Example #1
0
/*
mode is enum: 
  EDMA3_DRV_TRIG_MODE_MANUAL,
  EDMA3_DRV_TRIG_MODE_QDMA,
  EDMA3_DRV_TRIG_MODE_EVENT,
  EDMA3_DRV_TRIG_MODE_NONE
*/  
int enable_transfer(unsigned chId, EDMA3_DRV_TrigMode mode)
{
  EDMA3_DRV_Result result = EDMA3_DRV_SOK;

  result = EDMA3_DRV_enableTransfer (hEdma, chId, mode);
  if (result != EDMA3_DRV_SOK)
  {  
    printf("enable_transfer failed: %u\n", chId);
    return -1;
  }
  return 0;
}
Example #2
0
// **************************************************************************************
EDMA3_DRV_Result edmaInitiateXfer(const void *dst, const void *src, const int aCnt,
									   const int bCnt, const int cCnt, const int srcBIdx,
									   const int destBIdx, const int srcCIdx,
									   const int destCIdx, const int chCnt)
{
  EDMA3_DRV_Result edmaResult = EDMA3_DRV_SOK;
  signed char *srcBuf, *dstBuf;
  volatile int coreCnt = determineProcId();
  EDMA3_DRV_PaRAMRegs paramSet;

  srcBuf = (signed char*) getGlobalAddr((signed char *) src);
  dstBuf = (signed char*) getGlobalAddr((signed char *) dst);

  paramSet.srcAddr  = (unsigned int) srcBuf;
  paramSet.destAddr = (unsigned int) dstBuf;
  paramSet.aCnt     = aCnt;
  paramSet.bCnt     = bCnt;
  paramSet.cCnt     = cCnt;
  paramSet.srcBIdx  = srcBIdx;
  paramSet.destBIdx = destBIdx;
  paramSet.srcCIdx  = srcCIdx;
  paramSet.destCIdx = destCIdx;
  paramSet.bCntReload = 0;
  paramSet.linkAddr   = 0xFFFFu;
  paramSet.opt = 0x00000000u;
  // enable final interrupt
  paramSet.opt |= (1 << OPT_TCINTEN_SHIFT);
  // set TCC
  paramSet.opt |= ((gEdmaXfer[coreCnt][chCnt].tcc << OPT_TCC_SHIFT) & OPT_TCC_MASK);
  // AB Sync Transfer Mode
  paramSet.opt |= (1 << OPT_SYNCDIM_SHIFT);
  // prevent a NULL transfer from being submitted; convert it into a dummy transfer
  if((aCnt==0) && (bCnt==0)) paramSet.aCnt     = 1;

  /* Now, write the PaRAM Set. */
  edmaResult = EDMA3_DRV_setPaRAM(gHEdma[coreCnt/4], gEdmaXfer[coreCnt][chCnt].chId,
		  (EDMA3_DRV_PaRAMRegs *) &paramSet);

  // start transfer
  if(edmaResult == EDMA3_DRV_SOK)
  {
    edmaResult = EDMA3_DRV_enableTransfer (gHEdma[coreCnt/4], gEdmaXfer[coreCnt][chCnt].chId,
    	    EDMA3_DRV_TRIG_MODE_MANUAL);
  }      
  return(edmaResult);

} // edmaInitiateXfer
Example #3
0
/**
 *  \brief   EDMA3 mem-to-mem data copy test case, using two DMA
 *              channels, linked to each other.
 *
 *  \param  acnt        [IN]      Number of bytes in an array
 *  \param  bcnt        [IN]      Number of arrays in a frame
 *  \param  ccnt        [IN]      Number of frames in a block
 *  \param  syncType    [IN]      Synchronization type (A/AB Sync)
 *
 *  \return  EDMA3_DRV_SOK or EDMA3_DRV Error Code
 */
EDMA3_DRV_Result edma3_test_with_link(
						EDMA3_DRV_Handle hEdma,
	                    unsigned int acnt,
	                    unsigned int bcnt,
	                    unsigned int ccnt,
	                    EDMA3_DRV_SyncType syncType)
    {
    EDMA3_DRV_Result result = EDMA3_DRV_SOK;
    EDMA3_DRV_PaRAMRegs paramSet = {0,0,0,0,0,0,0,0,0,0,0,0};
    unsigned int ch1Id = 0;
    unsigned int ch2Id = 0;
    unsigned int tcc1 = 0;
    unsigned int tcc2 = 0;
    int i;
    unsigned int count;
    unsigned int Istestpassed1 = 0u;
    unsigned int Istestpassed2 = 0u;
    unsigned int numenabled = 0;
    unsigned int BRCnt = 0;
    int srcbidx = 0, desbidx = 0;
    int srccidx = 0, descidx = 0;


    srcBuff1 = (signed char*) GLOBAL_ADDR(_srcBuff1);
    dstBuff1 = (signed char*) GLOBAL_ADDR(_dstBuff1);
    srcBuff2 = (signed char*) GLOBAL_ADDR(_srcBuff2);
    dstBuff2 = (signed char*) GLOBAL_ADDR(_dstBuff2);


    /* Initalize source and destination buffers */
    for (count = 0u; count < (acnt*bcnt*ccnt); count++)
        {
        srcBuff1[count] = (int)count+1;
        srcBuff2[count] = (int)count+1;
        /**
         * No need to initialize the destination buffer as it is being invalidated.
        dstBuff1[count] = initval;
        dstBuff2[count] = initval;
        */
        }


#ifdef EDMA3_ENABLE_DCACHE
    /*
    * Note: These functions are required if the buffer is in DDR.
    * For other cases, where buffer is NOT in DDR, user
    * may or may not require the below functions.
    */
    /* Flush the Source Buffers */
    if (result == EDMA3_DRV_SOK)
        {
        result = Edma3_CacheFlush((unsigned int)srcBuff1, (acnt*bcnt*ccnt));
        }
    if (result == EDMA3_DRV_SOK)
        {
        result = Edma3_CacheFlush((unsigned int)srcBuff2, (acnt*bcnt*ccnt));
        }

    /* Invalidate the Destination Buffers */
    if (result == EDMA3_DRV_SOK)
        {
        result = Edma3_CacheInvalidate((unsigned int)dstBuff1, (acnt*bcnt*ccnt));
        }
    if (result == EDMA3_DRV_SOK)
        {
        result = Edma3_CacheInvalidate((unsigned int)dstBuff2, (acnt*bcnt*ccnt));
        }
#endif  /* EDMA3_ENABLE_DCACHE */


    irqRaised1 = 0;
    irqRaised2 = 0;

    /* Set B count reload as B count. */
    BRCnt = bcnt;

    /* Setting up the SRC/DES Index */
    srcbidx = (int)acnt;
    desbidx = (int)acnt;
    if (syncType == EDMA3_DRV_SYNC_A)
        {
        /* A Sync Transfer Mode */
        srccidx = (int)acnt;
        descidx = (int)acnt;
        }
    else
        {
        /* AB Sync Transfer Mode */
        srccidx = ((int)acnt * (int)bcnt);
        descidx = ((int)acnt * (int)bcnt);
        }


    /* Setup for Channel 1*/
    tcc1 = EDMA3_DRV_TCC_ANY;
    ch1Id = EDMA3_DRV_DMA_CHANNEL_ANY;

    /* Request any DMA channel and any TCC */
    if (result == EDMA3_DRV_SOK)
        {
        result = EDMA3_DRV_requestChannel (hEdma, &ch1Id, &tcc1,
                                            (EDMA3_RM_EventQueue)0,
                                            &callback1, NULL);
        }

    if (result == EDMA3_DRV_SOK)
        {
        /* Fill the PaRAM Set with transfer specific information */
        paramSet.srcAddr    = (unsigned int)(srcBuff1);
        paramSet.destAddr   = (unsigned int)(dstBuff1);

        /**
         * Be Careful !!!
         * Valid values for SRCBIDX/DSTBIDX are between –32768 and 32767
         * Valid values for SRCCIDX/DSTCIDX are between –32768 and 32767
         */
        paramSet.srcBIdx    = srcbidx;
        paramSet.destBIdx   = desbidx;
        paramSet.srcCIdx    = srccidx;
        paramSet.destCIdx   = descidx;

        /**
         * Be Careful !!!
         * Valid values for ACNT/BCNT/CCNT are between 0 and 65535.
         * ACNT/BCNT/CCNT must be greater than or equal to 1.
         * Maximum number of bytes in an array (ACNT) is 65535 bytes
         * Maximum number of arrays in a frame (BCNT) is 65535
         * Maximum number of frames in a block (CCNT) is 65535
         */
        paramSet.aCnt       = acnt;
        paramSet.bCnt       = bcnt;
        paramSet.cCnt       = ccnt;

        /* For AB-synchronized transfers, BCNTRLD is not used. */
        paramSet.bCntReload = BRCnt;

        paramSet.linkAddr   = 0xFFFFu;

        /* Src & Dest are in INCR modes */
        paramSet.opt &= 0xFFFFFFFCu;
        /* Program the TCC */
        paramSet.opt |= ((tcc1 << OPT_TCC_SHIFT) & OPT_TCC_MASK);

        /* Enable Intermediate & Final transfer completion interrupt */
        paramSet.opt |= (1 << OPT_ITCINTEN_SHIFT);
        paramSet.opt |= (1 << OPT_TCINTEN_SHIFT);

        if (syncType == EDMA3_DRV_SYNC_A)
            {
            paramSet.opt &= 0xFFFFFFFBu;
            }
        else
            {
            /* AB Sync Transfer Mode */
            paramSet.opt |= (1 << OPT_SYNCDIM_SHIFT);
            }

        /* Now, write the PaRAM Set. */
        result = EDMA3_DRV_setPaRAM (hEdma, ch1Id, &paramSet);
        }


    /*
     * There is another way to program the PaRAM Set using specific APIs
     * for different PaRAM set entries. It gives user more control and easier
     * to use interface. User can use any of the methods.
     * Below is the alternative way to program the PaRAM Set.
     */

    /*

    if (result == EDMA3_DRV_SOK)
        {
        result = EDMA3_DRV_setSrcParams (hEdma, ch1Id, (unsigned int)(srcBuff1),
                                        EDMA3_DRV_ADDR_MODE_INCR,
                                        EDMA3_DRV_W8BIT);
        }

    if (result == EDMA3_DRV_SOK)
        {
        result = EDMA3_DRV_setDestParams (hEdma, ch1Id,
                                            (unsigned int)(dstBuff1),
                                            EDMA3_DRV_ADDR_MODE_INCR,
                                            EDMA3_DRV_W8BIT);
        }

    if (result == EDMA3_DRV_SOK)
        {
        result = EDMA3_DRV_setSrcIndex (hEdma, ch1Id, srcbidx, srccidx);
        }

    if (result == EDMA3_DRV_SOK)
        {
        result =  EDMA3_DRV_setDestIndex (hEdma, ch1Id, desbidx, descidx);
        }

    if (result == EDMA3_DRV_SOK)
        {
        if (syncType == EDMA3_DRV_SYNC_A)
            {
            result = EDMA3_DRV_setTransferParams (hEdma, ch1Id, acnt, bcnt,
                                                ccnt, BRCnt,
                                                EDMA3_DRV_SYNC_A);
            }
        else
            {
            result = EDMA3_DRV_setTransferParams (hEdma, ch1Id, acnt, bcnt,
                                                ccnt, BRCnt,
                                                EDMA3_DRV_SYNC_AB);
            }
        }

    if (result == EDMA3_DRV_SOK)
        {
        result = EDMA3_DRV_setOptField (hEdma, ch1Id,
                                        EDMA3_DRV_OPT_FIELD_TCINTEN, 1u);
        }

    if (result == EDMA3_DRV_SOK)
        {
        result = EDMA3_DRV_setOptField (hEdma, ch1Id,
                                        EDMA3_DRV_OPT_FIELD_ITCINTEN, 1u);
        }

    */


    /* Request any LINK channel and any TCC */
    if (result == EDMA3_DRV_SOK)
        {
        /* Setup for Channel 2 */
        ch2Id   = EDMA3_DRV_LINK_CHANNEL;
        tcc2    = EDMA3_DRV_TCC_ANY;

        result = EDMA3_DRV_requestChannel (hEdma, &ch2Id, &tcc2,
                                            (EDMA3_RM_EventQueue)0,
                                            &callback1, NULL);
        }

    if (result == EDMA3_DRV_SOK)
        {
        /*
         * Fill the PaRAM Set for the LINK channel
         * with transfer specific information.
         */
        paramSet.srcAddr    = (unsigned int)(srcBuff2);
        paramSet.destAddr   = (unsigned int)(dstBuff2);

        /**
         * Be Careful !!!
         * Valid values for SRCBIDX/DSTBIDX are between –32768 and 32767
         * Valid values for SRCCIDX/DSTCIDX are between –32768 and 32767
         */
        paramSet.srcBIdx    = srcbidx;
        paramSet.destBIdx   = desbidx;
        paramSet.srcCIdx    = srccidx;
        paramSet.destCIdx   = descidx;

        /**
         * Be Careful !!!
         * Valid values for ACNT/BCNT/CCNT are between 0 and 65535.
         * ACNT/BCNT/CCNT must be greater than or equal to 1.
         * Maximum number of bytes in an array (ACNT) is 65535 bytes
         * Maximum number of arrays in a frame (BCNT) is 65535
         * Maximum number of frames in a block (CCNT) is 65535
         */
        paramSet.aCnt       = acnt;
        paramSet.bCnt       = bcnt;
        paramSet.cCnt       = ccnt;

        /* For AB-synchronized transfers, BCNTRLD is not used. */
        paramSet.bCntReload = BRCnt;

        paramSet.linkAddr   = 0xFFFFu;

        /* Reset opt field first */
        paramSet.opt = 0x0u;
        /* Src & Dest are in INCR modes */
        paramSet.opt &= 0xFFFFFFFCu;

        /* Enable Intermediate & Final transfer completion interrupt */
        paramSet.opt |= (1 << OPT_ITCINTEN_SHIFT);
        paramSet.opt |= (1 << OPT_TCINTEN_SHIFT);

        if (syncType == EDMA3_DRV_SYNC_A)
            {
            paramSet.opt &= 0xFFFFFFFBu;
            }
        else
            {
            /* AB Sync Transfer Mode */
            paramSet.opt |= (1 << OPT_SYNCDIM_SHIFT);
            }

        /* Now, write the PaRAM Set. */
        result = EDMA3_DRV_setPaRAM(hEdma, ch2Id, &paramSet);
        }


    /*
     * There is another way to program the PaRAM Set using specific APIs
     * for different PaRAM set entries. It gives user more control and easier
     * to use interface. User can use any of the methods.
     * Below is the alternative way to program the PaRAM Set.
     */

    /*

    if (result == EDMA3_DRV_SOK)
        {
        result = EDMA3_DRV_setSrcParams (hEdma, ch2Id, (unsigned int)(srcBuff2),
                                        EDMA3_DRV_ADDR_MODE_INCR,
                                        EDMA3_DRV_W8BIT);
        }

    if (result == EDMA3_DRV_SOK)
        {
        result = EDMA3_DRV_setDestParams (hEdma, ch2Id,
                                        (unsigned int)(dstBuff2),
                                        EDMA3_DRV_ADDR_MODE_INCR,
                                        EDMA3_DRV_W8BIT);
        }

    if (result == EDMA3_DRV_SOK)
        {
        result = EDMA3_DRV_setSrcIndex (hEdma, ch2Id, srcbidx, srccidx);
        }

    if (result == EDMA3_DRV_SOK)
        {
        result =  EDMA3_DRV_setDestIndex (hEdma, ch2Id, desbidx, descidx);
        }

    if (result == EDMA3_DRV_SOK)
        {
        if (syncType == EDMA3_DRV_SYNC_A)
            {
            result = EDMA3_DRV_setTransferParams (hEdma, ch2Id, acnt, bcnt,
                                                    ccnt,
                                                    BRCnt,EDMA3_DRV_SYNC_A);
            }
        else
            {
            result = EDMA3_DRV_setTransferParams (hEdma, ch2Id, acnt, bcnt,
                                                    ccnt,
                                                    BRCnt,EDMA3_DRV_SYNC_AB);
            }
        }

    if (result == EDMA3_DRV_SOK)
        {
        result = EDMA3_DRV_setOptField (hEdma, ch2Id,
                                        EDMA3_DRV_OPT_FIELD_TCINTEN, 1u);
        }

    if (result == EDMA3_DRV_SOK)
        {
        result = EDMA3_DRV_setOptField (hEdma, ch2Id,
                                        EDMA3_DRV_OPT_FIELD_ITCINTEN, 1u);
        }

    */


    /* Link both the channels. */
    if (result == EDMA3_DRV_SOK)
        {
        result = EDMA3_DRV_linkChannel (hEdma, ch1Id, ch2Id);
        }


    /*
     * Since the transfer is going to happen in Manual mode of EDMA3
     * operation, we have to 'Enable the Transfer' multiple times.
     * Number of times depends upon the Mode (A/AB Sync)
     * and the different counts.
     */
    if (result == EDMA3_DRV_SOK)
        {
        /*Need to activate next param*/
        if (syncType == EDMA3_DRV_SYNC_A)
            {
            numenabled = bcnt * ccnt;
            }
        else
            {
            /* AB Sync Transfer Mode */
            numenabled = ccnt;
            }

        for (i = 0; i < numenabled; i++)
            {
            irqRaised1 = 0;

            /*
             * Now enable the transfer for Master channel as many times
             * as calculated above.
             */
            result = EDMA3_DRV_enableTransfer (hEdma, ch1Id,
                                                EDMA3_DRV_TRIG_MODE_MANUAL);
            if (result != EDMA3_DRV_SOK)
                {
#ifdef EDMA3_DRV_DEBUG
                EDMA3_DRV_PRINTF ("error from edma3_test_with_link\n\r\n");
#endif  /* EDMA3_DRV_DEBUG */
                break;
                }

            while (irqRaised1 == 0)
                {
                /* Wait for the Completion ISR on Master Channel. */
                printf ("waiting for interrupt...\n");	
                }

            /* Check the status of the completed transfer */
            if (irqRaised1 < 0)
                {
                /* Some error occured, break from the FOR loop. */
#ifdef EDMA3_DRV_DEBUG
                EDMA3_DRV_PRINTF ("\r\nedma3_test_with_link: Event Miss Occured!!!\r\n");
#endif  /* EDMA3_DRV_DEBUG */

                /* Clear the error bits first */
                result = EDMA3_DRV_clearErrorBits (hEdma, ch1Id);

                break;
                }
            }
        }


    /**
     * Now the transfer on Master channel is finished.
     * Trigger next (LINK) param.
     */
    if (EDMA3_DRV_SOK == result)
        {
        for (i = 0; i < numenabled; i++)
            {
            irqRaised1 = 0;

            /*
             * Enable the transfer for LINK channel as many times
             * as calculated above.
             */
            result = EDMA3_DRV_enableTransfer (hEdma, ch1Id,
                                                EDMA3_DRV_TRIG_MODE_MANUAL);
            if (result != EDMA3_DRV_SOK)
                {
#ifdef EDMA3_DRV_DEBUG
                EDMA3_DRV_PRINTF ("error from edma3_test_with_link\n\r\n");
#endif  /* EDMA3_DRV_DEBUG */
                break;
                }

            while (irqRaised1 == 0)
                {
                /* Wait for the Completion ISR on the Link Channel. */
                printf ("waiting for interrupt...\n");	
                }

            /* Check the status of the completed transfer */
            if (irqRaised1 < 0)
                {
                /* Some error occured, break from the FOR loop. */
#ifdef EDMA3_DRV_DEBUG
                EDMA3_DRV_PRINTF ("\r\nedma3_test_with_link: Event Miss Occured!!!\r\n");
#endif  /* EDMA3_DRV_DEBUG */

                /* Clear the error bits first */
                result = EDMA3_DRV_clearErrorBits (hEdma, ch2Id);

                break;
                }
            }
        }



    /* Match the Source and Destination Buffers. */
    if (EDMA3_DRV_SOK == result)
        {
        for (i = 0; i < (acnt*bcnt*ccnt); i++)
            {
            if (srcBuff1[i] != dstBuff1[i])
                {
                Istestpassed1 = 0u;
#ifdef EDMA3_DRV_DEBUG
                EDMA3_DRV_PRINTF("edma3_test_with_link: Data write-read " \
                                "matching FAILED at i = %d " \
                                "(srcBuff1 -> dstBuff1)\r\n", i);
#endif  /* EDMA3_DRV_DEBUG */
                break;
                }
            }
        if (i == (acnt*bcnt*ccnt))
            {
            Istestpassed1 = 1u;
            }


        for (i = 0; i < (acnt*bcnt*ccnt); i++)
            {
            if (srcBuff2[i] != dstBuff2[i])
                {
                Istestpassed2 = 0;
#ifdef EDMA3_DRV_DEBUG
                EDMA3_DRV_PRINTF("edma3_test_with_link: Data write-read " \
                            "matching FAILED at i = %d " \
                            "(srcBuff2 -> dstBuff2)\r\n", i);
#endif  /* EDMA3_DRV_DEBUG */
                break;
                }
            }
        if (i == (acnt*bcnt*ccnt))
            {
            Istestpassed2 = 1u;
            }


        /* Free the previously allocated channels. */
        result = EDMA3_DRV_freeChannel (hEdma, ch1Id);
        if (result != EDMA3_DRV_SOK)
            {
#ifdef EDMA3_DRV_DEBUG
            EDMA3_DRV_PRINTF("edma3_test_with_link: EDMA3_DRV_freeChannel() " \
                                "for ch1 FAILED, error code: %d\r\n", result);
#endif  /* EDMA3_DRV_DEBUG */
            }
        else
            {
            result = EDMA3_DRV_freeChannel (hEdma, ch2Id);
            if (result != EDMA3_DRV_SOK)
                {
#ifdef EDMA3_DRV_DEBUG
                EDMA3_DRV_PRINTF("edma3_test_with_link: " \
                                "EDMA3_DRV_freeChannel() for ch 2 FAILED, " \
                                "error code: %d\r\n", result);
#endif  /* EDMA3_DRV_DEBUG */
                }
            }
        }


    if((Istestpassed1 == 1u) && (Istestpassed2 == 1u))
        {
#ifdef EDMA3_DRV_DEBUG
        EDMA3_DRV_PRINTF("edma3_test_with_link PASSED\r\n");
#endif  /* EDMA3_DRV_DEBUG */
        }
    else
        {
#ifdef EDMA3_DRV_DEBUG
        EDMA3_DRV_PRINTF("edma3_test_with_link FAILED\r\n");
#endif  /* EDMA3_DRV_DEBUG */
        result = ((EDMA3_DRV_SOK == result) ?
                                EDMA3_DATA_MISMATCH_ERROR : result);
        }


    return result;
}
Example #4
0
// **************************************************************************************
EDMA3_DRV_Result edmaInitiateXferDoubleChain(const void *dst, const void *src, const int aCnt,
									   const int bCnt, const int cCnt, const int srcBIdx,
									   const int destBIdx, const int srcCIdx,
									   const int destCIdx, const int chCnt)
{
  EDMA3_DRV_PaRAMRegs paramSet, *gParamSet;
  uint32_t addr;
  EDMA3_DRV_Result edmaResult = EDMA3_DRV_SOK;
  signed char *srcBuf, *dstBuf;
  volatile int coreCnt = determineProcId();
  int bIndex; //, cIndex;

  if((chCnt<0) || (chCnt>2) || ((chCnt&1) != 0))
  {
	System_printf("DMA channel (%d) not valid", chCnt);
	System_abort("\n");
  }

  if(bCnt * cCnt > MAX_PARAMS-1)
  {
	System_printf("Can't handle bCnt(%d)*cCnt(%); max allowed is %d", bCnt, cCnt, MAX_PARAMS-1);
	System_abort("\n");
  }
  srcBuf = (signed char*) getGlobalAddr((signed char *) src);
  dstBuf = (signed char*) getGlobalAddr((signed char *) dst);

  // set paramSet
  paramSet.srcAddr  = (unsigned int) srcBuf;
  paramSet.destAddr = (unsigned int) dstBuf;
  paramSet.aCnt     = aCnt;
  paramSet.bCnt     = 1;
  paramSet.cCnt     = 1;
  paramSet.srcBIdx  = 0;
  paramSet.destBIdx = 0;
  paramSet.srcCIdx  = 0;
  paramSet.destCIdx = 0;
  paramSet.bCntReload = 0;
  paramSet.linkAddr   = 0xFFFFu;
  paramSet.opt = 0x00000000u;
  // enable final TCC chaining; only one transfer
  paramSet.opt |= (1 << OPT_TCCHEN_SHIFT);
  // set TCC to chained channel
  paramSet.opt |= ((gEdmaXfer[coreCnt][chCnt+1].tcc << OPT_TCC_SHIFT) & OPT_TCC_MASK);

  gParamSet = &globalParamSet[(coreCnt*(EDMA_CHANNELS>>1)+(chCnt>>1))*MAX_PARAMS];
  // now write the paramsets to be used by the first of the doubly chained channels
  for(bIndex = 0; bIndex <= bCnt; bIndex++)
  {
	// table of paramSet
	gParamSet[bIndex] = paramSet;
	// update src and dst address;
	paramSet.srcAddr += srcBIdx;
	paramSet.destAddr += destBIdx;
	if(bIndex == (bCnt-1)) // last in the set
	{
		// set to be a dummy transfer
		paramSet.aCnt = 1;
		paramSet.bCnt = 0;
		paramSet.cCnt = 0;
		// disable chaining
		paramSet.opt &= ~(1 << OPT_TCCHEN_SHIFT);
	}
  }

  // ensure gParamSet is written to cache
  Cache_wbInv(gParamSet, (bCnt+1)*sizeof(EDMA3_DRV_PaRAMRegs), Cache_Type_ALLD, 1);
  // set paramSet; src is global param set; dst is chained PARAMset;
  // src increment is size of PARAMset and dst address is always the same
  paramSet.srcAddr  = (uint32_t) getGlobalAddr((signed char *) &gParamSet[0]);
  EDMA3_DRV_getPaRAMPhyAddr(gHEdma[coreCnt/4], gEdmaXfer[coreCnt][chCnt].chId, &addr);
  paramSet.destAddr = (uint32_t) getGlobalAddr((signed char *) addr);
  paramSet.aCnt     = sizeof(EDMA3_DRV_PaRAMRegs);
  paramSet.bCnt     = bCnt+1;
  paramSet.cCnt     = 1;
  paramSet.srcBIdx  = sizeof(EDMA3_DRV_PaRAMRegs);
  paramSet.destBIdx = 0;
  paramSet.srcCIdx  = 0;
  paramSet.destCIdx = 0;
  paramSet.bCntReload = 0;
  paramSet.linkAddr   = 0xFFFFu;
  paramSet.opt = 0x00000000u;
  // both intermediate and final chaining enabled
  paramSet.opt |= (1 << OPT_TCCHEN_SHIFT);
  paramSet.opt |= (1 << OPT_ITCCHEN_SHIFT);
  // final interrupt enabled
  paramSet.opt |= (1 << OPT_TCINTEN_SHIFT);
  // set TCC to chained channel
  paramSet.opt |= ((gEdmaXfer[coreCnt][chCnt].tcc << OPT_TCC_SHIFT) & OPT_TCC_MASK);

  /* Now, write the PaRAM Set to the second of the doubly chained channels */
  edmaResult = EDMA3_DRV_setPaRAM(gHEdma[coreCnt/4], gEdmaXfer[coreCnt][chCnt+1].chId, (EDMA3_DRV_PaRAMRegs *) &paramSet);


  // start transfer on the second of the doubly chained channels
  if(edmaResult == EDMA3_DRV_SOK)
  {
    edmaResult = EDMA3_DRV_enableTransfer (gHEdma[coreCnt/4],
			                               gEdmaXfer[coreCnt][chCnt+1].chId,
	                                       EDMA3_DRV_TRIG_MODE_MANUAL);
  }
  return(edmaResult);

} // edmaInitiateXferDoubleChain