Example #1
0
//
//  Rehash_Hash: C
// 
// Recompute the entire hash table. Table must be large enough.
//
static void Rehash_Hash(REBSER *series)
{
    REBVAL *val;
    REBCNT n;
    REBCNT key;
    REBCNT *hashes;

    if (!series->extra.series) return;

    hashes = cast(REBCNT*, series->extra.series->data);

    val = BLK_HEAD(series);
    for (n = 0; n < series->tail; n += 2, val += 2) {
        key = Find_Key(series, series->extra.series, val, 2, 0, 0);
        hashes[key] = n/2+1;
    }
}
Example #2
0
*/	static void Rehash_Hash(REBSER *series)
/*
**		Recompute the entire hash table. Table must be large enough.
**
***********************************************************************/
{
	REBVAL *val;
	REBCNT n;
	REBCNT key;
	REBCNT *hashes;

	if (!series->extra.series) return;

	hashes = cast(REBCNT*, series->extra.series->data);

	val = BLK_HEAD(series);
	for (n = 0; n < series->tail; n += 2, val += 2) {
		key = Find_Key(series, series->extra.series, val, 2, 0, 0);
		hashes[key] = n/2+1;
	}
}
Example #3
0
//
//  Make_Set_Operation_Series: C
// 
// Do set operations on a series.  Case-sensitive if `cased` is TRUE.
// `skip` is the record size.
//
static REBSER *Make_Set_Operation_Series(const REBVAL *val1, const REBVAL *val2, REBCNT flags, REBCNT cased, REBCNT skip)
{
    REBSER *buffer;     // buffer for building the return series
    REBCNT i;
    REBINT h = TRUE;
    REBFLG first_pass = TRUE; // are we in the first pass over the series?
    REBSER *out_ser;

    // This routine should only be called with SERIES! values
    assert(ANY_SERIES(val1));

    if (val2) {
        assert(ANY_SERIES(val2));

        if (ANY_ARRAY(val1)) {
            if (!ANY_ARRAY(val2))
                fail (Error_Unexpected_Type(VAL_TYPE(val1), VAL_TYPE(val2)));

            // As long as they're both arrays, we're willing to do:
            //
            //     >> union quote (a b c) 'b/d/e
            //     (a b c d e)
            //
            // The type of the result will match the first value.
        }
        else if (!IS_BINARY(val1)) {

            // We will similarly do any two ANY-STRING! types:
            //
            //      >> union <abc> "bde"
            //      <abcde>

            if (IS_BINARY(val2))
                fail (Error_Unexpected_Type(VAL_TYPE(val1), VAL_TYPE(val2)));
        }
        else {
            // Binaries only operate with other binaries

            if (!IS_BINARY(val2))
                fail (Error_Unexpected_Type(VAL_TYPE(val1), VAL_TYPE(val2)));
        }
    }

    // Calculate i as length of result block.
    i = VAL_LEN(val1);
    if (flags & SOP_FLAG_BOTH) i += VAL_LEN(val2);

    if (ANY_ARRAY(val1)) {
        REBSER *hser = 0;   // hash table for series
        REBSER *hret;       // hash table for return series

        buffer = BUF_EMIT;          // use preallocated shared block
        Resize_Series(buffer, i);
        hret = Make_Hash_Sequence(i);   // allocated

        // Optimization note: !!
        // This code could be optimized for small blocks by not hashing them
        // and extending Find_Key to do a FIND on the value itself w/o the hash.

        do {
            REBSER *ser = VAL_SERIES(val1); // val1 and val2 swapped 2nd pass!

            // Check what is in series1 but not in series2:
            if (flags & SOP_FLAG_CHECK)
                hser = Hash_Block(val2, cased);

            // Iterate over first series:
            i = VAL_INDEX(val1);
            for (; i < SERIES_TAIL(ser); i += skip) {
                REBVAL *item = BLK_SKIP(ser, i);
                if (flags & SOP_FLAG_CHECK) {
                    h = Find_Key(VAL_SERIES(val2), hser, item, skip, cased, 1);
                    h = (h >= 0);
                    if (flags & SOP_FLAG_INVERT) h = !h;
                }
                if (h) Find_Key(buffer, hret, item, skip, cased, 2);
            }

            if (flags & SOP_FLAG_CHECK)
                Free_Series(hser);

            if (!first_pass) break;
            first_pass = FALSE;

            // Iterate over second series?
            if ((i = ((flags & SOP_FLAG_BOTH) != 0))) {
                const REBVAL *temp = val1;
                val1 = val2;
                val2 = temp;
            }
        } while (i);

        if (hret)
            Free_Series(hret);

        out_ser = Copy_Array_Shallow(buffer);
        RESET_TAIL(buffer); // required - allow reuse
    }
    else {
        if (IS_BINARY(val1)) {
            // All binaries use "case-sensitive" comparison (e.g. each byte
            // is treated distinctly)
            cased = TRUE;
        }

        buffer = BUF_MOLD;
        Reset_Buffer(buffer, i);
        RESET_TAIL(buffer);

        do {
            REBSER *ser = VAL_SERIES(val1); // val1 and val2 swapped 2nd pass!
            REBUNI uc;

            // Iterate over first series:
            i = VAL_INDEX(val1);
            for (; i < SERIES_TAIL(ser); i += skip) {
                uc = GET_ANY_CHAR(ser, i);
                if (flags & SOP_FLAG_CHECK) {
                    h = (NOT_FOUND != Find_Str_Char(
                        VAL_SERIES(val2),
                        0,
                        VAL_INDEX(val2),
                        VAL_TAIL(val2),
                        skip,
                        uc,
                        cased ? AM_FIND_CASE : 0
                    ));

                    if (flags & SOP_FLAG_INVERT) h = !h;
                }

                if (!h) continue;

                if (
                    NOT_FOUND == Find_Str_Char(
                        buffer,
                        0,
                        0,
                        SERIES_TAIL(buffer),
                        skip,
                        uc,
                        cased ? AM_FIND_CASE : 0
                    )
                ) {
                    Append_String(buffer, ser, i, skip);
                }
            }

            if (!first_pass) break;
            first_pass = FALSE;

            // Iterate over second series?
            if ((i = ((flags & SOP_FLAG_BOTH) != 0))) {
                const REBVAL *temp = val1;
                val1 = val2;
                val2 = temp;
            }
        } while (i);

        out_ser = Copy_String(buffer, 0, -1);
    }

    return out_ser;
}
Example #4
0
*/	static REBINT Do_Set_Operation(struct Reb_Call *call_, REBCNT flags)
/*
**		Do set operations on a series.
**
***********************************************************************/
{
	REBVAL *val;
	REBVAL *val1;
	REBVAL *val2 = 0;
	REBSER *ser;
	REBSER *hser = 0;	// hash table for series
	REBSER *retser;		// return series
	REBSER *hret;		// hash table for return series
	REBCNT i;
	REBINT h = TRUE;
	REBCNT skip = 1;	// record size
	REBCNT cased = 0;	// case sensitive when TRUE

	SET_NONE(D_OUT);
	val1 = D_ARG(1);
	i = 2;

	// Check for second series argument:
	if (flags != SET_OP_UNIQUE) {
		val2 = D_ARG(i++);
		if (VAL_TYPE(val1) != VAL_TYPE(val2))
			raise Error_Unexpected_Type(VAL_TYPE(val1), VAL_TYPE(val2));
	}

	// Refinements /case and /skip N
	cased = D_REF(i++); // cased
	if (D_REF(i++)) skip = Int32s(D_ARG(i), 1);

	switch (VAL_TYPE(val1)) {

	case REB_BLOCK:
		i = VAL_LEN(val1);
		// Setup result block:
		if (GET_FLAG(flags, SOP_BOTH)) i += VAL_LEN(val2);
		retser = BUF_EMIT;			// use preallocated shared block
		Resize_Series(retser, i);
		hret = Make_Hash_Sequence(i);	// allocated

		// Optimization note: !!
		// This code could be optimized for small blocks by not hashing them
		// and extending Find_Key to do a FIND on the value itself w/o the hash.

		do {
			// Check what is in series1 but not in series2:
			if (GET_FLAG(flags, SOP_CHECK))
				hser = Hash_Block(val2, cased);

			// Iterate over first series:
			ser = VAL_SERIES(val1);
			i = VAL_INDEX(val1);
			for (; val = BLK_SKIP(ser, i), i < SERIES_TAIL(ser); i += skip) {
				if (GET_FLAG(flags, SOP_CHECK)) {
					h = Find_Key(VAL_SERIES(val2), hser, val, skip, cased, 1) >= 0;
					if (GET_FLAG(flags, SOP_INVERT)) h = !h;
				}
				if (h) Find_Key(retser, hret, val, skip, cased, 2);
			}

			// Iterate over second series?
			if ((i = GET_FLAG(flags, SOP_BOTH))) {
				val = val1;
				val1 = val2;
				val2 = val;
				CLR_FLAG(flags, SOP_BOTH);
			}

			if (GET_FLAG(flags, SOP_CHECK))
				Free_Series(hser);
		} while (i);

		if (hret)
			Free_Series(hret);

		Val_Init_Block(D_OUT, Copy_Array_Shallow(retser));
		RESET_TAIL(retser); // required - allow reuse

		break;

	case REB_BINARY:
		cased = TRUE;
		SET_TYPE(D_OUT, REB_BINARY);
	case REB_STRING:
		i = VAL_LEN(val1);
		// Setup result block:
		if (GET_FLAG(flags, SOP_BOTH)) i += VAL_LEN(val2);

		retser = BUF_MOLD;
		Reset_Buffer(retser, i);
		RESET_TAIL(retser);

		do {
			REBUNI uc;

			cased = cased ? AM_FIND_CASE : 0;

			// Iterate over first series:
			ser = VAL_SERIES(val1);
			i = VAL_INDEX(val1);
			for (; i < SERIES_TAIL(ser); i += skip) {
				uc = GET_ANY_CHAR(ser, i);
				if (GET_FLAG(flags, SOP_CHECK)) {
					h = Find_Str_Char(VAL_SERIES(val2), 0, VAL_INDEX(val2), VAL_TAIL(val2), skip, uc, cased) != NOT_FOUND;
					if (GET_FLAG(flags, SOP_INVERT)) h = !h;
				}
				if (h && (Find_Str_Char(retser, 0, 0, SERIES_TAIL(retser), skip, uc, cased) == NOT_FOUND)) {
					Append_String(retser, ser, i, skip);
				}
			}

			// Iterate over second series?
			if ((i = GET_FLAG(flags, SOP_BOTH))) {
				val = val1;
				val1 = val2;
				val2 = val;
				CLR_FLAG(flags, SOP_BOTH);
			}
		} while (i);

		ser = Copy_String(retser, 0, -1);
		if (IS_BINARY(D_OUT))
			Val_Init_Binary(D_OUT, ser);
		else
			Val_Init_String(D_OUT, ser);
		break;

	case REB_BITSET:
		switch (flags) {
		case SET_OP_UNIQUE:
			return R_ARG1;
		case SET_OP_UNION:
			i = A_OR;
			break;
		case SET_OP_INTERSECT:
			i = A_AND;
			break;
		case SET_OP_DIFFERENCE:
			i = A_XOR;
			break;
		case SET_OP_EXCLUDE:
			i = 0; // special case
			break;
		}
		ser = Xandor_Binary(i, val1, val2);
		Val_Init_Bitset(D_OUT, ser);
		break;

	case REB_TYPESET:
		switch (flags) {
		case SET_OP_UNIQUE:
			break;
		case SET_OP_UNION:
			VAL_TYPESET(val1) |= VAL_TYPESET(val2);
			break;
		case SET_OP_INTERSECT:
			VAL_TYPESET(val1) &= VAL_TYPESET(val2);
			break;
		case SET_OP_DIFFERENCE:
			VAL_TYPESET(val1) ^= VAL_TYPESET(val2);
			break;
		case SET_OP_EXCLUDE:
			VAL_TYPESET(val1) &= ~VAL_TYPESET(val2);
			break;
		}
		return R_ARG1;

	default:
		raise Error_Invalid_Arg(val1);
	}

	return R_OUT;
}
Example #5
0
//
//  Find_Entry: C
// 
// Try to find the entry in the map. If not found
// and val is SET, create the entry and store the key and
// val.
// 
// RETURNS: the index to the VALUE or zero if there is none.
//
static REBCNT Find_Entry(REBSER *series, REBVAL *key, REBVAL *val)
{
    REBSER *hser = series->extra.series; // can be null
    REBCNT *hashes;
    REBCNT hash;
    REBVAL *v;
    REBCNT n;

    if (IS_NONE(key)) return 0;

    // We may not be large enough yet for the hash table to
    // be worthwhile, so just do a linear search:
    if (!hser) {
        if (series->tail < MIN_DICT*2) {
            v = BLK_HEAD(series);
            if (ANY_WORD(key)) {
                for (n = 0; n < series->tail; n += 2, v += 2) {
                    if (
                        ANY_WORD(v)
                        && SAME_SYM(VAL_WORD_SYM(key), VAL_WORD_SYM(v))
                    ) {
                        if (val) *++v = *val;
                        return n/2+1;
                    }
                }
            }
            else if (ANY_BINSTR(key)) {
                for (n = 0; n < series->tail; n += 2, v += 2) {
                    if (VAL_TYPE(key) == VAL_TYPE(v) && 0 == Compare_String_Vals(key, v, (REBOOL)!IS_BINARY(v))) {
                        if (val)
                            *++v = *val;

                        return n/2+1;
                    }
                }
            }
            else if (IS_INTEGER(key)) {
                for (n = 0; n < series->tail; n += 2, v += 2) {
                    if (IS_INTEGER(v) && VAL_INT64(key) == VAL_INT64(v)) {
                        if (val) *++v = *val;
                        return n/2+1;
                    }
                }
            }
            else if (IS_CHAR(key)) {
                for (n = 0; n < series->tail; n += 2, v += 2) {
                    if (IS_CHAR(v) && VAL_CHAR(key) == VAL_CHAR(v)) {
                        if (val) *++v = *val;
                        return n/2+1;
                    }
                }
            }
            else
                fail (Error_Has_Bad_Type(key));

            if (!val) return 0;
            Append_Value(series, key);
            Append_Value(series, val); // does not copy value, e.g. if string
            return series->tail/2;
        }

        // Add hash table:
        //Print("hash added %d", series->tail);
        series->extra.series = hser = Make_Hash_Sequence(series->tail);
        MANAGE_SERIES(hser);
        Rehash_Hash(series);
    }

    // Get hash table, expand it if needed:
    if (series->tail > hser->tail/2) {
        Expand_Hash(hser); // modifies size value
        Rehash_Hash(series);
    }

    hash = Find_Key(series, hser, key, 2, 0, 0);
    hashes = (REBCNT*)hser->data;
    n = hashes[hash];

    // Just a GET of value:
    if (!val) return n;

    // Must set the value:
    if (n) {  // re-set it:
        *BLK_SKIP(series, ((n-1)*2)+1) = *val; // set it
        return n;
    }

    // Create new entry:
    Append_Value(series, key);
    Append_Value(series, val);  // does not copy value, e.g. if string

    return (hashes[hash] = series->tail/2);
}
Example #6
0
*/	static REBCNT Find_Entry(REBSER *series, REBVAL *key, REBVAL *val)
/*
**		Try to find the entry in the map. If not found
**		and val is SET, create the entry and store the key and
**		val.
**
**		RETURNS: the index to the VALUE or zero if there is none.
**
***********************************************************************/
{
	REBSER *hser = series->extra.series; // can be null
	REBCNT *hashes;
	REBCNT hash;
	REBVAL *v;
	REBCNT n;

	if (IS_NONE(key)) return 0;

	// We may not be large enough yet for the hash table to
	// be worthwhile, so just do a linear search:
	if (!hser) {
		if (series->tail < MIN_DICT*2) {
			v = BLK_HEAD(series);
			if (ANY_WORD(key)) {
				for (n = 0; n < series->tail; n += 2, v += 2) {
					if (ANY_WORD(v) && SAME_SYM(key, v)) {
						if (val) *++v = *val;
						return n/2+1;
					}
				}
			}
			else if (ANY_BINSTR(key)) {
				for (n = 0; n < series->tail; n += 2, v += 2) {
					if (VAL_TYPE(key) == VAL_TYPE(v) && 0 == Compare_String_Vals(key, v, (REBOOL)!IS_BINARY(v))) {
						if (val) {
							*++v = *val;
//							VAL_SERIES(v) = Copy_Series_Value(val);
//							VAL_INDEX(v) = 0;
						}
						return n/2+1;
					}
				}
			}
			else if (IS_INTEGER(key)) {
				for (n = 0; n < series->tail; n += 2, v += 2) {
					if (IS_INTEGER(v) && VAL_INT64(key) == VAL_INT64(v)) {
						if (val) *++v = *val;
						return n/2+1;
					}
				}
			}
			else if (IS_CHAR(key)) {
				for (n = 0; n < series->tail; n += 2, v += 2) {
					if (IS_CHAR(v) && VAL_CHAR(key) == VAL_CHAR(v)) {
						if (val) *++v = *val;
						return n/2+1;
					}
				}
			}
			else Trap_Type_DEAD_END(key);

			if (!val) return 0;
			Append_Value(series, key);
			Append_Value(series, val); // no Copy_Series_Value(val) on strings
			return series->tail/2;
		}

		// Add hash table:
		//Print("hash added %d", series->tail);
		series->extra.series = hser = Make_Hash_Array(series->tail);
		Rehash_Hash(series);
	}

	// Get hash table, expand it if needed:
	if (series->tail > hser->tail/2) {
		Expand_Hash(hser); // modifies size value
		Rehash_Hash(series);
	}

	hash = Find_Key(series, hser, key, 2, 0, 0);
	hashes = (REBCNT*)hser->data;
	n = hashes[hash];

	// Just a GET of value:
	if (!val) return n;

	// Must set the value:
	if (n) {  // re-set it:
		*BLK_SKIP(series, ((n-1)*2)+1) = *val; // set it
		return n;
	}

	// Create new entry:
	Append_Value(series, key);
	Append_Value(series, val);  // no Copy_Series_Value(val) on strings

	return (hashes[hash] = series->tail/2);
}