Example #1
0
unsigned int EmulateCPDO(const unsigned int opcode)
{
    FPA11 *fpa11 = GET_FPA11();
    FPREG *rFd;
    unsigned int nType, nDest, nRc;
    struct roundingData roundData;

    /* Get the destination size.  If not valid let Linux perform
       an invalid instruction trap. */
    nDest = getDestinationSize(opcode);
    if (typeNone == nDest)
        return 0;

    roundData.mode = SetRoundingMode(opcode);
    roundData.precision = SetRoundingPrecision(opcode);
    roundData.exception = 0;

    /* Compare the size of the operands in Fn and Fm.
       Choose the largest size and perform operations in that size,
       in order to make use of all the precision of the operands.
       If Fm is a constant, we just grab a constant of a size
       matching the size of the operand in Fn. */
    if (MONADIC_INSTRUCTION(opcode))
        nType = nDest;
    else
        nType = fpa11->fType[getFn(opcode)];

    if (!CONSTANT_FM(opcode)) {
        register unsigned int Fm = getFm(opcode);
        if (nType < fpa11->fType[Fm]) {
            nType = fpa11->fType[Fm];
        }
    }

    rFd = &fpa11->fpreg[getFd(opcode)];

    switch (nType) {
    case typeSingle:
        nRc = SingleCPDO(&roundData, opcode, rFd);
        break;
    case typeDouble:
        nRc = DoubleCPDO(&roundData, opcode, rFd);
        break;
#ifdef CONFIG_FPE_NWFPE_XP
    case typeExtended:
        nRc = ExtendedCPDO(&roundData, opcode, rFd);
        break;
#endif
    default:
        nRc = 0;
    }

    /* The CPDO functions used to always set the destination type
       to be the same as their working size. */

    if (nRc != 0) {
        /* If the operation succeeded, check to see if the result in the
           destination register is the correct size.  If not force it
           to be. */

        fpa11->fType[getFd(opcode)] = nDest;

#ifdef CONFIG_FPE_NWFPE_XP
        if (nDest != nType) {
            switch (nDest) {
            case typeSingle:
                {
                    if (typeDouble == nType)
                        rFd->fSingle = float64_to_float32(&roundData, rFd->fDouble);
                    else
                        rFd->fSingle = floatx80_to_float32(&roundData, rFd->fExtended);
                }
                break;

            case typeDouble:
                {
                    if (typeSingle == nType)
                        rFd->fDouble = float32_to_float64(rFd->fSingle);
                    else
                        rFd->fDouble = floatx80_to_float64(&roundData, rFd->fExtended);
                }
                break;

            case typeExtended:
                {
                    if (typeSingle == nType)
                        rFd->fExtended = float32_to_floatx80(rFd->fSingle);
                    else
                        rFd->fExtended = float64_to_floatx80(rFd->fDouble);
                }
                break;
            }
        }
#else
        if (nDest != nType) {
            if (nDest == typeSingle)
                rFd->fSingle = float64_to_float32(&roundData, rFd->fDouble);
            else
                rFd->fDouble = float32_to_float64(rFd->fSingle);
        }
#endif
    }

    if (roundData.exception)
        float_raise(roundData.exception);

    return nRc;
}
Example #2
0
unsigned int EmulateCPDO(const unsigned int opcode)
{
   FPA11 *fpa11 = GET_FPA11();
   unsigned int Fd, nType, nDest, nRc = 1;

   //printk("EmulateCPDO(0x%08x)\n",opcode);

   /* Get the destination size.  If not valid let Linux perform
      an invalid instruction trap. */
   nDest = getDestinationSize(opcode);
   if (typeNone == nDest) return 0;

   SetRoundingMode(opcode);

   /* Compare the size of the operands in Fn and Fm.
      Choose the largest size and perform operations in that size,
      in order to make use of all the precision of the operands.
      If Fm is a constant, we just grab a constant of a size
      matching the size of the operand in Fn. */
   if (MONADIC_INSTRUCTION(opcode))
     nType = nDest;
   else
     nType = fpa11->fType[getFn(opcode)];

   if (!CONSTANT_FM(opcode))
   {
     register unsigned int Fm = getFm(opcode);
     if (nType < fpa11->fType[Fm])
     {
        nType = fpa11->fType[Fm];
     }
   }

   switch (nType)
   {
      case typeSingle   : nRc = SingleCPDO(opcode);   break;
      case typeDouble   : nRc = DoubleCPDO(opcode);   break;
      case typeExtended : nRc = ExtendedCPDO(opcode); break;
      default           : nRc = 0;
   }

   /* If the operation succeeded, check to see if the result in the
      destination register is the correct size.  If not force it
      to be. */
   Fd = getFd(opcode);
   nType = fpa11->fType[Fd];
   if ((0 != nRc) && (nDest != nType))
   {
     switch (nDest)
     {
       case typeSingle:
       {
         if (typeDouble == nType)
           fpa11->fpreg[Fd].fSingle =
              float64_to_float32(fpa11->fpreg[Fd].fDouble, &fpa11->fp_status);
         else
           fpa11->fpreg[Fd].fSingle =
              floatx80_to_float32(fpa11->fpreg[Fd].fExtended, &fpa11->fp_status);
       }
       break;

       case typeDouble:
       {
         if (typeSingle == nType)
           fpa11->fpreg[Fd].fDouble =
              float32_to_float64(fpa11->fpreg[Fd].fSingle, &fpa11->fp_status);
         else
           fpa11->fpreg[Fd].fDouble =
              floatx80_to_float64(fpa11->fpreg[Fd].fExtended, &fpa11->fp_status);
       }
       break;

       case typeExtended:
       {
         if (typeSingle == nType)
           fpa11->fpreg[Fd].fExtended =
              float32_to_floatx80(fpa11->fpreg[Fd].fSingle, &fpa11->fp_status);
         else
           fpa11->fpreg[Fd].fExtended =
              float64_to_floatx80(fpa11->fpreg[Fd].fDouble, &fpa11->fp_status);
       }
       break;
     }

     fpa11->fType[Fd] = nDest;
   }

   return nRc;
}