int read_sdo(ec_sdo_request_t *req)
{
	int sdo_read_value;
    switch (ecrt_sdo_request_state(req)) {
        case EC_REQUEST_UNUSED: // request was not used yet
            ecrt_sdo_request_read(req); // trigger first read
            break;
        case EC_REQUEST_BUSY:
            //fprintf(stderr, "SDO still busy...\n");
            break;
        case EC_REQUEST_SUCCESS:
        	sdo_read_value = EC_READ_S32(ecrt_sdo_request_data(req));
            //logmsg(1, "SDO value read: 0x%X\n", sdo_read_value);
            ecrt_sdo_request_write(req); // trigger next write
            break;
        case EC_REQUEST_ERROR:
            //fprintf(stderr, "Failed to read SDO!\n");
            ecrt_sdo_request_read(req); // retry reading
            break;
    }
    return sdo_read_value;
}
Example #2
0
void cyclic_task()
{
    struct timespec wakeupTime, time;
    // get current time
    clock_gettime(CLOCK_TO_USE, &wakeupTime);

	while(1) 
	{

		if(deactive==1)
		{
			break;
		}

		wakeupTime = timespec_add(wakeupTime, cycletime);
     		clock_nanosleep(CLOCK_TO_USE, TIMER_ABSTIME, &wakeupTime, NULL);

		
		// writter_receive(master);
 	   	ecrt_master_receive(master);
   		ecrt_domain_process(domain_r);
   		ecrt_domain_process(domain_w);

                temp[0]=EC_READ_U16(domain_w_pd + status_word);
                temp[1]=EC_READ_S32(domain_w_pd + mode_display);

                if (counter) 
		{
                        counter--;
                } 	
		else 
		{ // do this at 1 Hz
                        counter = FREQUENCY;
			check_master_state();
                        blink = !blink;
                }


		// write process data

                if(servo_flag==1)
		{
			//servo off
                	EC_WRITE_U16(domain_r_pd+ctrl_word, 0x0006 );
                }

                else if( (temp[0]&0x004f) == 0x0040  )
		{
                	EC_WRITE_U16(domain_r_pd+ctrl_word, 0x0006 );
                }

                else if( (temp[0]&0x006f) == 0x0021)
		{
                	EC_WRITE_U16(domain_r_pd+ctrl_word, 0x0007 );
                }
                
		else if( (temp[0]&0x006f) == 0x0023)
		{
                	EC_WRITE_U16(domain_r_pd+ctrl_word, 0x000f );
                	EC_WRITE_S32(domain_r_pd+tar_pos,0);
                	EC_WRITE_S32(domain_r_pd+tar_vel, 0xffff);
                	EC_WRITE_S32(domain_r_pd+max_torq, 0xf00);

                }
		
		//operation enabled
                else if( (temp[0]&0x006f) == 0x0027)
		{
                        EC_WRITE_S32(domain_r_pd+tar_pos, (move_value+=2000) );
                        EC_WRITE_U16(domain_r_pd+ctrl_word, 0x001f);

                }

		clock_gettime(CLOCK_TO_USE, &time);
		ecrt_master_application_time(master, TIMESPEC2NS(time));

		if (sync_ref_counter) 
		{
			sync_ref_counter--;
		} 
		else 
		{
			sync_ref_counter = 1; // sync every cycle
			ecrt_master_sync_reference_clock(master);
		}

		ecrt_master_sync_slave_clocks(master);

		
		
		// send process data
		ecrt_domain_queue(domain_r);
		ecrt_domain_queue(domain_w);
		
		ecrt_master_send(master);

		

	}
}
int lcec_stmds5k_init(int comp_id, struct lcec_slave *slave, ec_pdo_entry_reg_t *pdo_entry_regs) {
  lcec_master_t *master = slave->master;
  lcec_stmds5k_data_t *hal_data;
  int err;

  // initialize callbacks
  slave->proc_read = lcec_stmds5k_read;
  slave->proc_write = lcec_stmds5k_write;

  // alloc hal memory
  if ((hal_data = hal_malloc(sizeof(lcec_stmds5k_data_t))) == NULL) {
    rtapi_print_msg(RTAPI_MSG_ERR, LCEC_MSG_PFX "hal_malloc() for slave %s.%s failed\n", master->name, slave->name);
    return -EIO;
  }
  memset(hal_data, 0, sizeof(lcec_stmds5k_data_t));
  slave->hal_data = hal_data;

  // read sdos
  // B18 : torque reference
  if ((hal_data->sdo_torque_reference = lcec_read_sdo(slave, 0x2212, 0x00, 4)) == NULL) {
    return -EIO;
  }
  hal_data->torque_reference = (double)EC_READ_S32(ecrt_sdo_request_data(hal_data->sdo_torque_reference)) * STMDS5K_TORQUE_REF_DIV;
  if (hal_data->torque_reference > 1e-20 || hal_data->torque_reference < -1e-20) {
    hal_data->torque_reference_rcpt = 1.0 / hal_data->torque_reference;
  } else {
    hal_data->torque_reference_rcpt = 0.0;
  }
  // C01 : max rpm
  if ((hal_data->sdo_speed_max_rpm = lcec_read_sdo(slave, 0x2401, 0x00, 4)) == NULL) {
    return -EIO;
  }
  hal_data->speed_max_rpm = (double)EC_READ_S32(ecrt_sdo_request_data(hal_data->sdo_speed_max_rpm));
  // D02 : setpoint max rpm
  if ((hal_data->sdo_speed_max_rpm_sp = lcec_read_sdo(slave, 0x2602, 0x00, 2)) == NULL) {
    return -EIO;
  }
  hal_data->speed_max_rpm_sp = (double)EC_READ_S16(ecrt_sdo_request_data(hal_data->sdo_speed_max_rpm_sp));
  if (hal_data->speed_max_rpm_sp > 1e-20 || hal_data->speed_max_rpm_sp < -1e-20) {
    hal_data->speed_max_rpm_sp_rcpt = 1.0 / hal_data->speed_max_rpm_sp;
  } else {
    hal_data->speed_max_rpm_sp_rcpt = 0.0;
  }

  // initialize POD entries
  // E200 : device state byte
  LCEC_PDO_INIT(pdo_entry_regs, slave->index, slave->vid, slave->pid, 0x28c8, 0x00, &hal_data->dev_state_pdo_os, NULL);
  // E100 : speed motor (x 0.1% relative to C01)
  LCEC_PDO_INIT(pdo_entry_regs, slave->index, slave->vid, slave->pid, 0x2864, 0x00, &hal_data->speed_mot_pdo_os, NULL);
  // E02 : torque motor filterd (x 0,1 Nm)
  LCEC_PDO_INIT(pdo_entry_regs, slave->index, slave->vid, slave->pid, 0x2802, 0x00, &hal_data->torque_mot_pdo_os, NULL);
  // D200 : speed state word
  LCEC_PDO_INIT(pdo_entry_regs, slave->index, slave->vid, slave->pid, 0x26c8, 0x00, &hal_data->speed_state_pdo_os, NULL);
  // E09 : rotor position
  LCEC_PDO_INIT(pdo_entry_regs, slave->index, slave->vid, slave->pid, 0x2809, 0x00, &hal_data->pos_mot_pdo_os, NULL);
  // A180 : Device Control Byte
  LCEC_PDO_INIT(pdo_entry_regs, slave->index, slave->vid, slave->pid, 0x20b4, 0x00, &hal_data->dev_ctrl_pdo_os, NULL);
  // D230 : speed setpoint (x 0.1 % relative to D02, -200.0% .. 200.0%) 
  LCEC_PDO_INIT(pdo_entry_regs, slave->index, slave->vid, slave->pid, 0x26e6, 0x00, &hal_data->speed_sp_rel_pdo_os, NULL);
  // C230 : maximum torque (x 1%, 0% .. 200%)
  LCEC_PDO_INIT(pdo_entry_regs, slave->index, slave->vid, slave->pid, 0x24e6, 0x00, &hal_data->torque_max_pdo_os, NULL);

  // export pins
  if ((err = hal_pin_float_newf(HAL_IN, &(hal_data->vel_cmd), comp_id, "%s.%s.%s.srv-vel-cmd", LCEC_MODULE_NAME, master->name, slave->name)) != 0) {
    rtapi_print_msg(RTAPI_MSG_ERR, LCEC_MSG_PFX "exporting pin %s.%s.%s.srv-vel-cmd failed\n", LCEC_MODULE_NAME, master->name, slave->name);
    return err;
  }
  if ((err = hal_pin_float_newf(HAL_OUT, &(hal_data->vel_fb), comp_id, "%s.%s.%s.srv-vel-fb", LCEC_MODULE_NAME, master->name, slave->name)) != 0) {
    rtapi_print_msg(RTAPI_MSG_ERR, LCEC_MSG_PFX "exporting pin %s.%s.%s.srv-vel-fb failed\n", LCEC_MODULE_NAME, master->name, slave->name);
    return err;
  }
  if ((err = hal_pin_float_newf(HAL_OUT, &(hal_data->vel_fb_rpm), comp_id, "%s.%s.%s.srv-vel-fb-rpm", LCEC_MODULE_NAME, master->name, slave->name)) != 0) {
    rtapi_print_msg(RTAPI_MSG_ERR, LCEC_MSG_PFX "exporting pin %s.%s.%s.srv-vel-fb-rpm failed\n", LCEC_MODULE_NAME, master->name, slave->name);
    return err;
  }
  if ((err = hal_pin_float_newf(HAL_OUT, &(hal_data->vel_rpm), comp_id, "%s.%s.%s.srv-vel-rpm", LCEC_MODULE_NAME, master->name, slave->name)) != 0) {
    rtapi_print_msg(RTAPI_MSG_ERR, LCEC_MSG_PFX "exporting pin %s.%s.%s.srv-vel-rpm failed\n", LCEC_MODULE_NAME, master->name, slave->name);
    return err;
  }
  if ((err = hal_pin_s32_newf(HAL_OUT, &(hal_data->enc_raw), comp_id, "%s.%s.%s.srv-enc-raw", LCEC_MODULE_NAME, master->name, slave->name)) != 0) {
    rtapi_print_msg(RTAPI_MSG_ERR, LCEC_MSG_PFX "exporting pin %s.%s.%s.srv-enc-raw failed\n", LCEC_MODULE_NAME, master->name, slave->name);
    return err;
  }
  if ((err = hal_pin_u32_newf(HAL_OUT, &(hal_data->pos_raw_hi), comp_id, "%s.%s.%s.srv-pos-raw-hi", LCEC_MODULE_NAME, master->name, slave->name)) != 0) {
    rtapi_print_msg(RTAPI_MSG_ERR, LCEC_MSG_PFX "exporting pin %s.%s.%s.srv-pos-raw-hi failed\n", LCEC_MODULE_NAME, master->name, slave->name);
    return err;
  }
  if ((err = hal_pin_u32_newf(HAL_OUT, &(hal_data->pos_raw_lo), comp_id, "%s.%s.%s.srv-pos-raw-lo", LCEC_MODULE_NAME, master->name, slave->name)) != 0) {
    rtapi_print_msg(RTAPI_MSG_ERR, LCEC_MSG_PFX "exporting pin %s.%s.%s.srv-pos-raw-lo failed\n", LCEC_MODULE_NAME, master->name, slave->name);
    return err;
  }
  if ((err = hal_pin_float_newf(HAL_OUT, &(hal_data->pos_fb), comp_id, "%s.%s.%s.srv-pos-fb", LCEC_MODULE_NAME, master->name, slave->name)) != 0) {
    rtapi_print_msg(RTAPI_MSG_ERR, LCEC_MSG_PFX "exporting pin %s.%s.%s.srv-pos-fb failed\n", LCEC_MODULE_NAME, master->name, slave->name);
    return err;
  }
  if ((err = hal_pin_float_newf(HAL_OUT, &(hal_data->torque_fb), comp_id, "%s.%s.%s.srv-torque-fb", LCEC_MODULE_NAME, master->name, slave->name)) != 0) {
    rtapi_print_msg(RTAPI_MSG_ERR, LCEC_MSG_PFX "exporting pin %s.%s.%s.srv-torque-fb failed\n", LCEC_MODULE_NAME, master->name, slave->name);
    return err;
  }
  if ((err = hal_pin_float_newf(HAL_OUT, &(hal_data->torque_fb_abs), comp_id, "%s.%s.%s.srv-torque-fb-abs", LCEC_MODULE_NAME, master->name, slave->name)) != 0) {
    rtapi_print_msg(RTAPI_MSG_ERR, LCEC_MSG_PFX "exporting pin %s.%s.%s.srv-torque-fb-abs failed\n", LCEC_MODULE_NAME, master->name, slave->name);
    return err;
  }
  if ((err = hal_pin_float_newf(HAL_OUT, &(hal_data->torque_fb_pct), comp_id, "%s.%s.%s.srv-torque-fb-pct", LCEC_MODULE_NAME, master->name, slave->name)) != 0) {
    rtapi_print_msg(RTAPI_MSG_ERR, LCEC_MSG_PFX "exporting pin %s.%s.%s.srv-torque-fb-pct failed\n", LCEC_MODULE_NAME, master->name, slave->name);
    return err;
  }
  if ((err = hal_pin_float_newf(HAL_IN, &(hal_data->torque_lim), comp_id, "%s.%s.%s.srv-torque-lim", LCEC_MODULE_NAME, master->name, slave->name)) != 0) {
    rtapi_print_msg(RTAPI_MSG_ERR, LCEC_MSG_PFX "exporting pin %s.%s.%s.srv-torque-lim failed\n", LCEC_MODULE_NAME, master->name, slave->name);
    return err;
  }
  if ((err = hal_pin_bit_newf(HAL_OUT, &(hal_data->stopped), comp_id, "%s.%s.%s.srv-stopped", LCEC_MODULE_NAME, master->name, slave->name)) != 0) {
    rtapi_print_msg(RTAPI_MSG_ERR, LCEC_MSG_PFX "exporting pin %s.%s.%s.srv-stopped failed\n", LCEC_MODULE_NAME, master->name, slave->name);
    return err;
  }
  if ((err = hal_pin_bit_newf(HAL_OUT, &(hal_data->at_speed), comp_id, "%s.%s.%s.srv-at-speed", LCEC_MODULE_NAME, master->name, slave->name)) != 0) {
    rtapi_print_msg(RTAPI_MSG_ERR, LCEC_MSG_PFX "exporting pin %s.%s.%s.srv-at-speed failed\n", LCEC_MODULE_NAME, master->name, slave->name);
    return err;
  }
  if ((err = hal_pin_bit_newf(HAL_OUT, &(hal_data->overload), comp_id, "%s.%s.%s.srv-overload", LCEC_MODULE_NAME, master->name, slave->name)) != 0) {
    rtapi_print_msg(RTAPI_MSG_ERR, LCEC_MSG_PFX "exporting pin %s.%s.%s.srv-overload failed\n", LCEC_MODULE_NAME, master->name, slave->name);
    return err;
  }
  if ((err = hal_pin_bit_newf(HAL_OUT, &(hal_data->ready), comp_id, "%s.%s.%s.srv-ready", LCEC_MODULE_NAME, master->name, slave->name)) != 0) {
    rtapi_print_msg(RTAPI_MSG_ERR, LCEC_MSG_PFX "exporting pin %s.%s.%s.srv-ready failed\n", LCEC_MODULE_NAME, master->name, slave->name);
    return err;
  }
  if ((err = hal_pin_bit_newf(HAL_OUT, &(hal_data->error), comp_id, "%s.%s.%s.srv-error", LCEC_MODULE_NAME, master->name, slave->name)) != 0) {
    rtapi_print_msg(RTAPI_MSG_ERR, LCEC_MSG_PFX "exporting pin %s.%s.%s.srv-error failed\n", LCEC_MODULE_NAME, master->name, slave->name);
    return err;
  }
  if ((err = hal_pin_bit_newf(HAL_OUT, &(hal_data->toggle), comp_id, "%s.%s.%s.srv-toggle", LCEC_MODULE_NAME, master->name, slave->name)) != 0) {
    rtapi_print_msg(RTAPI_MSG_ERR, LCEC_MSG_PFX "exporting pin %s.%s.%s.srv-toggle failed\n", LCEC_MODULE_NAME, master->name, slave->name);
    return err;
  }
  if ((err = hal_pin_bit_newf(HAL_OUT, &(hal_data->loc_ena), comp_id, "%s.%s.%s.srv-loc-ena", LCEC_MODULE_NAME, master->name, slave->name)) != 0) {
    rtapi_print_msg(RTAPI_MSG_ERR, LCEC_MSG_PFX "exporting pin %s.%s.%s.srv-loc-ena failed\n", LCEC_MODULE_NAME, master->name, slave->name);
    return err;
  }
  if ((err = hal_pin_bit_newf(HAL_IN, &(hal_data->enable), comp_id, "%s.%s.%s.srv-enable", LCEC_MODULE_NAME, master->name, slave->name)) != 0) {
    rtapi_print_msg(RTAPI_MSG_ERR, LCEC_MSG_PFX "exporting pin %s.%s.%s.srv-enable failed\n", LCEC_MODULE_NAME, master->name, slave->name);
    return err;
  }
  if ((err = hal_pin_bit_newf(HAL_IN, &(hal_data->err_reset), comp_id, "%s.%s.%s.srv-err-reset", LCEC_MODULE_NAME, master->name, slave->name)) != 0) {
    rtapi_print_msg(RTAPI_MSG_ERR, LCEC_MSG_PFX "exporting pin %s.%s.%s.srv-err-reset failed\n", LCEC_MODULE_NAME, master->name, slave->name);
    return err;
  }
  if ((err = hal_pin_bit_newf(HAL_IN, &(hal_data->fast_ramp), comp_id, "%s.%s.%s.srv-fast-ramp", LCEC_MODULE_NAME, master->name, slave->name)) != 0) {
    rtapi_print_msg(RTAPI_MSG_ERR, LCEC_MSG_PFX "exporting pin %s.%s.%s.srv-fast-ramp failed\n", LCEC_MODULE_NAME, master->name, slave->name);
    return err;
  }
  if ((err = hal_pin_bit_newf(HAL_IN, &(hal_data->brake), comp_id, "%s.%s.%s.srv-brake", LCEC_MODULE_NAME, master->name, slave->name)) != 0) {
    rtapi_print_msg(RTAPI_MSG_ERR, LCEC_MSG_PFX "exporting pin %s.%s.%s.srv-brake failed\n", LCEC_MODULE_NAME, master->name, slave->name);
    return err;
  }
  if ((err = hal_pin_bit_newf(HAL_IO, &(hal_data->index_ena), comp_id, "%s.%s.%s.srv-index-ena", LCEC_MODULE_NAME, master->name, slave->name)) != 0) {
    rtapi_print_msg(RTAPI_MSG_ERR, LCEC_MSG_PFX "exporting pin %s.%s.%s.srv-index-ena failed\n", LCEC_MODULE_NAME, master->name, slave->name);
    return err;
  }
  if ((err = hal_pin_bit_newf(HAL_IN, &(hal_data->pos_reset), comp_id, "%s.%s.%s.srv-pos-reset", LCEC_MODULE_NAME, master->name, slave->name)) != 0) {
    rtapi_print_msg(RTAPI_MSG_ERR, LCEC_MSG_PFX "exporting pin %s.%s.%s.srv-pos-reset failed\n", LCEC_MODULE_NAME, master->name, slave->name);
    return err;
  }
  if ((err = hal_pin_bit_newf(HAL_OUT, &(hal_data->on_home_neg), comp_id, "%s.%s.%s.srv-on-home-neg", LCEC_MODULE_NAME, master->name, slave->name)) != 0) {
    rtapi_print_msg(RTAPI_MSG_ERR, LCEC_MSG_PFX "exporting pin %s.%s.%s.srv-on-home-neg failed\n", LCEC_MODULE_NAME, master->name, slave->name);
    return err;
  }
  if ((err = hal_pin_bit_newf(HAL_OUT, &(hal_data->on_home_pos), comp_id, "%s.%s.%s.srv-on-home-pos", LCEC_MODULE_NAME, master->name, slave->name)) != 0) {
    rtapi_print_msg(RTAPI_MSG_ERR, LCEC_MSG_PFX "exporting pin %s.%s.%s.srv-on-home-pos failed\n", LCEC_MODULE_NAME, master->name, slave->name);
    return err;
  }

  // export parameters
  if ((err = hal_param_float_newf(HAL_RW, &(hal_data->pos_scale), comp_id, "%s.%s.%s.srv-pos-scale", LCEC_MODULE_NAME, master->name, slave->name)) != 0) {
    rtapi_print_msg(RTAPI_MSG_ERR, LCEC_MSG_PFX "exporting pin %s.%s.%s.srv-pos-scale failed\n", LCEC_MODULE_NAME, master->name, slave->name);
    return err;
  }
  if ((err = hal_param_float_newf(HAL_RO, &(hal_data->torque_reference), comp_id, "%s.%s.%s.srv-torque-ref", LCEC_MODULE_NAME, master->name, slave->name)) != 0) {
    rtapi_print_msg(RTAPI_MSG_ERR, LCEC_MSG_PFX "exporting pin %s.%s.%s.srv-torque-ref failed\n", LCEC_MODULE_NAME, master->name, slave->name);
    return err;
  }
  if ((err = hal_param_float_newf(HAL_RO, &(hal_data->speed_max_rpm), comp_id, "%s.%s.%s.srv-max-rpm", LCEC_MODULE_NAME, master->name, slave->name)) != 0) {
    rtapi_print_msg(RTAPI_MSG_ERR, LCEC_MSG_PFX "exporting pin %s.%s.%s.srv-max-rpm failed\n", LCEC_MODULE_NAME, master->name, slave->name);
    return err;
  }
  if ((err = hal_param_float_newf(HAL_RO, &(hal_data->speed_max_rpm_sp), comp_id, "%s.%s.%s.srv-max-rpm-sp", LCEC_MODULE_NAME, master->name, slave->name)) != 0) {
    rtapi_print_msg(RTAPI_MSG_ERR, LCEC_MSG_PFX "exporting pin %s.%s.%s.srv-max-rpm-sp failed\n", LCEC_MODULE_NAME, master->name, slave->name);
    return err;
  }
  if ((err = hal_param_s32_newf(HAL_RW, &(hal_data->home_raw), comp_id, "%s.%s.%s.srv-home-raw", LCEC_MODULE_NAME, master->name, slave->name)) != 0) {
    rtapi_print_msg(RTAPI_MSG_ERR, LCEC_MSG_PFX "exporting pin %s.%s.%s.srv-home-raw failed\n", LCEC_MODULE_NAME, master->name, slave->name);
    return err;
  }

  // set default pin values
  *(hal_data->vel_cmd) = 0.0;
  *(hal_data->vel_fb) = 0.0;
  *(hal_data->vel_fb_rpm) = 1.0;
  *(hal_data->vel_rpm) = 0.0;
  *(hal_data->pos_raw_hi) = 0;
  *(hal_data->pos_raw_lo) = 0;
  *(hal_data->pos_fb) = 0.0;
  *(hal_data->torque_fb) = 0.0;
  *(hal_data->torque_fb_abs) = 0.0;
  *(hal_data->torque_fb_pct) = 0.0;
  *(hal_data->torque_lim) = 1.0;
  *(hal_data->stopped) = 0;
  *(hal_data->at_speed) = 0;
  *(hal_data->overload) = 0;
  *(hal_data->ready) = 0;
  *(hal_data->error) = 0;
  *(hal_data->toggle) = 0;
  *(hal_data->loc_ena) = 0;
  *(hal_data->enable) = 0;
  *(hal_data->err_reset) = 0;
  *(hal_data->fast_ramp) = 0;
  *(hal_data->brake) = 0;
  *(hal_data->index_ena) = 0;
  *(hal_data->pos_reset) = 0;
  *(hal_data->enc_raw) = 0;
  *(hal_data->on_home_neg) = 0;
  *(hal_data->on_home_pos) = 0;

  // initialize variables
  hal_data->pos_scale = 1.0;
  hal_data->do_init = 1;
  hal_data->pos_cnt = 0;
  hal_data->index_cnt = 0;
  hal_data->last_pos_cnt = 0;
  hal_data->pos_scale_old = hal_data->pos_scale + 1.0;
  hal_data->pos_scale_rcpt = 1.0;
  hal_data->pos_scale_cnt = 1.0;
  hal_data->last_index_ena = 0;
  hal_data->index_ref = 0;
  hal_data->home_raw = 0;

  return 0;
}
void lcec_stmds5k_read(struct lcec_slave *slave, long period) {
  lcec_master_t *master = slave->master;
  lcec_stmds5k_data_t *hal_data = (lcec_stmds5k_data_t *) slave->hal_data;
  uint8_t *pd = master->process_data;
  int32_t index_tmp;
  int32_t pos_cnt, pos_cnt_diff;
  long long net_count;
  uint8_t dev_state;
  uint16_t speed_state;
  int16_t speed_raw, torque_raw;
  double torque;

  // wait for slave to be operational
  if (!slave->state.operational) {
    return;
  }

  // check for change in scale value
  lcec_stmds5k_check_scales(hal_data);

  // read device state
  dev_state = EC_READ_U8(&pd[hal_data->dev_state_pdo_os]);
  *(hal_data->ready) = (dev_state >> 0) & 0x01;
  *(hal_data->error) = (dev_state >> 1) & 0x01;
  *(hal_data->loc_ena) = (dev_state >> 6) & 0x01;
  *(hal_data->toggle) = (dev_state >> 7) & 0x01;

  // read speed state
  speed_state = EC_READ_U16(&pd[hal_data->speed_state_pdo_os]);
  *(hal_data->stopped) = (speed_state >> 0) & 0x01;
  *(hal_data->at_speed) = (speed_state >> 1) & 0x01;
  *(hal_data->overload) = (speed_state >> 2) & 0x01;

  // read current speed
  speed_raw = EC_READ_S16(&pd[hal_data->speed_mot_pdo_os]);
  *(hal_data->vel_fb_rpm) = hal_data->speed_max_rpm * (double)speed_raw * STMDS5K_PCT_REG_DIV;
  *(hal_data->vel_fb) = *(hal_data->vel_fb_rpm) * STMDS5K_RPM_DIV * hal_data->pos_scale_rcpt;

  // read torque
  // E02 : torque motor filterd (x 0,1 Nm)
  torque_raw = EC_READ_S16(&pd[hal_data->torque_mot_pdo_os]);
  torque = (double)torque_raw * STMDS5K_TORQUE_DIV;
  *(hal_data->torque_fb) = torque;
  torque = fabs(torque);
  *(hal_data->torque_fb_abs) = torque;
  *(hal_data->torque_fb_pct) = torque * hal_data->torque_reference_rcpt * 100.0;

  // update raw position counter
  pos_cnt = EC_READ_S32(&pd[hal_data->pos_mot_pdo_os]);
  *(hal_data->enc_raw) = pos_cnt;
  *(hal_data->on_home_neg) = (pos_cnt <= hal_data->home_raw);
  *(hal_data->on_home_pos) = (pos_cnt >= hal_data->home_raw);
  pos_cnt <<= 8;
  pos_cnt_diff = pos_cnt - hal_data->last_pos_cnt;
  hal_data->last_pos_cnt = pos_cnt;
  hal_data->pos_cnt += pos_cnt_diff;

  // check for index edge
  if (*(hal_data->index_ena)) {
    index_tmp = (hal_data->pos_cnt >> 32) & 0xffffffff;
    if (hal_data->do_init || !hal_data->last_index_ena) {
      hal_data->index_ref = index_tmp;
    } else if (index_tmp > hal_data->index_ref) {
      hal_data->index_cnt = (long long)index_tmp << 32;
      *(hal_data->index_ena) = 0;
    } else if (index_tmp  < hal_data->index_ref) {
      hal_data->index_cnt = (long long)hal_data->index_ref << 32;
      *(hal_data->index_ena) = 0;
    }
  }
Example #5
0
void lcec_el5152_read(struct lcec_slave *slave, long period) {
  lcec_master_t *master = slave->master;
  lcec_el5152_data_t *hal_data = (lcec_el5152_data_t *) slave->hal_data;
  uint8_t *pd = master->process_data;
  int i, idx_flag;
  lcec_el5152_chan_t *chan;
  int32_t idx_count, raw_count, raw_delta;
  uint32_t raw_period;

  // wait for slave to be operational
  if (!slave->state.operational) {
    hal_data->last_operational = 0;
    return;
  }

  // check inputs
  for (i=0; i<LCEC_EL5152_CHANS; i++) {
    chan = &hal_data->chans[i];

    // check for change in scale value
    if (*(chan->pos_scale) != chan->old_scale) {
      // scale value has changed, test and update it
      if ((*(chan->pos_scale) < 1e-20) && (*(chan->pos_scale) > -1e-20)) {
        // value too small, divide by zero is a bad thing
        *(chan->pos_scale) = 1.0;
      }
      // save new scale to detect future changes
      chan->old_scale = *(chan->pos_scale);
      // we actually want the reciprocal
      chan->scale = 1.0 / *(chan->pos_scale);
    }

    // get bit states
    *(chan->ina) = EC_READ_BIT(&pd[chan->ina_pdo_os], chan->ina_pdo_bp);
    *(chan->inb) = EC_READ_BIT(&pd[chan->inb_pdo_os], chan->inb_pdo_bp);
    *(chan->expol_stall) = EC_READ_BIT(&pd[chan->expol_stall_pdo_os], chan->expol_stall_pdo_bp);
    *(chan->tx_toggle) = EC_READ_BIT(&pd[chan->tx_toggle_pdo_os], chan->tx_toggle_pdo_bp);

    // read raw values
    raw_count = EC_READ_S32(&pd[chan->count_pdo_os]);
    raw_period = EC_READ_U32(&pd[chan->period_pdo_os]);

    // check for operational change of slave
    if (!hal_data->last_operational) {
      chan->last_count = raw_count;
    }

    // check for counter set done
    if (EC_READ_BIT(&pd[chan->set_count_done_pdo_os], chan->set_count_done_pdo_bp)) {
      chan->last_count = raw_count;
      *(chan->set_raw_count) = 0;
    }

    // update raw values
    if (! *(chan->set_raw_count)) {
      *(chan->raw_count) = raw_count;
      *(chan->raw_period) = raw_period;
    }

    // check for index edge
    idx_flag = 0;
    idx_count = 0;
    if (*(chan->index) && !chan->last_index) {
      idx_count = raw_count;
      idx_flag = 1;
    }
    chan->last_index = *(chan->index);

    // handle initialization
    if (chan->do_init || *(chan->reset)) {
      chan->do_init = 0;
      chan->last_count = raw_count;
      *(chan->count) = 0;
      idx_flag = 0;
    }

    // handle index
    if (idx_flag && *(chan->index_ena)) {
      chan->last_count = idx_count;
      *(chan->count) = 0;
      *(chan->index_ena) = 0;
    }

    // compute net counts
    raw_delta = raw_count - chan->last_count;
    chan->last_count = raw_count;
    *(chan->count) += raw_delta;

    // scale count to make floating point position
    *(chan->pos) = *(chan->count) * chan->scale;

    // scale period
    *(chan->period) = ((double) (*(chan->raw_period))) * LCEC_EL5152_PERIOD_SCALE;
  }

  hal_data->last_operational = 1;
}
Example #6
0
int main(int argc, char **argv)
{
    // Создаем мастер-объект
    gkMaster = ecrt_request_master(0);

    if (gkMaster) {
        fprintf(stdout, "1. Master created.\n");
    } else {
        fprintf(stderr, "Unable to get requested master.\n");
        return -1;
    }

    // Создаем объект для обмена PDO в циклическом режиме.
    gkDomain1 = ecrt_master_create_domain(gkMaster);

    if (gkDomain1) {
        fprintf(stdout, "2. Process data domain created.\n");
    } else {
        fprintf(stderr, "Unable to create process data domain.\n");
        return -1;
    }

    // Создаем объект конфигурации подчиненного.
    ec_slave_config_t* sc = ecrt_master_slave_config(gkMaster, 0, gkDriveNum, 0x00007595, 0x00000000);

    if (sc) {
        fprintf(stdout, "3. Slave configuration object created.\n");
    } else {
        fprintf(stderr, "Failed to get slave configuration.\n");
        return -1;
    }

    // Конфигурируем PDO подчиненного
    // TxPDO
    ec_pdo_entry_info_t l7na_tx_channel1[] = {
        {0x6041, 0, 16},    // Statusword
        {0x6061, 0, 8},     // The Modes of Operation Display
        {0x6062, 0, 32},    // The Position Demand Value
        {0x6064, 0, 32},    // The Position Actual Value
        {0x606B, 0, 32},    // The Velocity Demand Value
        {0x6081, 0, 32},    // The Profile Velocity
        {0x606C, 0, 32},    // The Actual Velocity Value
        {0x607A, 0, 32},    // The Target Position
        {0x6077, 0, 16},    // Actual torque value
//        {0x200F, 0, 16},    // Position Scale Denominator
    };

    ec_pdo_info_t l7na_tx_pdos[] = {
        {0x1A00, 9, l7na_tx_channel1}
    };

    // RxPDO
    ec_pdo_entry_info_t l7na_rx_channel1[] = {
        {0x6040, 0, 16},    // Controlword
        {0x6060, 0, 8},     // Modes of Operation
        {0x607A, 0, 32},    // The Target Position
        {0x606C, 0, 32},    // The Velocity Demand value
        {0x6081, 0, 32},    // The Profile Velocity
        {0x60FF, 0, 32},    // The Target Velocity (in Profile Velocity (Pv) mode and Cyclic Synchronous Velocity (Csv) modes)
        {0x6071, 0, 16},    // The Target Torque
    };

    ec_pdo_info_t l7na_rx_pdos[] = {
        {0x1600, 7, l7na_rx_channel1}
    };

    // Конфигурация SyncManagers 2 (FMMU0) и 3 (FMMU1)
    // { sync_mgr_idx, sync_mgr_direction, pdo_num, pdo_ptr, watch_dog_mode }
    // { 0xFF - end marker}
    ec_sync_info_t l7na_syncs[] = {
        {2, EC_DIR_OUTPUT, 1, l7na_rx_pdos, EC_WD_DISABLE},
        {3, EC_DIR_INPUT, 1, l7na_tx_pdos, EC_WD_DISABLE},
        {0xFF}
    };

    if (ecrt_slave_config_pdos(sc, EC_END, l7na_syncs)) {
        fprintf(stderr, "Failed to configure slave pdo.\n");
        return -1;
    }

    fprintf(stdout, "4. Configuring slave PDOs and sync managers done.\n");

    // Регистируем PDO в домене
    if (ecrt_domain_reg_pdo_entry_list(gkDomain1, gkDomain1Regs)) {
        fprintf(stderr, "PDO entry registration failed!\n");
        return -1;
    }

    fprintf(stdout, "5. PDO entries registered in domain.\n");

    if (ecrt_master_activate(gkMaster)) {
        fprintf(stderr,"Master activation failed.\n");
        return -1;
    }

    fprintf(stdout, "6. Master activated.\n");

    if (!(gkDomain1PD = ecrt_domain_data(gkDomain1))) {
      fprintf(stderr,"Domain data initialization failed.\n");
      return -1;
    }

    fprintf(stdout, "7. Domain data registered.\n");

//goto end;

    check_master_state();
    check_domain1_state();

    int32_t op_flag = 0, ipos = 0;
    uint16_t istatus = 0;

    //ждать режим OP
    for(uint32_t j = 0; ; j++) {
        ecrt_master_receive(gkMaster);  //RECEIVE A FRAME
        ecrt_domain_process(gkDomain1); //DETERMINE THE DATAGRAM STATES
       // check_slave_config_states();
       if (! op_flag) {
          check_domain1_state();
       }
       if (gkDomain1State.wc_state == EC_WC_COMPLETE && !op_flag) {
          printf("Domain is up at %d cycles.\n", j);
          op_flag = 1;
       }
       ipos = EC_READ_U32(gkDomain1PD + gkOffIPos); //READ DATA 0x6064 position
       istatus = EC_READ_U16(gkDomain1PD + gkOffIStatus); //READ DATA 0x6041 status

       // send process data
       ecrt_domain_queue(gkDomain1); //MARK THE DOMAIN DATA AS READY FOR EXCHANGE
       ecrt_master_send(gkMaster);   //SEND ALL QUEUED DATAGRAMS
       usleep(1000); //WAIT 1mS

       if (op_flag) {
            printf("1-Position: %d Status: 0x%x\n", ipos, istatus);
            break;
       }
    }

    fprintf(stdout, "8. Got OP state.\n");

    if(argc > 1) {

        //перейти в позицию
        const int cmdpos = atoi(argv[1]);
        printf("cmd pos: %d\n", cmdpos);

        ecrt_master_receive(gkMaster);
        ecrt_domain_process(gkDomain1);
        EC_WRITE_U16(gkDomain1PD + gkOffOControl, 0xF); //0x6040 ControlWord
        EC_WRITE_U8(gkDomain1PD + gkOffOMode, 1); // 0x6060 Profile position mode // 3 - for velocity mode, 1- for position mode
        EC_WRITE_S32(gkDomain1PD + gkOffPVel, 1000000); // 0x60ff profile velocity // gkOffTVel - for velocity mode
        ecrt_domain_queue(gkDomain1);
        ecrt_master_send(gkMaster);
        usleep(1000);

        //wait
        for (uint32_t i = 0; i < 200; ++i) {
            ecrt_master_receive(gkMaster);
            ecrt_domain_process(gkDomain1);
            ecrt_domain_queue(gkDomain1);
            ecrt_master_send(gkMaster);
            usleep(1000);
        }


        ecrt_master_receive(gkMaster);
        ecrt_domain_process(gkDomain1);
/* comment 2 lines for velocity mode */
        EC_WRITE_S32(gkDomain1PD + gkOffOPos, cmdpos);
        EC_WRITE_U16(gkDomain1PD + gkOffOControl, 0x11F);
        ecrt_domain_queue(gkDomain1);
        ecrt_master_send(gkMaster);
        usleep(1000);

        //wait
        for (uint32_t i = 0; i < 200; ++i) {
            ecrt_master_receive(gkMaster);
            ecrt_domain_process(gkDomain1);
            ecrt_domain_queue(gkDomain1);
            ecrt_master_send(gkMaster);
            usleep(1000);
        }

/*        ecrt_master_receive(gkMaster);
        ecrt_domain_process(gkDomain1);
        EC_WRITE_S32(gkDomain1PD + gkOffOPos, cmdpos);
        ecrt_domain_queue(gkDomain1);
        ecrt_master_send(gkMaster);
        usleep(1000);*/

        //wait
/*        for (uint32_t i = 0; i < 1000; ++i) {
            ecrt_master_receive(gkMaster);
            ecrt_domain_process(gkDomain1);
            ecrt_domain_queue(gkDomain1);
            ecrt_master_send(gkMaster);
            usleep(1000);
        }
*/

        timespec tbegin, tend;
        ::clock_gettime(CLOCK_MONOTONIC, &tbegin);
        printf("Time begin: %lds/%ldns\n", tbegin.tv_sec, tbegin.tv_nsec);
        const uint32_t kIterationMax = 500000;
        uint32_t change_count = 0;

        bool target_reached = false;

        for (uint32_t j = 0; ; j++) {
           ecrt_master_receive(gkMaster);
           ecrt_domain_process(gkDomain1);
           int32_t ipos_new = EC_READ_S32(gkDomain1PD + gkOffIPos); //READ DATA 0x6064 position
           uint16_t istatus_new = EC_READ_U16(gkDomain1PD + gkOffIStatus); //READ DATA 0x6041 status
            int32_t imode = EC_READ_S8(gkDomain1PD + gkOffIMode);
            int32_t ipvel = EC_READ_S32(gkDomain1PD + gkOffPVel);
            int32_t idvel = EC_READ_S32(gkDomain1PD + gkOffDVel);
            int32_t iavel = EC_READ_S32(gkDomain1PD + gkOffIVel);
            int32_t idpos = EC_READ_S32(gkDomain1PD + gkOffDPos);
            int32_t itpos = EC_READ_S32(gkDomain1PD + gkOffOPos);
            int32_t icontrol = EC_READ_U16(gkDomain1PD + gkOffOControl);
            int16_t iatorq = EC_READ_S16(gkDomain1PD + gkOffITorq);
//            int32_t ipdenom = EC_READ_S16(gkDomain1PD + gkOffPDenom);
            if (ipos_new != ipos) {
                ipos = ipos_new;
                change_count++;
                printf("Position: %d Status: 0x%x Mode: %d ATorq: %d PVel: %d DVel: %d AVel: %d DPos: %d TPos: %d OControl: 0x%x\n", ipos, istatus, imode, iatorq, ipvel, idvel, iavel, idpos, itpos, icontrol);
            }

// position mode
            if(! target_reached && ((istatus_new >> 10) & 0x1)) {
                ::clock_gettime(CLOCK_MONOTONIC, &tend);
                printf("Target reached. Pos: %d Status: 0x%x TEnd=%lds/%ldns\n", ipos, istatus, tend.tv_sec, tend.tv_nsec);
                target_reached = true;
                //break;
           }

/* Velocity mode */
        if (j == kIterationMax) {
/*            clock_gettime(CLOCK_MONOTONIC, &tend);
            printf("Iterations=%d, change_count=%d. time_end=%lds/%ldns Stopping...\n", j, change_count, tend.tv_sec, tend.tv_nsec);
            EC_WRITE_U16(gkDomain1PD + gkOffOControl, 0x6);
            break;
*/
        }
            
          ecrt_domain_queue(gkDomain1);
          ecrt_master_send(gkMaster);
           usleep(100); //WAIT 1mS

        }
    }

    ecrt_master_receive(gkMaster);
    ecrt_domain_process(gkDomain1);

    printf("...Done. Releasing the master!\n");

    // Освобождаем мастер-объект
    ecrt_release_master(gkMaster);

    return 0;
}