Example #1
0
void LMBC_DIF_JACF(LM_REAL *p, LM_REAL *jac, int m, int n, void *data)
{
struct LMBC_DIF_DATA *dta=(struct LMBC_DIF_DATA *)data;

  /* evaluate user-supplied function at p */
  (*(dta->func))(p, dta->hx, m, n, dta->adata);
  FDIF_FORW_JAC_APPROX(dta->func, p, dta->hx, dta->hxx, dta->delta, jac, m, n, dta->adata);
}
Example #2
0
/* Secant version of the LEVMAR_DER() function above: the jacobian is approximated with 
 * the aid of finite differences (forward or central, see the comment for the opts argument)
 */
int LEVMAR_DIF(
  void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in  R^n */
  int (*visf)(LM_REAL *p, LM_REAL *hx, int m, int n, int iter, LM_REAL p_eL2, void *adata), /* visualisation function, can be used to print optimisation progress. If 0 is returned, the optimisation is stopped, and the current estimate will be used. */
  LM_REAL *p,         /* I/O: initial parameter estimates. On output has the estimated solution */
  LM_REAL *x,         /* I: measurement vector */
  int m,              /* I: parameter vector dimension (i.e. #unknowns) */
  int n,              /* I: measurement vector dimension */
  int itmax,          /* I: maximum number of iterations */
  LM_REAL opts[5],    /* I: opts[0-4] = minim. options [\mu, \epsilon1, \epsilon2, \epsilon3, \delta]. Respectively the
                       * scale factor for initial \mu, stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2 and
                       * the step used in difference approximation to the jacobian. Set to NULL for defaults to be used.
                       * If \delta<0, the jacobian is approximated with central differences which are more accurate
                       * (but slower!) compared to the forward differences employed by default. 
                       */
  LM_REAL info[LM_INFO_SZ],
					           /* O: information regarding the minimization. Set to NULL if don't care
                      * info[0]= ||e||_2 at initial p.
                      * info[1-4]=[ ||e||_2, ||J^T e||_inf,  ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.
                      * info[5]= # iterations,
                      * info[6]=reason for terminating: 1 - stopped by small gradient J^T e
                      *                                 2 - stopped by small Dp
                      *                                 3 - stopped by itmax
                      *                                 4 - singular matrix. Restart from current p with increased mu 
                      *                                 5 - no further error reduction is possible. Restart with increased mu
                      *                                 6 - stopped by small ||e||_2
                      *                                 7 - stopped by user
                      * info[7]= # function evaluations
                      * info[8]= # jacobian evaluations
                      */
  LM_REAL *work,     /* working memory, allocate if NULL */
  LM_REAL *covar,    /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */
  void *adata)       /* pointer to possibly additional data, passed uninterpreted to func.
                      * Set to NULL if not needed
                      */
{
register int i, j, k, l;
int worksz, freework=0, issolved;
/* temp work arrays */
LM_REAL *e,          /* nx1 */
       *hx,         /* \hat{x}_i, nx1 */
       *jacTe,      /* J^T e_i mx1 */
       *jac,        /* nxm */
       *jacTjac,    /* mxm */
       *Dp,         /* mx1 */
   *diag_jacTjac,   /* diagonal of J^T J, mx1 */
       *pDp,        /* p + Dp, mx1 */
       *wrk;        /* nx1 */

int using_ffdif=1;
LM_REAL *wrk2=NULL; /* nx1, used for differentiating with central differences only */

register LM_REAL mu,  /* damping constant */
                tmp; /* mainly used in matrix & vector multiplications */
LM_REAL p_eL2, jacTe_inf, pDp_eL2; /* ||e(p)||_2, ||J^T e||_inf, ||e(p+Dp)||_2 */
LM_REAL p_L2, Dp_L2=LM_REAL_MAX, dF, dL;
LM_REAL tau, eps1, eps2, eps2_sq, eps3, delta;
LM_REAL init_p_eL2;
int nu, nu2, stop, nfev, njap=0, K=(m>=10)? m: 10, updjac, updp=1, newjac;
const int nm=n*m;

  mu=jacTe_inf=p_L2=0.0; /* -Wall */
  stop=updjac=newjac=0; /* -Wall */

  if(n<m){
    fprintf(stderr, LCAT(LEVMAR_DIF, "(): cannot solve a problem with fewer measurements [%d] than unknowns [%d]\n"), n, m);
    return -1;
  }

  if(opts){
	  tau=opts[0];
	  eps1=opts[1];
	  eps2=opts[2];
	  eps2_sq=opts[2]*opts[2];
    eps3=opts[3];
	  delta=opts[4];
    if(delta<0.0){
      delta=-delta; /* make positive */
      using_ffdif=0; /* use central differencing */
      wrk2=(LM_REAL *)malloc(n*sizeof(LM_REAL));
      if(!wrk2){
        fprintf(stderr, LCAT(LEVMAR_DIF, "(): memory allocation request for 'wrk2' failed\n"));
        return -1;
      }
    }
  }
  else{ // use default values
	  tau=CNST(LM_INIT_MU);
	  eps1=CNST(LM_STOP_THRESH);
	  eps2=CNST(LM_STOP_THRESH);
	  eps2_sq=CNST(LM_STOP_THRESH)*CNST(LM_STOP_THRESH);
    eps3=CNST(LM_STOP_THRESH);
	  delta=CNST(LM_DIFF_DELTA);
  }

  if(!work){
    worksz=LM_DIF_WORKSZ(m, n); //3*n+4*m + n*m + m*m;
    work=(LM_REAL *)malloc(worksz*sizeof(LM_REAL)); /* allocate a big chunk in one step */
    if(!work){
      fprintf(stderr, LCAT(LEVMAR_DIF, "(): memory allocation request failed\n"));
      return -1;
    }
    freework=1;
  }

  /* set up work arrays */
  e=work;
  hx=e + n;
  jacTe=hx + n;
  jac=jacTe + m;
  jacTjac=jac + nm;
  Dp=jacTjac + m*m;
  diag_jacTjac=Dp + m;
  pDp=diag_jacTjac + m;
  wrk=pDp + m;

  /* compute e=x - f(p) and its L2 norm */
  (*func)(p, hx, m, n, adata); nfev=1;
  for(i=0, p_eL2=0.0; i<n; ++i){
    e[i]=tmp=x[i]-hx[i];
    p_eL2+=tmp*tmp;
  }
  init_p_eL2=p_eL2;

  nu=20; /* force computation of J */

  for(k=0; k<itmax; ++k){
    /* Note that p and e have been updated at a previous iteration */

    if(p_eL2<=eps3){ /* error is small */
      stop=6;
      break;
    }

    /* Compute the jacobian J at p,  J^T J,  J^T e,  ||J^T e||_inf and ||p||^2.
     * The symmetry of J^T J is again exploited for speed
     */

    if((updp && nu>16) || updjac==K){ /* compute difference approximation to J */
      if(using_ffdif){ /* use forward differences */
        FDIF_FORW_JAC_APPROX(func, p, hx, wrk, delta, jac, m, n, adata);
        ++njap; nfev+=m;
      }
      else{ /* use central differences */
        FDIF_CENT_JAC_APPROX(func, p, wrk, wrk2, delta, jac, m, n, adata);
        ++njap; nfev+=2*m;
      }
      nu=2; updjac=0; updp=0; newjac=1;
    }

    if(newjac){ /* jacobian has changed, recompute J^T J, J^t e, etc */
      newjac=0;

      /* J^T J, J^T e */
      if(nm<=__BLOCKSZ__SQ){ // this is a small problem
        /* This is the straightforward way to compute J^T J, J^T e. However, due to
         * its noncontinuous memory access pattern, it incures many cache misses when
         * applied to large minimization problems (i.e. problems involving a large
         * number of free variables and measurements), in which J is too large to
         * fit in the L1 cache. For such problems, a cache-efficient blocking scheme
         * is preferable.
         *
         * Thanks to John Nitao of Lawrence Livermore Lab for pointing out this
         * performance problem.
         *
         * On the other hand, the straightforward algorithm is faster on small
         * problems since in this case it avoids the overheads of blocking. 
         */
      
        for(i=0; i<m; ++i){
          for(j=i; j<m; ++j){
            int lm;

            for(l=0, tmp=0.0; l<n; ++l){
              lm=l*m;
              tmp+=jac[lm+i]*jac[lm+j];
            }

            jacTjac[i*m+j]=jacTjac[j*m+i]=tmp;
          }

          /* J^T e */
          for(l=0, tmp=0.0; l<n; ++l)
            tmp+=jac[l*m+i]*e[l];
          jacTe[i]=tmp;
        }
      }
      else{ // this is a large problem
        /* Cache efficient computation of J^T J based on blocking
         */
        TRANS_MAT_MAT_MULT(jac, jacTjac, n, m);

        /* cache efficient computation of J^T e */
        for(i=0; i<m; ++i)
          jacTe[i]=0.0;

        for(i=0; i<n; ++i){
          register LM_REAL *jacrow;

          for(l=0, jacrow=jac+i*m, tmp=e[i]; l<m; ++l)
            jacTe[l]+=jacrow[l]*tmp;
        }
      }
      
      /* Compute ||J^T e||_inf and ||p||^2 */
      for(i=0, p_L2=jacTe_inf=0.0; i<m; ++i){
        if(jacTe_inf < (tmp=FABS(jacTe[i]))) jacTe_inf=tmp;

        diag_jacTjac[i]=jacTjac[i*m+i]; /* save diagonal entries so that augmentation can be later canceled */
        p_L2+=p[i]*p[i];
      }
      //p_L2=sqrt(p_L2);
    }

    // call visualisation function
    if (visf) {
        if (visf(p, hx, m, n, k, p_eL2, adata) == 0) {
            stop = 7;
            break;
        }
    }
#if 0
if(!(k%10)){
    printf("Iter: %d, estimate: ", k);
  for(i=0; i<m; ++i)
    printf("%.9g ", p[i]);
  printf("-- errors %.9g %0.9g\n", jacTe_inf, p_eL2);
}
#endif

    /* check for convergence */
    if((jacTe_inf <= eps1)){
      Dp_L2=0.0; /* no increment for p in this case */
      stop=1;
      break;
    }

   /* compute initial damping factor */
    if(k==0){
      for(i=0, tmp=LM_REAL_MIN; i<m; ++i)
        if(diag_jacTjac[i]>tmp) tmp=diag_jacTjac[i]; /* find max diagonal element */
      mu=tau*tmp;
    }

    /* determine increment using adaptive damping */

    /* augment normal equations */
    for(i=0; i<m; ++i)
      jacTjac[i*m+i]+=mu;

    /* solve augmented equations */
#ifdef HAVE_LAPACK
    /* 5 alternatives are available: LU, Cholesky, 2 variants of QR decomposition and SVD.
     * Cholesky is the fastest but might be inaccurate; QR is slower but more accurate;
     * SVD is the slowest but most accurate; LU offers a tradeoff between accuracy and speed
     */

    issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m);
    //issolved=AX_EQ_B_CHOL(jacTjac, jacTe, Dp, m);
    //issolved=AX_EQ_B_QR(jacTjac, jacTe, Dp, m);
    //issolved=AX_EQ_B_QRLS(jacTjac, jacTe, Dp, m, m);
    //issolved=AX_EQ_B_SVD(jacTjac, jacTe, Dp, m);
#else
    /* use the LU included with levmar */
    issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m);
#endif /* HAVE_LAPACK */

    if(issolved){
    /* compute p's new estimate and ||Dp||^2 */
      for(i=0, Dp_L2=0.0; i<m; ++i){
        pDp[i]=p[i] + (tmp=Dp[i]);
        Dp_L2+=tmp*tmp;
      }
      //Dp_L2=sqrt(Dp_L2);

      if(Dp_L2<=eps2_sq*p_L2){ /* relative change in p is small, stop */
      //if(Dp_L2<=eps2*(p_L2 + eps2)){ /* relative change in p is small, stop */
        stop=2;
        break;
      }

      if(Dp_L2>=(p_L2+eps2)/(CNST(EPSILON)*CNST(EPSILON))){ /* almost singular */
      //if(Dp_L2>=(p_L2+eps2)/CNST(EPSILON)){ /* almost singular */
        stop=4;
        break;
      }

      (*func)(pDp, wrk, m, n, adata); ++nfev; /* evaluate function at p + Dp */
      for(i=0, pDp_eL2=0.0; i<n; ++i){ /* compute ||e(pDp)||_2 */
        tmp=x[i]-wrk[i];
        pDp_eL2+=tmp*tmp;
      }

      dF=p_eL2-pDp_eL2;
      if(updp || dF>0){ /* update jac */
        for(i=0; i<n; ++i){
          for(l=0, tmp=0.0; l<m; ++l)
            tmp+=jac[i*m+l]*Dp[l]; /* (J * Dp)[i] */
          tmp=(wrk[i] - hx[i] - tmp)/Dp_L2; /* (f(p+dp)[i] - f(p)[i] - (J * Dp)[i])/(dp^T*dp) */
          for(j=0; j<m; ++j)
            jac[i*m+j]+=tmp*Dp[j];
        }
        ++updjac;
        newjac=1;
      }

      for(i=0, dL=0.0; i<m; ++i)
        dL+=Dp[i]*(mu*Dp[i]+jacTe[i]);

      if(dL>0.0 && dF>0.0){ /* reduction in error, increment is accepted */
        dF=(CNST(2.0)*dF/dL-CNST(1.0));
        tmp=dF*dF*dF;
        tmp=CNST(1.0)-tmp*tmp*dF;
        mu=mu*( (tmp>=CNST(ONE_THIRD))? tmp : CNST(ONE_THIRD) );
        nu=2;

        for(i=0 ; i<m; ++i) /* update p's estimate */
          p[i]=pDp[i];

        for(i=0; i<n; ++i){ /* update e, hx and ||e||_2 */
          e[i]=x[i]-wrk[i];
          hx[i]=wrk[i];
        }
        p_eL2=pDp_eL2;
        updp=1;
        continue;
      }
    }

    /* if this point is reached, either the linear system could not be solved or
     * the error did not reduce; in any case, the increment must be rejected
     */

    mu*=nu;
    nu2=nu<<1; // 2*nu;
    if(nu2<=nu){ /* nu has wrapped around (overflown). Thanks to Frank Jordan for spotting this case */
      stop=5;
      break;
    }
    nu=nu2;

    for(i=0; i<m; ++i) /* restore diagonal J^T J entries */
      jacTjac[i*m+i]=diag_jacTjac[i];
  }

  if(k>=itmax) stop=3;

  for(i=0; i<m; ++i) /* restore diagonal J^T J entries */
    jacTjac[i*m+i]=diag_jacTjac[i];

  if(info){
    info[0]=init_p_eL2;
    info[1]=p_eL2;
    info[2]=jacTe_inf;
    info[3]=Dp_L2;
    for(i=0, tmp=LM_REAL_MIN; i<m; ++i)
      if(tmp<jacTjac[i*m+i]) tmp=jacTjac[i*m+i];
    info[4]=mu/tmp;
    info[5]=(LM_REAL)k;
    info[6]=(LM_REAL)stop;
    info[7]=(LM_REAL)nfev;
    info[8]=(LM_REAL)njap;
  }

  /* covariance matrix */
  if(covar){
    LEVMAR_COVAR(jacTjac, covar, p_eL2, m, n);
  }

                                                               
  if(freework) free(work);

  if(wrk2) free(wrk2);

  return (stop!=4)?  k : -1;
}
Example #3
0
/* Similar to the LEVMAR_LEC_DER() function above, except that the jacobian is approximated
 * with the aid of finite differences (forward or central, see the comment for the opts argument)
 */
int LEVMAR_LEC_DIF(
  void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in  R^n */
  LM_REAL *p,         /* I/O: initial parameter estimates. On output has the estimated solution */
  LM_REAL *x,         /* I: measurement vector */
  int m,              /* I: parameter vector dimension (i.e. #unknowns) */
  int n,              /* I: measurement vector dimension */
  LM_REAL *A,         /* I: constraints matrix, kxm */
  LM_REAL *b,         /* I: right hand constraints vector, kx1 */
  int k,              /* I: number of contraints (i.e. A's #rows) */
  int itmax,          /* I: maximum number of iterations */
  LM_REAL opts[5],    /* I: opts[0-3] = minim. options [\mu, \epsilon1, \epsilon2, \epsilon3, \delta]. Respectively the
                       * scale factor for initial \mu, stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2 and
                       * the step used in difference approximation to the jacobian. Set to NULL for defaults to be used.
                       * If \delta<0, the jacobian is approximated with central differences which are more accurate
                       * (but slower!) compared to the forward differences employed by default. 
                       */
  LM_REAL info[LM_INFO_SZ],
					           /* O: information regarding the minimization. Set to NULL if don't care
                      * info[0]= ||e||_2 at initial p.
                      * info[1-4]=[ ||e||_2, ||J^T e||_inf,  ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.
                      * info[5]= # iterations,
                      * info[6]=reason for terminating: 1 - stopped by small gradient J^T e
                      *                                 2 - stopped by small Dp
                      *                                 3 - stopped by itmax
                      *                                 4 - singular matrix. Restart from current p with increased mu 
                      *                                 5 - no further error reduction is possible. Restart with increased mu
                      *                                 6 - stopped by small ||e||_2
                      * info[7]= # function evaluations
                      * info[8]= # jacobian evaluations
                      */
  LM_REAL *work,     /* working memory, allocate if NULL */
  LM_REAL *covar,    /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */
  void *adata)       /* pointer to possibly additional data, passed uninterpreted to func.
                      * Set to NULL if not needed
                      */
{
  struct LMLEC_DATA data;
  LM_REAL *ptr, *Z, *pp, *p0, *Zimm; /* Z is mxmm */
  int mm, ret;
  register int i, j;
  register LM_REAL tmp;
  LM_REAL locinfo[LM_INFO_SZ];

  mm=m-k;

  ptr=(LM_REAL *)malloc((2*m + m*mm + mm)*sizeof(LM_REAL));
  if(!ptr){
    fprintf(stderr, LCAT(LEVMAR_LEC_DIF, "(): memory allocation request failed\n"));
    exit(1);
  }
  data.p=p;
  p0=ptr;
  data.c=p0+m;
  data.Z=Z=data.c+m;
  data.jac=NULL;
  pp=data.Z+m*mm;
  data.ncnstr=k;
  data.func=func;
  data.jacf=NULL;
  data.adata=adata;

  LMLEC_ELIM(A, b, data.c, NULL, Z, k, m); // compute c, Z

  /* compute pp s.t. p = c + Z*pp or (Z^T Z)*pp=Z^T*(p-c)
   * Due to orthogonality, Z^T Z = I and the last equation
   * becomes pp=Z^T*(p-c). Also, save the starting p in p0
   */
  for(i=0; i<m; ++i){
    p0[i]=p[i];
    p[i]-=data.c[i];
  }

  /* Z^T*(p-c) */
  for(i=0; i<mm; ++i){
    for(j=0, tmp=0.0; j<m; ++j)
      tmp+=Z[j*mm+i]*p[j];
    pp[i]=tmp;
  }

  /* compute the p corresponding to pp (i.e. c + Z*pp) and compare with p0 */
  for(i=0; i<m; ++i){
    Zimm=Z+i*mm;
    for(j=0, tmp=data.c[i]; j<mm; ++j)
      tmp+=Zimm[j]*pp[j]; // tmp+=Z[i*mm+j]*pp[j];
    if(FABS(tmp-p0[i])>CNST(1E-03))
      fprintf(stderr, RCAT("Warning: component %d of starting point not feasible in ", LEVMAR_LEC_DIF) "()! [%.10g reset to %.10g]\n",
                      i, p0[i], tmp);
  }

  if(!info) info=locinfo; /* make sure that LEVMAR_DIF() is called with non-null info */
  /* note that covariance computation is not requested from LEVMAR_DIF() */
  ret=LEVMAR_DIF(LMLEC_FUNC, pp, x, mm, n, itmax, opts, info, work, NULL, (void *)&data);

  /* p=c + Z*pp */
  for(i=0; i<m; ++i){
    Zimm=Z+i*mm;
    for(j=0, tmp=data.c[i]; j<mm; ++j)
      tmp+=Zimm[j]*pp[j]; // tmp+=Z[i*mm+j]*pp[j];
    p[i]=tmp;
  }

  /* compute the jacobian with finite differences and use it to estimate the covariance */
  if(covar){
    LM_REAL *hx, *wrk, *jac;

    hx=(LM_REAL *)malloc((2*n+n*m)*sizeof(LM_REAL));
    if(!work){
      fprintf(stderr, LCAT(LEVMAR_LEC_DIF, "(): memory allocation request failed\n"));
      exit(1);
    }

    wrk=hx+n;
    jac=wrk+n;

    (*func)(p, hx, m, n, adata); /* evaluate function at p */
    FDIF_FORW_JAC_APPROX(func, p, hx, wrk, (LM_REAL)LM_DIFF_DELTA, jac, m, n, adata); /* compute the jacobian at p */
    TRANS_MAT_MAT_MULT(jac, covar, n, m, __BLOCKSZ__); /* covar = J^T J */
    LEVMAR_COVAR(covar, covar, info[1], m, n);
    free(hx);
  }

  free(ptr);

  return ret;
}