Example #1
0
void GenerateSignal(OMX_SC32* x, OMX_SC32* fft, int size, int signal_type) {
  int k;
  struct ComplexFloat *test_signal;
  struct ComplexFloat *true_fft;

  test_signal = (struct ComplexFloat*) malloc(sizeof(*test_signal) * size);
  true_fft = (struct ComplexFloat*) malloc(sizeof(*true_fft) * size);
  GenerateTestSignalAndFFT(test_signal, true_fft, size, signal_type,
                           signal_value, 0);

  /*
   * Convert the complex float result to SC32 format.  Just round.
   * No error-checking here!
   */

  for (k = 0; k < size; ++k) {
    x[k].Re = 0.5 + test_signal[k].Re;
    x[k].Im = 0.5 + test_signal[k].Im;
    fft[k].Re = 0.5 + true_fft[k].Re;
    fft[k].Im = 0.5 + true_fft[k].Im;
  }

  free(test_signal);
  free(true_fft);
}
Example #2
0
/*
 * Generate a signal and the corresponding theoretical FFT
 */
void GenerateSignal(OMX_F32* x, OMX_FC32* fft, int size, int signal_type,
                    float signal_value) {
  int k;
  struct ComplexFloat *test_signal;
  struct ComplexFloat *true_fft;

  test_signal = (struct ComplexFloat*) malloc(sizeof(*test_signal) * size);
  true_fft = (struct ComplexFloat*) malloc(sizeof(*true_fft) * size);
  GenerateTestSignalAndFFT(test_signal, true_fft, size, signal_type,
                           signal_value, 1);

  /*
   * Convert the complex result to what we want
   */

  for (k = 0; k < size; ++k) {
    x[k] = test_signal[k].Re;
  }

  for (k = 0; k < size / 2 + 1; ++k) {
    fft[k].Re = true_fft[k].Re;
    fft[k].Im = true_fft[k].Im;
  }

  free(test_signal);
  free(true_fft);
}
Example #3
0
void generateSC16Signal(OMX_SC16* x, OMX_SC16* fft, int size, int signal_type,
                        float signal_value) {
  int k;
  struct ComplexFloat *test_signal;
  struct ComplexFloat *true_fft;

  test_signal = (struct ComplexFloat*) malloc(sizeof(*test_signal) * size);
  true_fft = (struct ComplexFloat*) malloc(sizeof(*true_fft) * size);
  GenerateTestSignalAndFFT(test_signal, true_fft, size, signal_type,
                           signal_value, 0);

  /*
   * Convert the complex result to what we want
   */

  for (k = 0; k < size; ++k) {
    x[k].Re = 0.5 + test_signal[k].Re;
    x[k].Im = 0.5 + test_signal[k].Im;
    fft[k].Re = 0.5 + true_fft[k].Re;
    fft[k].Im = 0.5 + true_fft[k].Im;
  }

  free(test_signal);
  free(true_fft);
}
Example #4
0
void GenerateSignal(OMX_FC32* x, OMX_FC32* fft, int size, int signal_type,
                    float signal_value) {
    GenerateTestSignalAndFFT((struct ComplexFloat *) x,
                             (struct ComplexFloat *) fft,
                             size,
                             signal_type,
                             signal_value,
                             0);
}
Example #5
0
void TimeOneNE10FFT(int count, int fft_log_size, float signal_value,
                    int signal_type) {
    struct AlignedPtr* x_aligned;
    struct AlignedPtr* y_aligned;
    struct AlignedPtr* z_aligned;

    struct ComplexFloat* x;
    struct ComplexFloat* y;
    OMX_FC32* z;

    struct ComplexFloat* y_true;

    int n;
    ne10_result_t status;
    ne10_fft_cfg_float32_t fft_fwd_spec;
    int fft_size;
    struct timeval start_time;
    struct timeval end_time;
    double elapsed_time;
    struct SnrResult snr_forward;
    struct SnrResult snr_inverse;

    fft_size = 1 << fft_log_size;

    x_aligned = AllocAlignedPointer(32, sizeof(*x) * fft_size);
    y_aligned = AllocAlignedPointer(32, sizeof(*y) * 2 * fft_size);
    z_aligned = AllocAlignedPointer(32, sizeof(*z) * 2 * fft_size);

    y_true = (struct ComplexFloat*) malloc(sizeof(*y_true) * fft_size);

    x = x_aligned->aligned_pointer_;
    y = y_aligned->aligned_pointer_;
    z = z_aligned->aligned_pointer_;

    GenerateTestSignalAndFFT(x, y_true, fft_size, signal_type, signal_value, 0);

    fft_fwd_spec = ne10_fft_alloc_c2c_float32(fft_size);
    if (!fft_fwd_spec) {
        fprintf(stderr, "NE10 FFT: Cannot initialize FFT structure for order %d\n", fft_log_size);
        return;
    }

    if (do_forward_test) {
        GetUserTime(&start_time);
        for (n = 0; n < count; ++n) {
            ne10_fft_c2c_1d_float32_neon((ne10_fft_cpx_float32_t *) y,
                                         (ne10_fft_cpx_float32_t *) x,
                                         fft_fwd_spec,
                                         0);
        }
        GetUserTime(&end_time);

        elapsed_time = TimeDifference(&start_time, &end_time);

        CompareComplexFloat(&snr_forward, (OMX_FC32*) y, (OMX_FC32*) y_true, fft_size);

        PrintResult("Forward NE10 FFT", fft_log_size, elapsed_time, count, snr_forward.complex_snr_);

        if (verbose >= 255) {
            printf("Input data:\n");
            DumpArrayComplexFloat("x", fft_size, (OMX_FC32*) x);
            printf("FFT Actual:\n");
            DumpArrayComplexFloat("y", fft_size, (OMX_FC32*) y);
            printf("FFT Expected:\n");
            DumpArrayComplexFloat("true", fft_size, (OMX_FC32*) y_true);
        }
    }

    if (do_inverse_test) {
        GetUserTime(&start_time);
        for (n = 0; n < count; ++n) {
            ne10_fft_c2c_1d_float32_neon((ne10_fft_cpx_float32_t *) z,
                                         (ne10_fft_cpx_float32_t *) y_true,
                                         fft_fwd_spec,
                                         1);
        }
        GetUserTime(&end_time);

        elapsed_time = TimeDifference(&start_time, &end_time);

        CompareComplexFloat(&snr_inverse, (OMX_FC32*) z, (OMX_FC32*) x, fft_size);

        PrintResult("Inverse NE10 FFT", fft_log_size, elapsed_time, count, snr_inverse.complex_snr_);

        if (verbose >= 255) {
            printf("Input data:\n");
            DumpArrayComplexFloat("y", fft_size, (OMX_FC32*) y_true);
            printf("IFFT Actual:\n");
            DumpArrayComplexFloat("z", fft_size, z);
            printf("IFFT Expected:\n");
            DumpArrayComplexFloat("x", fft_size, (OMX_FC32*) x);
        }
    }

    ne10_fft_destroy_c2c_float32(fft_fwd_spec);
    FreeAlignedPointer(x_aligned);
    FreeAlignedPointer(y_aligned);
    FreeAlignedPointer(z_aligned);
    free(y_true);
}
Example #6
0
void TimeOneFloatFFT(int count, int fft_log_size, float signal_value,
                     int signal_type) {
  struct AlignedPtr* x_aligned;
  struct AlignedPtr* y_aligned;
  struct AlignedPtr* z_aligned;
  struct AlignedPtr* y_true_aligned;

  struct ComplexFloat* x;
  struct ComplexFloat* y;
  OMX_FC32* z;

  struct ComplexFloat* y_true;

  OMX_INT n, fft_spec_buffer_size;
  OMXFFTSpec_C_FC32 * fft_fwd_spec = NULL;
  OMXFFTSpec_C_FC32 * fft_inv_spec = NULL;
  int fft_size;
  struct timeval start_time;
  struct timeval end_time;
  double elapsed_time;
  struct SnrResult snr_forward;
  struct SnrResult snr_inverse;

  fft_size = 1 << fft_log_size;

  x_aligned = AllocAlignedPointer(32, sizeof(*x) * fft_size);
  y_aligned = AllocAlignedPointer(32, sizeof(*y) * (fft_size + 2));
  z_aligned = AllocAlignedPointer(32, sizeof(*z) * fft_size);
  y_true_aligned = AllocAlignedPointer(32, sizeof(*z) * fft_size);

  x = x_aligned->aligned_pointer_;
  y = y_aligned->aligned_pointer_;
  z = z_aligned->aligned_pointer_;
  y_true = y_true_aligned->aligned_pointer_;

  GenerateTestSignalAndFFT(x, y_true, fft_size, signal_type, signal_value, 0);

  omxSP_FFTGetBufSize_C_FC32(fft_log_size, &fft_spec_buffer_size);

  fft_fwd_spec = (OMXFFTSpec_C_FC32*) malloc(fft_spec_buffer_size);
  fft_inv_spec = (OMXFFTSpec_C_FC32*) malloc(fft_spec_buffer_size);
  omxSP_FFTInit_C_FC32(fft_fwd_spec, fft_log_size);
  omxSP_FFTInit_C_FC32(fft_inv_spec, fft_log_size);

  if (do_forward_test) {
    GetUserTime(&start_time);
    for (n = 0; n < count; ++n) {
      FORWARD_FLOAT_FFT((OMX_FC32*) x, (OMX_FC32*) y, fft_fwd_spec);
    }
    GetUserTime(&end_time);

    elapsed_time = TimeDifference(&start_time, &end_time);

    CompareComplexFloat(&snr_forward, (OMX_FC32*) y, (OMX_FC32*) y_true, fft_size);

    PrintResult("Forward Float FFT", fft_log_size, elapsed_time, count, snr_forward.complex_snr_);
  }

  if (do_inverse_test) {
    GetUserTime(&start_time);
    for (n = 0; n < count; ++n) {
      INVERSE_FLOAT_FFT((OMX_FC32*) y_true, z, fft_inv_spec);
    }
    GetUserTime(&end_time);

    elapsed_time = TimeDifference(&start_time, &end_time);

    CompareComplexFloat(&snr_inverse, (OMX_FC32*) z, (OMX_FC32*) x, fft_size);

    PrintResult("Inverse Float FFT", fft_log_size, elapsed_time, count, snr_inverse.complex_snr_);
  }

  FreeAlignedPointer(x_aligned);
  FreeAlignedPointer(y_aligned);
  FreeAlignedPointer(z_aligned);
  FreeAlignedPointer(y_true_aligned);
  free(fft_fwd_spec);
  free(fft_inv_spec);
}
Example #7
0
void TimeOnePfFFT(int count, int fft_log_size, float signal_value,
                     int signal_type) {
  struct AlignedPtr* x_aligned;
  struct AlignedPtr* y_aligned;
  struct AlignedPtr* z_aligned;
  struct AlignedPtr* y_true_aligned;

  struct ComplexFloat* x;
  struct ComplexFloat* y;
  OMX_FC32* z;

  struct ComplexFloat* y_true;

  int n;
  int fft_size;
  struct timeval start_time;
  struct timeval end_time;
  double elapsed_time;
  PFFFT_Setup *s;
  struct SnrResult snr_forward;
  struct SnrResult snr_inverse;
  
  fft_size = 1 << fft_log_size;

  x_aligned = AllocAlignedPointer(32, sizeof(*x) * fft_size);
  y_aligned = AllocAlignedPointer(32, sizeof(*y) * (fft_size + 2));
  z_aligned = AllocAlignedPointer(32, sizeof(*z) * fft_size);
  y_true_aligned = AllocAlignedPointer(32, sizeof(*y_true) * fft_size);

  x = x_aligned->aligned_pointer_;
  y = y_aligned->aligned_pointer_;
  z = z_aligned->aligned_pointer_;
  y_true = y_true_aligned->aligned_pointer_;

  s = pffft_new_setup(fft_size, PFFFT_COMPLEX);
  if (!s) {
    fprintf(stderr, "TimeOnePfFFT: Could not initialize structure for order %d\n",
            fft_log_size);
  }

  GenerateTestSignalAndFFT(x, y_true, fft_size, signal_type, signal_value, 0);

  if (do_forward_test) {
    GetUserTime(&start_time);
    for (n = 0; n < count; ++n) {
      pffft_transform_ordered(s, (float*)x, (float*)y, NULL, PFFFT_FORWARD);
    }
    GetUserTime(&end_time);

    elapsed_time = TimeDifference(&start_time, &end_time);

    CompareComplexFloat(&snr_forward, (OMX_FC32*) y, (OMX_FC32*) y_true, fft_size);

    PrintResult("Forward PFFFT FFT", fft_log_size, elapsed_time, count, snr_forward.complex_snr_);

    if (verbose >= 255) {
      printf("FFT Actual:\n");
      DumpArrayComplexFloat("y", fft_size, (OMX_FC32*) y);
      printf("FFT Expected:\n");
      DumpArrayComplexFloat("true", fft_size, (OMX_FC32*) y_true);
    }
  }

  if (do_inverse_test) {
    float scale = 1.0 / fft_size;

    memcpy(y, y_true, sizeof(*y) * (fft_size + 2));
    GetUserTime(&start_time);
    for (n = 0; n < count; ++n) {
      int m;
      
      pffft_transform_ordered(s, (float*)y_true, (float*)z, NULL, PFFFT_BACKWARD);
      /*
       * Need to include cost of scaling the inverse
       */
      ScaleVector((OMX_F32*) z, 2 * fft_size, fft_size);
    }
    GetUserTime(&end_time);

    elapsed_time = TimeDifference(&start_time, &end_time);

    CompareComplexFloat(&snr_inverse, (OMX_FC32*) z, (OMX_FC32*) x, fft_size);

    PrintResult("Inverse PFFFT FFT", fft_log_size, elapsed_time, count, snr_inverse.complex_snr_);

    if (verbose >= 255) {
      printf("IFFT Actual:\n");
      DumpArrayComplexFloat("z", fft_size, z);
      printf("IFFT Expected:\n");
      DumpArrayComplexFloat("x", fft_size, (OMX_FC32*) x);
    }
  }

  FreeAlignedPointer(x_aligned);
  FreeAlignedPointer(y_aligned);
  FreeAlignedPointer(z_aligned);
  FreeAlignedPointer(y_true_aligned);
  pffft_destroy_setup(s);
}