Example #1
0
/* Verify that we are loading a valid orphan from disk */
struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
{
	unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
	unsigned long block_group;
	int bit;
	struct buffer_head *bitmap_bh = NULL;
	struct inode *inode = NULL;

	/* Error cases - e2fsck has already cleaned up for us */
	if (ino > max_ino) {
		ext4_warning(sb, __FUNCTION__,
			     "bad orphan ino %lu!  e2fsck was run?", ino);
		goto out;
	}

	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
	bitmap_bh = read_inode_bitmap(sb, block_group);
	if (!bitmap_bh) {
		ext4_warning(sb, __FUNCTION__,
			     "inode bitmap error for orphan %lu", ino);
		goto out;
	}

	/* Having the inode bit set should be a 100% indicator that this
	 * is a valid orphan (no e2fsck run on fs).  Orphans also include
	 * inodes that were being truncated, so we can't check i_nlink==0.
	 */
	if (!ext4_test_bit(bit, bitmap_bh->b_data) ||
			!(inode = iget(sb, ino)) || is_bad_inode(inode) ||
			NEXT_ORPHAN(inode) > max_ino) {
		ext4_warning(sb, __FUNCTION__,
			     "bad orphan inode %lu!  e2fsck was run?", ino);
		printk(KERN_NOTICE "ext4_test_bit(bit=%d, block=%llu) = %d\n",
		       bit, (unsigned long long)bitmap_bh->b_blocknr,
		       ext4_test_bit(bit, bitmap_bh->b_data));
		printk(KERN_NOTICE "inode=%p\n", inode);
		if (inode) {
			printk(KERN_NOTICE "is_bad_inode(inode)=%d\n",
			       is_bad_inode(inode));
			printk(KERN_NOTICE "NEXT_ORPHAN(inode)=%u\n",
			       NEXT_ORPHAN(inode));
			printk(KERN_NOTICE "max_ino=%lu\n", max_ino);
		}
		/* Avoid freeing blocks if we got a bad deleted inode */
		if (inode && inode->i_nlink == 0)
			inode->i_blocks = 0;
		iput(inode);
		inode = NULL;
	}
out:
	brelse(bitmap_bh);
	return inode;
}
Example #2
0
unsigned long ext4_count_free_inodes (struct super_block * sb)
{
	unsigned long desc_count;
	struct ext4_group_desc *gdp;
	int i;
#ifdef EXT4FS_DEBUG
	struct ext4_super_block *es;
	unsigned long bitmap_count, x;
	struct buffer_head *bitmap_bh = NULL;

	es = EXT4_SB(sb)->s_es;
	desc_count = 0;
	bitmap_count = 0;
	gdp = NULL;
	for (i = 0; i < EXT4_SB(sb)->s_groups_count; i++) {
		gdp = ext4_get_group_desc (sb, i, NULL);
		if (!gdp)
			continue;
		desc_count += le16_to_cpu(gdp->bg_free_inodes_count);
		brelse(bitmap_bh);
		bitmap_bh = read_inode_bitmap(sb, i);
		if (!bitmap_bh)
			continue;

		x = ext4_count_free(bitmap_bh, EXT4_INODES_PER_GROUP(sb) / 8);
		printk("group %d: stored = %d, counted = %lu\n",
			i, le16_to_cpu(gdp->bg_free_inodes_count), x);
		bitmap_count += x;
	}
	brelse(bitmap_bh);
	printk("ext4_count_free_inodes: stored = %u, computed = %lu, %lu\n",
		le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
	return desc_count;
#else
	desc_count = 0;
	for (i = 0; i < EXT4_SB(sb)->s_groups_count; i++) {
		gdp = ext4_get_group_desc (sb, i, NULL);
		if (!gdp)
			continue;
		desc_count += le16_to_cpu(gdp->bg_free_inodes_count);
		cond_resched();
	}
	return desc_count;
#endif
}
Example #3
0
int ext4_ext_migrate(struct inode *inode)
{
	handle_t *handle;
	int retval = 0, i;
	__le32 *i_data;
	struct ext4_inode_info *ei;
	struct inode *tmp_inode = NULL;
	struct migrate_struct lb;
	unsigned long max_entries;
	__u32 goal;
	uid_t owner[2];

	/*
	 * If the filesystem does not support extents, or the inode
	 * already is extent-based, error out.
	 */
	if (!EXT4_HAS_INCOMPAT_FEATURE(inode->i_sb,
				       EXT4_FEATURE_INCOMPAT_EXTENTS) ||
	    (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
		return -EINVAL;

	if (S_ISLNK(inode->i_mode) && inode->i_blocks == 0)
		/*
		 * don't migrate fast symlink
		 */
		return retval;

	/*
	 * Worst case we can touch the allocation bitmaps, a bgd
	 * block, and a block to link in the orphan list.  We do need
	 * need to worry about credits for modifying the quota inode.
	 */
	handle = ext4_journal_start(inode, EXT4_HT_MIGRATE,
		4 + EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));

	if (IS_ERR(handle)) {
		retval = PTR_ERR(handle);
		return retval;
	}
	goal = (((inode->i_ino - 1) / EXT4_INODES_PER_GROUP(inode->i_sb)) *
		EXT4_INODES_PER_GROUP(inode->i_sb)) + 1;
	owner[0] = i_uid_read(inode);
	owner[1] = i_gid_read(inode);
	tmp_inode = ext4_new_inode(handle, inode->i_sb->s_root->d_inode,
				   S_IFREG, NULL, goal, owner);
	if (IS_ERR(tmp_inode)) {
		retval = PTR_ERR(tmp_inode);
		ext4_journal_stop(handle);
		return retval;
	}
	i_size_write(tmp_inode, i_size_read(inode));
	/*
	 * Set the i_nlink to zero so it will be deleted later
	 * when we drop inode reference.
	 */
	clear_nlink(tmp_inode);

	ext4_ext_tree_init(handle, tmp_inode);
	ext4_orphan_add(handle, tmp_inode);
	ext4_journal_stop(handle);

	/*
	 * start with one credit accounted for
	 * superblock modification.
	 *
	 * For the tmp_inode we already have committed the
	 * trascation that created the inode. Later as and
	 * when we add extents we extent the journal
	 */
	/*
	 * Even though we take i_mutex we can still cause block
	 * allocation via mmap write to holes. If we have allocated
	 * new blocks we fail migrate.  New block allocation will
	 * clear EXT4_STATE_EXT_MIGRATE flag.  The flag is updated
	 * with i_data_sem held to prevent racing with block
	 * allocation.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	ext4_set_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
	up_read((&EXT4_I(inode)->i_data_sem));

	handle = ext4_journal_start(inode, EXT4_HT_MIGRATE, 1);
	if (IS_ERR(handle)) {
		/*
		 * It is impossible to update on-disk structures without
		 * a handle, so just rollback in-core changes and live other
		 * work to orphan_list_cleanup()
		 */
		ext4_orphan_del(NULL, tmp_inode);
		retval = PTR_ERR(handle);
		goto out;
	}

	ei = EXT4_I(inode);
	i_data = ei->i_data;
	memset(&lb, 0, sizeof(lb));

	/* 32 bit block address 4 bytes */
	max_entries = inode->i_sb->s_blocksize >> 2;
	for (i = 0; i < EXT4_NDIR_BLOCKS; i++) {
		if (i_data[i]) {
			retval = update_extent_range(handle, tmp_inode,
						le32_to_cpu(i_data[i]), &lb);
			if (retval)
				goto err_out;
		} else
			lb.curr_block++;
	}
	if (i_data[EXT4_IND_BLOCK]) {
		retval = update_ind_extent_range(handle, tmp_inode,
				le32_to_cpu(i_data[EXT4_IND_BLOCK]), &lb);
			if (retval)
				goto err_out;
	} else
		lb.curr_block += max_entries;
	if (i_data[EXT4_DIND_BLOCK]) {
		retval = update_dind_extent_range(handle, tmp_inode,
				le32_to_cpu(i_data[EXT4_DIND_BLOCK]), &lb);
			if (retval)
				goto err_out;
	} else
		lb.curr_block += max_entries * max_entries;
	if (i_data[EXT4_TIND_BLOCK]) {
		retval = update_tind_extent_range(handle, tmp_inode,
				le32_to_cpu(i_data[EXT4_TIND_BLOCK]), &lb);
			if (retval)
				goto err_out;
	}
	/*
	 * Build the last extent
	 */
	retval = finish_range(handle, tmp_inode, &lb);
err_out:
	if (retval)
		/*
		 * Failure case delete the extent information with the
		 * tmp_inode
		 */
		free_ext_block(handle, tmp_inode);
	else {
		retval = ext4_ext_swap_inode_data(handle, inode, tmp_inode);
		if (retval)
			/*
			 * if we fail to swap inode data free the extent
			 * details of the tmp inode
			 */
			free_ext_block(handle, tmp_inode);
	}

	/* We mark the tmp_inode dirty via ext4_ext_tree_init. */
	if (ext4_journal_extend(handle, 1) != 0)
		ext4_journal_restart(handle, 1);

	/*
	 * Mark the tmp_inode as of size zero
	 */
	i_size_write(tmp_inode, 0);

	/*
	 * set the  i_blocks count to zero
	 * so that the ext4_delete_inode does the
	 * right job
	 *
	 * We don't need to take the i_lock because
	 * the inode is not visible to user space.
	 */
	tmp_inode->i_blocks = 0;

	/* Reset the extent details */
	ext4_ext_tree_init(handle, tmp_inode);
	ext4_journal_stop(handle);
out:
	unlock_new_inode(tmp_inode);
	iput(tmp_inode);

	return retval;
}
Example #4
0
int ext4_ext_migrate(struct inode *inode)
{
	handle_t *handle;
	int retval = 0, i;
	__le32 *i_data;
	ext4_lblk_t blk_count = 0;
	struct ext4_inode_info *ei;
	struct inode *tmp_inode = NULL;
	struct list_blocks_struct lb;
	unsigned long max_entries;
	__u32 goal;

	/*
	 * If the filesystem does not support extents, or the inode
	 * already is extent-based, error out.
	 */
	if (!EXT4_HAS_INCOMPAT_FEATURE(inode->i_sb,
				       EXT4_FEATURE_INCOMPAT_EXTENTS) ||
	    (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
		return -EINVAL;

	if (S_ISLNK(inode->i_mode) && inode->i_blocks == 0)
		/*
		 * don't migrate fast symlink
		 */
		return retval;

	handle = ext4_journal_start(inode,
					EXT4_DATA_TRANS_BLOCKS(inode->i_sb) +
					EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3 +
					EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)
					+ 1);
	if (IS_ERR(handle)) {
		retval = PTR_ERR(handle);
		return retval;
	}
	goal = (((inode->i_ino - 1) / EXT4_INODES_PER_GROUP(inode->i_sb)) *
		EXT4_INODES_PER_GROUP(inode->i_sb)) + 1;
	tmp_inode = ext4_new_inode(handle, inode->i_sb->s_root->d_inode,
				   S_IFREG, 0, goal);
	if (IS_ERR(tmp_inode)) {
		retval = -ENOMEM;
		ext4_journal_stop(handle);
		return retval;
	}
	i_size_write(tmp_inode, i_size_read(inode));
	/*
	 * We don't want the inode to be reclaimed
	 * if we got interrupted in between. We have
	 * this tmp inode carrying reference to the
	 * data blocks of the original file. We set
	 * the i_nlink to zero at the last stage after
	 * switching the original file to extent format
	 */
	tmp_inode->i_nlink = 1;

	ext4_ext_tree_init(handle, tmp_inode);
	ext4_orphan_add(handle, tmp_inode);
	ext4_journal_stop(handle);

	/*
	 * start with one credit accounted for
	 * superblock modification.
	 *
	 * For the tmp_inode we already have commited the
	 * trascation that created the inode. Later as and
	 * when we add extents we extent the journal
	 */
	/*
	 * Even though we take i_mutex we can still cause block
	 * allocation via mmap write to holes. If we have allocated
	 * new blocks we fail migrate.  New block allocation will
	 * clear EXT4_STATE_EXT_MIGRATE flag.  The flag is updated
	 * with i_data_sem held to prevent racing with block
	 * allocation.
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
	EXT4_I(inode)->i_state |= EXT4_STATE_EXT_MIGRATE;
	up_read((&EXT4_I(inode)->i_data_sem));

	handle = ext4_journal_start(inode, 1);

	ei = EXT4_I(inode);
	i_data = ei->i_data;
	memset(&lb, 0, sizeof(lb));

	/* 32 bit block address 4 bytes */
	max_entries = inode->i_sb->s_blocksize >> 2;
	for (i = 0; i < EXT4_NDIR_BLOCKS; i++, blk_count++) {
		if (i_data[i]) {
			retval = update_extent_range(handle, tmp_inode,
						le32_to_cpu(i_data[i]),
						blk_count, &lb);
			if (retval)
				goto err_out;
		}
	}
	if (i_data[EXT4_IND_BLOCK]) {
		retval = update_ind_extent_range(handle, tmp_inode,
					le32_to_cpu(i_data[EXT4_IND_BLOCK]),
					&blk_count, &lb);
			if (retval)
				goto err_out;
	} else
		blk_count +=  max_entries;
	if (i_data[EXT4_DIND_BLOCK]) {
		retval = update_dind_extent_range(handle, tmp_inode,
					le32_to_cpu(i_data[EXT4_DIND_BLOCK]),
					&blk_count, &lb);
			if (retval)
				goto err_out;
	} else
		blk_count += max_entries * max_entries;
	if (i_data[EXT4_TIND_BLOCK]) {
		retval = update_tind_extent_range(handle, tmp_inode,
					le32_to_cpu(i_data[EXT4_TIND_BLOCK]),
					&blk_count, &lb);
			if (retval)
				goto err_out;
	}
	/*
	 * Build the last extent
	 */
	retval = finish_range(handle, tmp_inode, &lb);
err_out:
	if (retval)
		/*
		 * Failure case delete the extent information with the
		 * tmp_inode
		 */
		free_ext_block(handle, tmp_inode);
	else {
		retval = ext4_ext_swap_inode_data(handle, inode, tmp_inode);
		if (retval)
			/*
			 * if we fail to swap inode data free the extent
			 * details of the tmp inode
			 */
			free_ext_block(handle, tmp_inode);
	}

	/* We mark the tmp_inode dirty via ext4_ext_tree_init. */
	if (ext4_journal_extend(handle, 1) != 0)
		ext4_journal_restart(handle, 1);

	/*
	 * Mark the tmp_inode as of size zero
	 */
	i_size_write(tmp_inode, 0);

	/*
	 * set the  i_blocks count to zero
	 * so that the ext4_delete_inode does the
	 * right job
	 *
	 * We don't need to take the i_lock because
	 * the inode is not visible to user space.
	 */
	tmp_inode->i_blocks = 0;

	/* Reset the extent details */
	ext4_ext_tree_init(handle, tmp_inode);

	/*
	 * Set the i_nlink to zero so that
	 * generic_drop_inode really deletes the
	 * inode
	 */
	tmp_inode->i_nlink = 0;

	ext4_journal_stop(handle);
	unlock_new_inode(tmp_inode);
	iput(tmp_inode);

	return retval;
}
Example #5
0
/*
 * NOTE! When we get the inode, we're the only people
 * that have access to it, and as such there are no
 * race conditions we have to worry about. The inode
 * is not on the hash-lists, and it cannot be reached
 * through the filesystem because the directory entry
 * has been deleted earlier.
 *
 * HOWEVER: we must make sure that we get no aliases,
 * which means that we have to call "clear_inode()"
 * _before_ we mark the inode not in use in the inode
 * bitmaps. Otherwise a newly created file might use
 * the same inode number (not actually the same pointer
 * though), and then we'd have two inodes sharing the
 * same inode number and space on the harddisk.
 */
void ext4_free_inode (handle_t *handle, struct inode * inode)
{
	struct super_block * sb = inode->i_sb;
	int is_directory;
	unsigned long ino;
	struct buffer_head *bitmap_bh = NULL;
	struct buffer_head *bh2;
	unsigned long block_group;
	unsigned long bit;
	struct ext4_group_desc * gdp;
	struct ext4_super_block * es;
	struct ext4_sb_info *sbi;
	int fatal = 0, err;

	if (atomic_read(&inode->i_count) > 1) {
		printk ("ext4_free_inode: inode has count=%d\n",
					atomic_read(&inode->i_count));
		return;
	}
	if (inode->i_nlink) {
		printk ("ext4_free_inode: inode has nlink=%d\n",
			inode->i_nlink);
		return;
	}
	if (!sb) {
		printk("ext4_free_inode: inode on nonexistent device\n");
		return;
	}
	sbi = EXT4_SB(sb);

	ino = inode->i_ino;
	ext4_debug ("freeing inode %lu\n", ino);

	/*
	 * Note: we must free any quota before locking the superblock,
	 * as writing the quota to disk may need the lock as well.
	 */
	DQUOT_INIT(inode);
	ext4_xattr_delete_inode(handle, inode);
	DQUOT_FREE_INODE(inode);
	DQUOT_DROP(inode);

	is_directory = S_ISDIR(inode->i_mode);

	/* Do this BEFORE marking the inode not in use or returning an error */
	clear_inode (inode);

	es = EXT4_SB(sb)->s_es;
	if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
		ext4_error (sb, "ext4_free_inode",
			    "reserved or nonexistent inode %lu", ino);
		goto error_return;
	}
	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
	bitmap_bh = read_inode_bitmap(sb, block_group);
	if (!bitmap_bh)
		goto error_return;

	BUFFER_TRACE(bitmap_bh, "get_write_access");
	fatal = ext4_journal_get_write_access(handle, bitmap_bh);
	if (fatal)
		goto error_return;

	/* Ok, now we can actually update the inode bitmaps.. */
	if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
					bit, bitmap_bh->b_data))
		ext4_error (sb, "ext4_free_inode",
			      "bit already cleared for inode %lu", ino);
	else {
		gdp = ext4_get_group_desc (sb, block_group, &bh2);

		BUFFER_TRACE(bh2, "get_write_access");
		fatal = ext4_journal_get_write_access(handle, bh2);
		if (fatal) goto error_return;

		if (gdp) {
			spin_lock(sb_bgl_lock(sbi, block_group));
			gdp->bg_free_inodes_count = cpu_to_le16(
				le16_to_cpu(gdp->bg_free_inodes_count) + 1);
			if (is_directory)
				gdp->bg_used_dirs_count = cpu_to_le16(
				  le16_to_cpu(gdp->bg_used_dirs_count) - 1);
			spin_unlock(sb_bgl_lock(sbi, block_group));
			percpu_counter_inc(&sbi->s_freeinodes_counter);
			if (is_directory)
				percpu_counter_dec(&sbi->s_dirs_counter);

		}
		BUFFER_TRACE(bh2, "call ext4_journal_dirty_metadata");
		err = ext4_journal_dirty_metadata(handle, bh2);
		if (!fatal) fatal = err;
	}
	BUFFER_TRACE(bitmap_bh, "call ext4_journal_dirty_metadata");
	err = ext4_journal_dirty_metadata(handle, bitmap_bh);
	if (!fatal)
		fatal = err;
	sb->s_dirt = 1;
error_return:
	brelse(bitmap_bh);
	ext4_std_error(sb, fatal);
}
Example #6
0
/*
 * There are two policies for allocating an inode.  If the new inode is
 * a directory, then a forward search is made for a block group with both
 * free space and a low directory-to-inode ratio; if that fails, then of
 * the groups with above-average free space, that group with the fewest
 * directories already is chosen.
 *
 * For other inodes, search forward from the parent directory's block
 * group to find a free inode.
 */
struct inode *ext4_new_inode(handle_t *handle, struct inode * dir, int mode)
{
	struct super_block *sb;
	struct buffer_head *bitmap_bh = NULL;
	struct buffer_head *bh2;
	int group;
	unsigned long ino = 0;
	struct inode * inode;
	struct ext4_group_desc * gdp = NULL;
	struct ext4_super_block * es;
	struct ext4_inode_info *ei;
	struct ext4_sb_info *sbi;
	int err = 0;
	struct inode *ret;
	int i;

	/* Cannot create files in a deleted directory */
	if (!dir || !dir->i_nlink)
		return ERR_PTR(-EPERM);

	sb = dir->i_sb;
	inode = new_inode(sb);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	ei = EXT4_I(inode);

	sbi = EXT4_SB(sb);
	es = sbi->s_es;
	if (S_ISDIR(mode)) {
		if (test_opt (sb, OLDALLOC))
			group = find_group_dir(sb, dir);
		else
			group = find_group_orlov(sb, dir);
	} else
		group = find_group_other(sb, dir);

	err = -ENOSPC;
	if (group == -1)
		goto out;

	for (i = 0; i < sbi->s_groups_count; i++) {
		err = -EIO;

		gdp = ext4_get_group_desc(sb, group, &bh2);
		if (!gdp)
			goto fail;

		brelse(bitmap_bh);
		bitmap_bh = read_inode_bitmap(sb, group);
		if (!bitmap_bh)
			goto fail;

		ino = 0;

repeat_in_this_group:
		ino = ext4_find_next_zero_bit((unsigned long *)
				bitmap_bh->b_data, EXT4_INODES_PER_GROUP(sb), ino);
		if (ino < EXT4_INODES_PER_GROUP(sb)) {

			BUFFER_TRACE(bitmap_bh, "get_write_access");
			err = ext4_journal_get_write_access(handle, bitmap_bh);
			if (err)
				goto fail;

			if (!ext4_set_bit_atomic(sb_bgl_lock(sbi, group),
						ino, bitmap_bh->b_data)) {
				/* we won it */
				BUFFER_TRACE(bitmap_bh,
					"call ext4_journal_dirty_metadata");
				err = ext4_journal_dirty_metadata(handle,
								bitmap_bh);
				if (err)
					goto fail;
				goto got;
			}
			/* we lost it */
			jbd2_journal_release_buffer(handle, bitmap_bh);

			if (++ino < EXT4_INODES_PER_GROUP(sb))
				goto repeat_in_this_group;
		}

		/*
		 * This case is possible in concurrent environment.  It is very
		 * rare.  We cannot repeat the find_group_xxx() call because
		 * that will simply return the same blockgroup, because the
		 * group descriptor metadata has not yet been updated.
		 * So we just go onto the next blockgroup.
		 */
		if (++group == sbi->s_groups_count)
			group = 0;
	}
	err = -ENOSPC;
	goto out;

got:
	ino += group * EXT4_INODES_PER_GROUP(sb) + 1;
	if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
		ext4_error (sb, "ext4_new_inode",
			    "reserved inode or inode > inodes count - "
			    "block_group = %d, inode=%lu", group, ino);
		err = -EIO;
		goto fail;
	}

	BUFFER_TRACE(bh2, "get_write_access");
	err = ext4_journal_get_write_access(handle, bh2);
	if (err) goto fail;
	spin_lock(sb_bgl_lock(sbi, group));
	gdp->bg_free_inodes_count =
		cpu_to_le16(le16_to_cpu(gdp->bg_free_inodes_count) - 1);
	if (S_ISDIR(mode)) {
		gdp->bg_used_dirs_count =
			cpu_to_le16(le16_to_cpu(gdp->bg_used_dirs_count) + 1);
	}
	spin_unlock(sb_bgl_lock(sbi, group));
	BUFFER_TRACE(bh2, "call ext4_journal_dirty_metadata");
	err = ext4_journal_dirty_metadata(handle, bh2);
	if (err) goto fail;

	percpu_counter_dec(&sbi->s_freeinodes_counter);
	if (S_ISDIR(mode))
		percpu_counter_inc(&sbi->s_dirs_counter);
	sb->s_dirt = 1;

	inode->i_uid = current->fsuid;
	if (test_opt (sb, GRPID))
		inode->i_gid = dir->i_gid;
	else if (dir->i_mode & S_ISGID) {
		inode->i_gid = dir->i_gid;
		if (S_ISDIR(mode))
			mode |= S_ISGID;
	} else
		inode->i_gid = current->fsgid;
	inode->i_mode = mode;

	inode->i_ino = ino;
	/* This is the optimal IO size (for stat), not the fs block size */
	inode->i_blocks = 0;
	inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
						       ext4_current_time(inode);

	memset(ei->i_data, 0, sizeof(ei->i_data));
	ei->i_dir_start_lookup = 0;
	ei->i_disksize = 0;

	ei->i_flags = EXT4_I(dir)->i_flags & ~EXT4_INDEX_FL;
	if (S_ISLNK(mode))
		ei->i_flags &= ~(EXT4_IMMUTABLE_FL|EXT4_APPEND_FL);
	/* dirsync only applies to directories */
	if (!S_ISDIR(mode))
		ei->i_flags &= ~EXT4_DIRSYNC_FL;
#ifdef EXT4_FRAGMENTS
	ei->i_faddr = 0;
	ei->i_frag_no = 0;
	ei->i_frag_size = 0;
#endif
	ei->i_file_acl = 0;
	ei->i_dir_acl = 0;
	ei->i_dtime = 0;
	ei->i_block_alloc_info = NULL;
	ei->i_block_group = group;

	ext4_set_inode_flags(inode);
	if (IS_DIRSYNC(inode))
		handle->h_sync = 1;
	insert_inode_hash(inode);
	spin_lock(&sbi->s_next_gen_lock);
	inode->i_generation = sbi->s_next_generation++;
	spin_unlock(&sbi->s_next_gen_lock);

	ei->i_state = EXT4_STATE_NEW;

	ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;

	ret = inode;
	if(DQUOT_ALLOC_INODE(inode)) {
		err = -EDQUOT;
		goto fail_drop;
	}

	err = ext4_init_acl(handle, inode, dir);
	if (err)
		goto fail_free_drop;

	err = ext4_init_security(handle,inode, dir);
	if (err)
		goto fail_free_drop;

	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
		ext4_std_error(sb, err);
		goto fail_free_drop;
	}
	if (test_opt(sb, EXTENTS)) {
		EXT4_I(inode)->i_flags |= EXT4_EXTENTS_FL;
		ext4_ext_tree_init(handle, inode);
		if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
			err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
			if (err) goto fail;
			EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS);
			BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "call ext4_journal_dirty_metadata");
			err = ext4_journal_dirty_metadata(handle, EXT4_SB(sb)->s_sbh);
		}
	}

	ext4_debug("allocating inode %lu\n", inode->i_ino);
	goto really_out;
fail:
	ext4_std_error(sb, err);
out:
	iput(inode);
	ret = ERR_PTR(err);
really_out:
	brelse(bitmap_bh);
	return ret;

fail_free_drop:
	DQUOT_FREE_INODE(inode);

fail_drop:
	DQUOT_DROP(inode);
	inode->i_flags |= S_NOQUOTA;
	inode->i_nlink = 0;
	iput(inode);
	brelse(bitmap_bh);
	return ERR_PTR(err);
}
Example #7
0
static int find_group_orlov(struct super_block *sb, struct inode *parent)
{
	int parent_group = EXT4_I(parent)->i_block_group;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct ext4_super_block *es = sbi->s_es;
	int ngroups = sbi->s_groups_count;
	int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
	unsigned int freei, avefreei;
	ext4_fsblk_t freeb, avefreeb;
	ext4_fsblk_t blocks_per_dir;
	unsigned int ndirs;
	int max_debt, max_dirs, min_inodes;
	ext4_grpblk_t min_blocks;
	int group = -1, i;
	struct ext4_group_desc *desc;
	struct buffer_head *bh;

	freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
	avefreei = freei / ngroups;
	freeb = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	avefreeb = freeb;
	do_div(avefreeb, ngroups);
	ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);

	if ((parent == sb->s_root->d_inode) ||
	    (EXT4_I(parent)->i_flags & EXT4_TOPDIR_FL)) {
		int best_ndir = inodes_per_group;
		int best_group = -1;

		get_random_bytes(&group, sizeof(group));
		parent_group = (unsigned)group % ngroups;
		for (i = 0; i < ngroups; i++) {
			group = (parent_group + i) % ngroups;
			desc = ext4_get_group_desc (sb, group, &bh);
			if (!desc || !desc->bg_free_inodes_count)
				continue;
			if (le16_to_cpu(desc->bg_used_dirs_count) >= best_ndir)
				continue;
			if (le16_to_cpu(desc->bg_free_inodes_count) < avefreei)
				continue;
			if (le16_to_cpu(desc->bg_free_blocks_count) < avefreeb)
				continue;
			best_group = group;
			best_ndir = le16_to_cpu(desc->bg_used_dirs_count);
		}
		if (best_group >= 0)
			return best_group;
		goto fallback;
	}

	blocks_per_dir = ext4_blocks_count(es) - freeb;
	do_div(blocks_per_dir, ndirs);

	max_dirs = ndirs / ngroups + inodes_per_group / 16;
	min_inodes = avefreei - inodes_per_group / 4;
	min_blocks = avefreeb - EXT4_BLOCKS_PER_GROUP(sb) / 4;

	max_debt = EXT4_BLOCKS_PER_GROUP(sb);
	max_debt /= max_t(int, blocks_per_dir, BLOCK_COST);
	if (max_debt * INODE_COST > inodes_per_group)
		max_debt = inodes_per_group / INODE_COST;
	if (max_debt > 255)
		max_debt = 255;
	if (max_debt == 0)
		max_debt = 1;

	for (i = 0; i < ngroups; i++) {
		group = (parent_group + i) % ngroups;
		desc = ext4_get_group_desc (sb, group, &bh);
		if (!desc || !desc->bg_free_inodes_count)
			continue;
		if (le16_to_cpu(desc->bg_used_dirs_count) >= max_dirs)
			continue;
		if (le16_to_cpu(desc->bg_free_inodes_count) < min_inodes)
			continue;
		if (le16_to_cpu(desc->bg_free_blocks_count) < min_blocks)
			continue;
		return group;
	}

fallback:
	for (i = 0; i < ngroups; i++) {
		group = (parent_group + i) % ngroups;
		desc = ext4_get_group_desc (sb, group, &bh);
		if (!desc || !desc->bg_free_inodes_count)
			continue;
		if (le16_to_cpu(desc->bg_free_inodes_count) >= avefreei)
			return group;
	}

	if (avefreei) {
		/*
		 * The free-inodes counter is approximate, and for really small
		 * filesystems the above test can fail to find any blockgroups
		 */
		avefreei = 0;
		goto fallback;
	}

	return -1;
}