Example #1
0
/*

Calculates the parameters of the optimization for the patellar tendon, based upon optimization method 1 (as described in the 
FreeBody user manual)

*/
void Muscle::mus_opt_pt_2(Segment **segment_data[]) {



	int points=this->pnts, segment_prox_point, segment_dist_point, frame=this->frame;
	int segment_most_prox=int (this->gblpnts[0][3]), segment_most_dist=int (this->gblpnts[points-1][3]);
	int num_segments=this->segments_spanned;
	Vec_DP v0(3), v1(3), v2(3), v3(3), v4(3), v5(3), v6(3), v7(3), r(3), Fnorm(3), Fnorm1(3), Fnorm2(3), opt_vec(3);

	for (int i=0; i<points-1; i++) {														// This routine iterates for each muscle point

		segment_prox_point=int (this->gblpnts[i][3]);										// Determine the location of each muscle point (what segment)
		segment_dist_point=int (this->gblpnts[i+1][3]);
		
		if ((segment_dist_point == segment_most_dist) && (segment_prox_point != segment_most_dist)) {

			for (int j=0; j<3; j++) {
				v0[j]=this->gblpnts[i][j];
				v1[j]=this->gblpnts[i+1][j];
				v2[j]=segment_data[frame][segment_dist_point]->rot_centre[j];
				r[j]=v1[j]-v2[j];
				Fnorm[j]=v0[j]-v1[j];
			}
			Fnorm=MATHEMATICS::math_vecnorm(Fnorm);
			opt_vec=MATHEMATICS::math_crossprd(r,Fnorm);

			for (int j=0; j<3; j++) {
				this->opt_2[0][j]=Fnorm[j];
				this->opt_2[3][j]=opt_vec[j];
			}
			this->opt_2[0][3]=segment_most_dist;
			this->opt_2[3][3]=segment_most_dist;

			for (int j=0; j<3; j++) {
				this->opt_2[1][j]=-Fnorm[j];
			}
			this->opt_2[1][3]=segment_most_prox;
			this->opt_2[2][3]=-1;
			this->opt_2[4][3]=-1;
			this->opt_2[5][3]=-1;

			

		
		}


	}

	return;
}
Example #2
0
int main(int argc, char *argv[])
{
	// tests();
	// srand(time(10));
	srand(10);
	if(argc < 4)
	{
		std::cout << "Input arguments:\n\t1: Filename for A matrix (as in A ~= WH)\n\t2: New desired dimension\n\t3: Max NMF iterations\n\t4: Max NNLS iterations\n\t5 (optional): delimiter (space is default)\n";
	}
	else
	{
		std::string filename = argv[1];
		int newDimension = atoi(argv[2]);
		int max_iter_nmf = atoi(argv[3]);
		int max_iter_nnls = atoi(argv[4]);
		char delimiter = (argc > 5) ? *argv[5] : ' ';

		DenseMatrix* A = readMatrix(filename,delimiter);
		A->copyColumnToRow();
		printf("Sparsity of A: %f\n",sparsity(A));

		DenseMatrix W = DenseMatrix(A->rows,newDimension);
		DenseMatrix H = DenseMatrix(newDimension,A->cols);
		NMF_Input input = NMF_Input(&W,&H,A,max_iter_nmf,max_iter_nnls);

		std::cout << "Starting NMF computation." << std::endl;
		std::clock_t start = std::clock();
		double duration;
		// nmf_cpu(input);
		nmf_cpu_profile(input);
		duration = ( std::clock() - start ) / (double) CLOCKS_PER_SEC;
		std::cout << "NMF computation complete. Time: " << duration << " s." << std::endl;

		W.copyColumnToRow();
		dtype AF = FrobeniusNorm(A);
		dtype WH_AF = Fnorm(W,H,*A);
		printf("Objective value: %f\n",WH_AF/AF);
		// DenseMatrix z1 = DenseMatrix(A->rows,newDimension);
		// DenseMatrix z2 = DenseMatrix(newDimension,A->cols);
		// printf("Calculated solution approximate Frobenius norm: %f\n",Fnorm(z1,z2,*A));
		// printcolmajor(H.colmajor,H.rows,H.cols);
		if(A) delete A;
	}
	return 0;
}