fprintf(stdout, " OK");
	fflush(stdout);

	fprintf(stdout, "\nWriting classifier's model file ...");
	fflush(stdout);
	opf_WriteModelFile(Train, "classifier.opf");
	fprintf(stdout, " OK");
	fflush(stdout);

	fprintf(stdout, "\nWriting output file ...");
	fflush(stdout);
	sprintf(fileName, "%s.out", argv[1]);
	f = fopen(fileName, "w");
	for (i = 0; i < Train->nnodes; i++)
		fprintf(f, "%d\n", Train->node[i].label);
	fclose(f);
	fprintf(stdout, " OK");
	fflush(stdout);

	fprintf(stdout, "\nDeallocating memory ...");
	fflush(stdout);
	DestroySubgraph(&Train);
	DestroySubgraph(&Eval);
	if (opf_PrecomputedDistance)
	{
		for (i = 0; i < n; i++)
			free(opf_DistanceValue[i]);
		free(opf_DistanceValue);
	}
	fprintf(stdout, " OK\n");

	time = ((toc.tv_sec - tic.tv_sec) * 1000.0 + (toc.tv_usec - tic.tv_usec) * 0.001) / 1000.0;
	fprintf(stdout, "\nTraining time: %f seconds\n", time);
	fflush(stdout);

	sprintf(fileName, "%s.time", argv[1]);
	f = fopen(fileName, "a");
	fprintf(f, "%f\n", time);
	fclose(f);

	return 0;
}
Example #14
0
int main(int argc, char **argv)
{

    if (argc != 4)
    {
        fprintf(stderr, "\nusage CombinatorialOPF <training set> <testing set> <input combinatorial matrix>\n");
        exit(-1);
    }

    int i, j, acc_index, m, n;
    double time_comb, classification_accuracy, overall_accuracy = 0, **r;
    timer tic, toc;
    FILE *f = NULL;
    Subgraph *Train = NULL, *Test = NULL, *newTrain = NULL, *newTest = NULL;

    Train = ReadSubgraph(argv[1]);
    Test = ReadSubgraph(argv[2]);

    fprintf(stderr, "\nInitializing combinatorial OPF ... ");

    f = fopen(argv[3], "r");
    fscanf(f, "%d\n", &n);
    m = pow(2, n);
    r = (double **)calloc(m, sizeof(double *));
    for (i = 0; i < m; i++)
        r[i] = (double *)calloc(n, sizeof(double));

    for (i = 0; i < m; i++)
    {
        for (j = 0; j < n; j++)
        {
            fscanf(f, "%lf ", &r[i][j]);
        }
        fscanf(f, "\n");
    }
    fclose(f);
    fprintf(stderr, "\nOk\n");

    fflush(stderr);
    fprintf(stderr, "\nRunning OPF ... ");

    f = fopen("final_accuracy.txt", "a");
    gettimeofday(&tic, NULL);
    for (i = 0; i < m; i++)
    {
        newTrain = CreateSubgraphFromSelectedFeatures(Train, r[i]);
        newTest = CreateSubgraphFromSelectedFeatures(Test, r[i]);
        opf_OPFTraining(newTrain);
        opf_OPFClassifying(newTrain, newTest);
        classification_accuracy = opf_Accuracy(newTest);
        fprintf(f, "%lf\n", classification_accuracy);
        if (classification_accuracy > overall_accuracy)
        {
            overall_accuracy = classification_accuracy;
            acc_index = i;
        }
    }
    gettimeofday(&toc, NULL);
    fclose(f);
    fflush(stderr);
    fprintf(stderr, "\nOK\n");

    time_comb = ((toc.tv_sec - tic.tv_sec) * 1000.0 + (toc.tv_usec - tic.tv_usec) * 0.001) / 1000.0;
    fprintf(stdout, "\nCombination time: %f seconds\n", time_comb);
    fflush(stderr);

    f = fopen("best_feats.txt", "a");
    fprintf(f, "%d ", n);
    for (i = 0; i < n; i++)
    {
        fprintf(f, "%d ", (int)r[acc_index][i]);
    }
    fprintf(f, "\n");
    fclose(f);

    fflush(stderr);
    fprintf(stderr, "\nDeallocating memory ...");
    DestroySubgraph(&Train);
    DestroySubgraph(&Test);
    DestroySubgraph(&newTrain);
    DestroySubgraph(&newTest);
    fflush(stderr);
    fprintf(stderr, "\nOK\n");

    f = fopen("combination.time", "a");
    fprintf(f, "%f\n", time_comb);
    fclose(f);

    return 0;
}
int main(int argc, char **argv){
	fflush(stdout);
	fprintf(stdout, "\nProgram that executes the training and classification phase of the OPF classifier\n");
	fprintf(stdout, "\nIf you have any problem, please contact: ");
	fprintf(stdout, "\n- [email protected]");
	fprintf(stdout, "\n- [email protected]\n");
	fprintf(stdout, "\nLibOPF version 2.0 (2009)\n");
	fprintf(stdout, "\n"); fflush(stdout);

	if((argc != 3) && (argc != 2)){
		fprintf(stderr, "\nusage opf_train_and_classify <P1> <P2> <P3>");
		fprintf(stderr, "\nP1: training set in the OPF file format");
		fprintf(stderr, "\nP2: test set in the OPF file format");
		fprintf(stderr, "\nP3: precomputed distance file (leave it in blank if you are not using this resource)\n");
		exit(-1);
	}

	int n, i;
	char fileName[256];
	FILE *f = NULL;
	timer tic, toc,ticC,tocC;
	float time, timeC;

	if(argc == 4) opf_PrecomputedDistance = 1;

	fprintf(stdout, "\nReading data file ..."); fflush(stdout);
	Subgraph *g = ReadSubgraph(argv[1]);
	Subgraph *gTest = ReadSubgraph(argv[1]);
	fprintf(stdout, " OK"); fflush(stdout);

	if(opf_PrecomputedDistance)
		opf_DistanceValue = opf_ReadDistances(argv[3], &n);

	fprintf(stdout, "\nTraining OPF classifier ..."); fflush(stdout);
	gettimeofday(&tic,NULL); opf_OPFTraining(g); gettimeofday(&toc,NULL);
	fprintf(stdout, " OK"); fflush(stdout);

	fprintf(stdout, "\nClassifying test set ..."); fflush(stdout);
	gettimeofday(&ticC,NULL);
	opf_OPFClassifying(g, gTest); gettimeofday(&tocC,NULL);
	fprintf(stdout, " OK"); fflush(stdout);

	fprintf(stdout, "\nWriting classifier's model file ..."); fflush(stdout);
	opf_WriteModelFile(g, "classifier.opf");
	fprintf(stdout, " OK"); fflush(stdout);

	fprintf(stdout, "\nWriting output file ..."); fflush(stdout);
	sprintf(fileName,"%s.out",argv[1]);
	f = fopen(fileName,"w");
	for (i = 0; i < g->nnodes; i++)
		fprintf(f,"%d\n",g->node[i].label);
	fclose(f);
	fprintf(stdout, " OK"); fflush(stdout);

	fprintf(stdout, "\nDeallocating memory ..."); fflush(stdout);
	DestroySubgraph(&g); DestroySubgraph(&gTest);
	if(opf_PrecomputedDistance){
		for (i = 0; i < n; i++)
			free(opf_DistanceValue[i]);
		free(opf_DistanceValue);
	}
	fprintf(stdout, " OK\n");

	time = ((toc.tv_sec-tic.tv_sec)*1000.0 + (toc.tv_usec-tic.tv_usec)*0.001)/1000.0;
	fprintf(stdout, "\nTraining time: %f seconds\n", time); fflush(stdout);
	timeC = ((tocC.tv_sec-ticC.tv_sec)*1000.0 + (tocC.tv_usec-ticC.tv_usec)*0.001)/1000.0;
	fprintf(stdout, "\nTesting time: %f seconds\n", time); fflush(stdout);

	sprintf(fileName,"%s.time",argv[1]);
	f = fopen(fileName,"a");
	fprintf(f,"%f,%f\n",time,timeC);
	fclose(f);

	return 0;
}