Example #1
0
ExprDesc* ED_MakeConstAbs (ExprDesc* Expr, long Value, Type* Type)
/* Make Expr an absolute const with the given value and type. */
{
    Expr->Sym   = 0;
    Expr->Type  = Type;
    Expr->Flags = E_LOC_ABS | E_RTYPE_RVAL | (Expr->Flags & E_HAVE_MARKS);
    Expr->Name  = 0;
    Expr->IVal  = Value;
    Expr->FVal  = FP_D_Make (0.0);
    return Expr;
}
Example #2
0
ExprDesc* ED_MakeConstAbsInt (ExprDesc* Expr, long Value)
/* Make Expr a constant integer expression with the given value */
{
    Expr->Sym   = 0;
    Expr->Type  = type_int;
    Expr->Flags = E_LOC_ABS | E_RTYPE_RVAL | (Expr->Flags & E_HAVE_MARKS);
    Expr->Name  = 0;
    Expr->IVal  = Value;
    Expr->FVal  = FP_D_Make (0.0);
    return Expr;
}
Example #3
0
ExprDesc* ED_MakeLValExpr (ExprDesc* Expr)
/* Convert Expr into a lvalue which is in the primary register without an
 * offset.
 */
{
    Expr->Sym   = 0;
    Expr->Flags &= ~(E_MASK_LOC | E_MASK_RTYPE | E_BITFIELD | E_NEED_TEST | E_CC_SET);
    Expr->Flags |= (E_LOC_EXPR | E_RTYPE_LVAL);
    Expr->Name  = 0;
    Expr->IVal  = 0;    /* No offset */
    Expr->FVal  = FP_D_Make (0.0);
    return Expr;
}
Example #4
0
ExprDesc* ED_Init (ExprDesc* Expr)
/* Initialize an ExprDesc */
{
    Expr->Sym       = 0;
    Expr->Type      = 0;
    Expr->Flags     = 0;
    Expr->Name      = 0;
    Expr->IVal      = 0;
    Expr->FVal      = FP_D_Make (0.0);
    Expr->LVal      = 0;
    Expr->BitOffs   = 0;
    Expr->BitWidth  = 0;
    return Expr;
}
Example #5
0
static void NumericConst (void)
/* Parse a numeric constant */
{
    unsigned Base;              /* Temporary number base */
    unsigned Prefix;            /* Base according to prefix */
    StrBuf   S = STATIC_STRBUF_INITIALIZER;
    int      IsFloat;
    char     C;
    unsigned DigitVal;
    unsigned long IVal;         /* Value */

    /* Check for a leading hex or octal prefix and determine the possible
    ** integer types.
    */
    if (CurC == '0') {
        /* Gobble 0 and examine next char */
        NextChar ();
        if (toupper (CurC) == 'X') {
            Base = Prefix = 16;
            NextChar ();        /* gobble "x" */
        } else {
            Base = 10;          /* Assume 10 for now - see below */
            Prefix = 8;         /* Actual prefix says octal */
        }
    } else {
        Base  = Prefix = 10;
    }

    /* Because floating point numbers don't have octal prefixes (a number
    ** with a leading zero is decimal), we first have to read the number
    ** before converting it, so we can determine if it's a float or an
    ** integer.
    */
    while (IsXDigit (CurC) && HexVal (CurC) < Base) {
        SB_AppendChar (&S, CurC);
        NextChar ();
    }
    SB_Terminate (&S);

    /* The following character tells us if we have an integer or floating
    ** point constant. Note: Hexadecimal floating point constants aren't
    ** supported in C89.
    */
    IsFloat = (CurC == '.' ||
               (Base == 10 && toupper (CurC) == 'E') ||
               (Base == 16 && toupper (CurC) == 'P' && IS_Get (&Standard) >= STD_C99));

    /* If we don't have a floating point type, an octal prefix results in an
    ** octal base.
    */
    if (!IsFloat && Prefix == 8) {
        Base = 8;
    }

    /* Since we do now know the correct base, convert the remembered input
    ** into a number.
    */
    SB_Reset (&S);
    IVal = 0;
    while ((C = SB_Get (&S)) != '\0') {
        DigitVal = HexVal (C);
        if (DigitVal >= Base) {
            Error ("Numeric constant contains digits beyond the radix");
        }
        IVal = (IVal * Base) + DigitVal;
    }

    /* We don't need the string buffer any longer */
    SB_Done (&S);

    /* Distinguish between integer and floating point constants */
    if (!IsFloat) {

        unsigned Types;
        int      HaveSuffix;

        /* Check for a suffix and determine the possible types */
        HaveSuffix = 1;
        if (toupper (CurC) == 'U') {
            /* Unsigned type */
            NextChar ();
            if (toupper (CurC) != 'L') {
                Types = IT_UINT | IT_ULONG;
            } else {
                NextChar ();
                Types = IT_ULONG;
            }
        } else if (toupper (CurC) == 'L') {
            /* Long type */
            NextChar ();
            if (toupper (CurC) != 'U') {
                Types = IT_LONG | IT_ULONG;
            } else {
                NextChar ();
                Types = IT_ULONG;
            }
        } else {
            HaveSuffix = 0;
            if (Prefix == 10) {
                /* Decimal constants are of any type but uint */
                Types = IT_INT | IT_LONG | IT_ULONG;
            } else {
                /* Octal or hex constants are of any type */
                Types = IT_INT | IT_UINT | IT_LONG | IT_ULONG;
            }
        }

        /* Check the range to determine the type */
        if (IVal > 0x7FFF) {
            /* Out of range for int */
            Types &= ~IT_INT;
            /* If the value is in the range 0x8000..0xFFFF, unsigned int is not
            ** allowed, and we don't have a type specifying suffix, emit a
            ** warning, because the constant is of type long.
            */
            if (IVal <= 0xFFFF && (Types & IT_UINT) == 0 && !HaveSuffix) {
                Warning ("Constant is long");
            }
        }
        if (IVal > 0xFFFF) {
            /* Out of range for unsigned int */
            Types &= ~IT_UINT;
        }
        if (IVal > 0x7FFFFFFF) {
            /* Out of range for long int */
            Types &= ~IT_LONG;
        }

        /* Now set the type string to the smallest type in types */
        if (Types & IT_INT) {
            NextTok.Type = type_int;
        } else if (Types & IT_UINT) {
            NextTok.Type = type_uint;
        } else if (Types & IT_LONG) {
            NextTok.Type = type_long;
        } else {
            NextTok.Type = type_ulong;
        }

        /* Set the value and the token */
        NextTok.IVal = IVal;
        NextTok.Tok  = TOK_ICONST;

    } else {

        /* Float constant */
        Double FVal = FP_D_FromInt (IVal);      /* Convert to double */

        /* Check for a fractional part and read it */
        if (CurC == '.') {

            Double Scale;

            /* Skip the dot */
            NextChar ();

            /* Read fractional digits */
            Scale  = FP_D_Make (1.0);
            while (IsXDigit (CurC) && (DigitVal = HexVal (CurC)) < Base) {
                /* Get the value of this digit */
                Double FracVal = FP_D_Div (FP_D_FromInt (DigitVal * Base), Scale);
                /* Add it to the float value */
                FVal = FP_D_Add (FVal, FracVal);
                /* Scale base */
                Scale = FP_D_Mul (Scale, FP_D_FromInt (DigitVal));
                /* Skip the digit */
                NextChar ();
            }
        }

        /* Check for an exponent and read it */
        if ((Base == 16 && toupper (CurC) == 'F') ||
            (Base == 10 && toupper (CurC) == 'E')) {

            unsigned Digits;
            unsigned Exp;

            /* Skip the exponent notifier */
            NextChar ();

            /* Read an optional sign */
            if (CurC == '-') {
                NextChar ();
            } else if (CurC == '+') {
                NextChar ();
            }

            /* Read exponent digits. Since we support only 32 bit floats
            ** with a maximum exponent of +-/127, we read the exponent
            ** part as integer with up to 3 digits and drop the remainder.
            ** This avoids an overflow of Exp. The exponent is always
            ** decimal, even for hex float consts.
            */
            Digits = 0;
            Exp    = 0;
            while (IsDigit (CurC)) {
                if (++Digits <= 3) {
                    Exp = Exp * 10 + HexVal (CurC);
                }
                NextChar ();
            }

            /* Check for errors: We must have exponent digits, and not more
            ** than three.
            */
            if (Digits == 0) {
                Error ("Floating constant exponent has no digits");
            } else if (Digits > 3) {
                Warning ("Floating constant exponent is too large");
            }

            /* Scale the exponent and adjust the value accordingly */
            if (Exp) {
                FVal = FP_D_Mul (FVal, FP_D_Make (pow (10, Exp)));
            }
        }

        /* Check for a suffix and determine the type of the constant */
        if (toupper (CurC) == 'F') {
            NextChar ();
            NextTok.Type = type_float;
        } else {
            NextTok.Type = type_double;
        }

        /* Set the value and the token */
        NextTok.FVal = FVal;
        NextTok.Tok  = TOK_FCONST;

    }
}