/**Function************************************************************* Synopsis [Adds clauses to the solver.] Description [This procedure is used to add external clauses to the solver. The clauses are given by sets of nodes. Each node stands for one literal. If the node is complemented, the literal is negated.] SideEffects [] SeeAlso [] ***********************************************************************/ void Fraig_ManAddClause( Fraig_Man_t * p, Fraig_Node_t ** ppNodes, int nNodes ) { Fraig_Node_t * pNode; int i, fComp, RetValue; if ( p->pSat == NULL ) Fraig_ManCreateSolver( p ); // create four clauses Msat_IntVecClear( p->vProj ); for ( i = 0; i < nNodes; i++ ) { pNode = Fraig_Regular(ppNodes[i]); fComp = Fraig_IsComplement(ppNodes[i]); Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNode->Num, fComp) ); // printf( "%d(%d) ", pNode->Num, fComp ); } // printf( "\n" ); RetValue = Msat_SolverAddClause( p->pSat, p->vProj ); assert( RetValue ); }
/**Function************************************************************* Synopsis [Checks whether pOld => pNew.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Fraig_NodeIsImplication( Fraig_Man_t * p, Fraig_Node_t * pOld, Fraig_Node_t * pNew, int nBTLimit ) { int RetValue, RetValue1, i, fComp, clk; int fVerbose = 0; // make sure the nodes are not complemented assert( !Fraig_IsComplement(pNew) ); assert( !Fraig_IsComplement(pOld) ); assert( pNew != pOld ); p->nSatCallsImp++; // make sure the solver is allocated and has enough variables if ( p->pSat == NULL ) Fraig_ManCreateSolver( p ); // make sure the SAT solver has enough variables for ( i = Msat_SolverReadVarNum(p->pSat); i < p->vNodes->nSize; i++ ) Msat_SolverAddVar( p->pSat, p->vNodes->pArray[i]->Level ); // get the logic cone clk = clock(); Fraig_OrderVariables( p, pOld, pNew ); // Fraig_PrepareCones( p, pOld, pNew ); p->timeTrav += clock() - clk; if ( fVerbose ) printf( "%d(%d) - ", Fraig_CountPis(p,p->vVarsInt), Msat_IntVecReadSize(p->vVarsInt) ); // get the complemented attribute fComp = Fraig_NodeComparePhase( pOld, pNew ); //Msat_SolverPrintClauses( p->pSat ); //////////////////////////////////////////// // prepare the solver to run incrementally on these variables //clk = clock(); Msat_SolverPrepare( p->pSat, p->vVarsInt ); //p->time3 += clock() - clk; // solve under assumptions // A = 1; B = 0 OR A = 1; B = 1 Msat_IntVecClear( p->vProj ); Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pOld->Num, 0) ); Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNew->Num, !fComp) ); // run the solver clk = clock(); RetValue1 = Msat_SolverSolve( p->pSat, p->vProj, nBTLimit, 1000000 ); p->timeSat += clock() - clk; if ( RetValue1 == MSAT_FALSE ) { //p->time1 += clock() - clk; if ( fVerbose ) { printf( "unsat %d ", Msat_SolverReadBackTracks(p->pSat) ); PRT( "time", clock() - clk ); } // add the clause Msat_IntVecClear( p->vProj ); Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pOld->Num, 1) ); Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNew->Num, fComp) ); RetValue = Msat_SolverAddClause( p->pSat, p->vProj ); assert( RetValue ); // p->nSatProofImp++; return 1; } else if ( RetValue1 == MSAT_TRUE ) { //p->time2 += clock() - clk; if ( fVerbose ) { printf( "sat %d ", Msat_SolverReadBackTracks(p->pSat) ); PRT( "time", clock() - clk ); } // record the counter example Fraig_FeedBack( p, Msat_SolverReadModelArray(p->pSat), p->vVarsInt, pOld, pNew ); p->nSatCounterImp++; return 0; } else // if ( RetValue1 == MSAT_UNKNOWN ) { p->time3 += clock() - clk; p->nSatFailsImp++; return 0; } }
/**Function************************************************************* Synopsis [Prepares the SAT solver to run on the two nodes.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Fraig_ManCheckClauseUsingSat( Fraig_Man_t * p, Fraig_Node_t * pNode1, Fraig_Node_t * pNode2, int nBTLimit ) { Fraig_Node_t * pNode1R, * pNode2R; int RetValue, RetValue1, i, clk; int fVerbose = 0; pNode1R = Fraig_Regular(pNode1); pNode2R = Fraig_Regular(pNode2); assert( pNode1R != pNode2R ); // make sure the solver is allocated and has enough variables if ( p->pSat == NULL ) Fraig_ManCreateSolver( p ); // make sure the SAT solver has enough variables for ( i = Msat_SolverReadVarNum(p->pSat); i < p->vNodes->nSize; i++ ) Msat_SolverAddVar( p->pSat, p->vNodes->pArray[i]->Level ); // get the logic cone clk = clock(); Fraig_OrderVariables( p, pNode1R, pNode2R ); // Fraig_PrepareCones( p, pNode1R, pNode2R ); p->timeTrav += clock() - clk; //////////////////////////////////////////// // prepare the solver to run incrementally on these variables //clk = clock(); Msat_SolverPrepare( p->pSat, p->vVarsInt ); //p->time3 += clock() - clk; // solve under assumptions // A = 1; B = 0 OR A = 1; B = 1 Msat_IntVecClear( p->vProj ); Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNode1R->Num, !Fraig_IsComplement(pNode1)) ); Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNode2R->Num, !Fraig_IsComplement(pNode2)) ); // run the solver clk = clock(); RetValue1 = Msat_SolverSolve( p->pSat, p->vProj, nBTLimit, 1000000 ); p->timeSat += clock() - clk; if ( RetValue1 == MSAT_FALSE ) { //p->time1 += clock() - clk; if ( fVerbose ) { printf( "unsat %d ", Msat_SolverReadBackTracks(p->pSat) ); PRT( "time", clock() - clk ); } // add the clause Msat_IntVecClear( p->vProj ); Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNode1R->Num, Fraig_IsComplement(pNode1)) ); Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNode2R->Num, Fraig_IsComplement(pNode2)) ); RetValue = Msat_SolverAddClause( p->pSat, p->vProj ); assert( RetValue ); // p->nSatProofImp++; return 1; } else if ( RetValue1 == MSAT_TRUE ) { //p->time2 += clock() - clk; if ( fVerbose ) { printf( "sat %d ", Msat_SolverReadBackTracks(p->pSat) ); PRT( "time", clock() - clk ); } // record the counter example // Fraig_FeedBack( p, Msat_SolverReadModelArray(p->pSat), p->vVarsInt, pNode1R, pNode2R ); p->nSatCounterImp++; return 0; } else // if ( RetValue1 == MSAT_UNKNOWN ) { p->time3 += clock() - clk; p->nSatFailsImp++; return 0; } }
/**Function************************************************************* Synopsis [Checks whether two nodes are functinally equivalent.] Description [The flag (fComp) tells whether the nodes to be checked are in the opposite polarity. The second flag (fSkipZeros) tells whether the checking should be performed if the simulation vectors are zeros. Returns 1 if the nodes are equivalent; 0 othewise.] SideEffects [] SeeAlso [] ***********************************************************************/ int Fraig_NodeIsEquivalent( Fraig_Man_t * p, Fraig_Node_t * pOld, Fraig_Node_t * pNew, int nBTLimit, int nTimeLimit ) { int RetValue, RetValue1, i, fComp, clk; int fVerbose = 0; int fSwitch = 0; // make sure the nodes are not complemented assert( !Fraig_IsComplement(pNew) ); assert( !Fraig_IsComplement(pOld) ); assert( pNew != pOld ); // if at least one of the nodes is a failed node, perform adjustments: // if the backtrack limit is small, simply skip this node // if the backtrack limit is > 10, take the quare root of the limit if ( nBTLimit > 0 && (pOld->fFailTfo || pNew->fFailTfo) ) { p->nSatFails++; // return 0; // if ( nBTLimit > 10 ) // nBTLimit /= 10; if ( nBTLimit <= 10 ) return 0; nBTLimit = (int)sqrt(nBTLimit); // fSwitch = 1; } p->nSatCalls++; // make sure the solver is allocated and has enough variables if ( p->pSat == NULL ) Fraig_ManCreateSolver( p ); // make sure the SAT solver has enough variables for ( i = Msat_SolverReadVarNum(p->pSat); i < p->vNodes->nSize; i++ ) Msat_SolverAddVar( p->pSat, p->vNodes->pArray[i]->Level ); /* { Fraig_Node_t * ppNodes[2] = { pOld, pNew }; extern void Fraig_MappingShowNodes( Fraig_Man_t * pMan, Fraig_Node_t ** ppRoots, int nRoots, char * pFileName ); Fraig_MappingShowNodes( p, ppNodes, 2, "temp_aig" ); } */ nMuxes = 0; // get the logic cone clk = clock(); // Fraig_VarsStudy( p, pOld, pNew ); Fraig_OrderVariables( p, pOld, pNew ); // Fraig_PrepareCones( p, pOld, pNew ); p->timeTrav += clock() - clk; // printf( "The number of MUXes detected = %d (%5.2f %% of logic). ", nMuxes, 300.0*nMuxes/(p->vNodes->nSize - p->vInputs->nSize) ); // PRT( "Time", clock() - clk ); if ( fVerbose ) printf( "%d(%d) - ", Fraig_CountPis(p,p->vVarsInt), Msat_IntVecReadSize(p->vVarsInt) ); // prepare variable activity Fraig_SetActivity( p, pOld, pNew ); // get the complemented attribute fComp = Fraig_NodeComparePhase( pOld, pNew ); //Msat_SolverPrintClauses( p->pSat ); //////////////////////////////////////////// // prepare the solver to run incrementally on these variables //clk = clock(); Msat_SolverPrepare( p->pSat, p->vVarsInt ); //p->time3 += clock() - clk; // solve under assumptions // A = 1; B = 0 OR A = 1; B = 1 Msat_IntVecClear( p->vProj ); Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pOld->Num, 0) ); Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNew->Num, !fComp) ); //Msat_SolverWriteDimacs( p->pSat, "temp_fraig.cnf" ); // run the solver clk = clock(); RetValue1 = Msat_SolverSolve( p->pSat, p->vProj, nBTLimit, nTimeLimit ); p->timeSat += clock() - clk; if ( RetValue1 == MSAT_FALSE ) { //p->time1 += clock() - clk; if ( fVerbose ) { printf( "unsat %d ", Msat_SolverReadBackTracks(p->pSat) ); PRT( "time", clock() - clk ); } // add the clause Msat_IntVecClear( p->vProj ); Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pOld->Num, 1) ); Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNew->Num, fComp) ); RetValue = Msat_SolverAddClause( p->pSat, p->vProj ); assert( RetValue ); // continue solving the other implication } else if ( RetValue1 == MSAT_TRUE ) { //p->time2 += clock() - clk; if ( fVerbose ) { printf( "sat %d ", Msat_SolverReadBackTracks(p->pSat) ); PRT( "time", clock() - clk ); } // record the counter example Fraig_FeedBack( p, Msat_SolverReadModelArray(p->pSat), p->vVarsInt, pOld, pNew ); // if ( pOld->fFailTfo || pNew->fFailTfo ) // printf( "*" ); // printf( "s(%d)", pNew->Level ); if ( fSwitch ) printf( "s(%d)", pNew->Level ); p->nSatCounter++; return 0; } else // if ( RetValue1 == MSAT_UNKNOWN ) { p->time3 += clock() - clk; // if ( pOld->fFailTfo || pNew->fFailTfo ) // printf( "*" ); // printf( "T(%d)", pNew->Level ); // mark the node as the failed node if ( pOld != p->pConst1 ) pOld->fFailTfo = 1; pNew->fFailTfo = 1; // p->nSatFails++; if ( fSwitch ) printf( "T(%d)", pNew->Level ); p->nSatFailsReal++; return 0; } // if the old node was constant 0, we already know the answer if ( pOld == p->pConst1 ) return 1; //////////////////////////////////////////// // prepare the solver to run incrementally //clk = clock(); Msat_SolverPrepare( p->pSat, p->vVarsInt ); //p->time3 += clock() - clk; // solve under assumptions // A = 0; B = 1 OR A = 0; B = 0 Msat_IntVecClear( p->vProj ); Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pOld->Num, 1) ); Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNew->Num, fComp) ); // run the solver clk = clock(); RetValue1 = Msat_SolverSolve( p->pSat, p->vProj, nBTLimit, nTimeLimit ); p->timeSat += clock() - clk; if ( RetValue1 == MSAT_FALSE ) { //p->time1 += clock() - clk; if ( fVerbose ) { printf( "unsat %d ", Msat_SolverReadBackTracks(p->pSat) ); PRT( "time", clock() - clk ); } // add the clause Msat_IntVecClear( p->vProj ); Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pOld->Num, 0) ); Msat_IntVecPush( p->vProj, MSAT_VAR2LIT(pNew->Num, !fComp) ); RetValue = Msat_SolverAddClause( p->pSat, p->vProj ); assert( RetValue ); // continue solving the other implication } else if ( RetValue1 == MSAT_TRUE ) { //p->time2 += clock() - clk; if ( fVerbose ) { printf( "sat %d ", Msat_SolverReadBackTracks(p->pSat) ); PRT( "time", clock() - clk ); } // record the counter example Fraig_FeedBack( p, Msat_SolverReadModelArray(p->pSat), p->vVarsInt, pOld, pNew ); p->nSatCounter++; // if ( pOld->fFailTfo || pNew->fFailTfo ) // printf( "*" ); // printf( "s(%d)", pNew->Level ); if ( fSwitch ) printf( "s(%d)", pNew->Level ); return 0; } else // if ( RetValue1 == MSAT_UNKNOWN ) { p->time3 += clock() - clk; // if ( pOld->fFailTfo || pNew->fFailTfo ) // printf( "*" ); // printf( "T(%d)", pNew->Level ); if ( fSwitch ) printf( "T(%d)", pNew->Level ); // mark the node as the failed node pOld->fFailTfo = 1; pNew->fFailTfo = 1; // p->nSatFails++; p->nSatFailsReal++; return 0; } // return SAT proof p->nSatProof++; // if ( pOld->fFailTfo || pNew->fFailTfo ) // printf( "*" ); // printf( "u(%d)", pNew->Level ); if ( fSwitch ) printf( "u(%d)", pNew->Level ); return 1; }