Example #1
0
bool CxImageJPG::Decode(CxFile * hFile)
{

	bool is_exif = false;
#if CXIMAGEJPG_SUPPORT_EXIF
	is_exif = DecodeExif(hFile);
#endif

	CImageIterator iter(this);
	/* This struct contains the JPEG decompression parameters and pointers to
	* working space (which is allocated as needed by the JPEG library).
	*/
	struct jpeg_decompress_struct cinfo;
	/* We use our private extension JPEG error handler. <CSC> */
	struct ima_error_mgr jerr;
	jerr.buffer=info.szLastError;
	/* More stuff */
	JSAMPARRAY buffer;	/* Output row buffer */
	int row_stride;		/* physical row width in output buffer */

	/* In this example we want to open the input file before doing anything else,
	* so that the setjmp() error recovery below can assume the file is open.
	* VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
	* requires it in order to read binary files.
	*/

	/* Step 1: allocate and initialize JPEG decompression object */
	/* We set up the normal JPEG error routines, then override error_exit. */
	cinfo.err = jpeg_std_error(&jerr.pub);
	jerr.pub.error_exit = ima_jpeg_error_exit;

	/* Establish the setjmp return context for my_error_exit to use. */
	if (setjmp(jerr.setjmp_buffer)) {
		/* If we get here, the JPEG code has signaled an error.
		* We need to clean up the JPEG object, close the input file, and return.
		*/
		jpeg_destroy_decompress(&cinfo);
		return 0;
	}
	/* Now we can initialize the JPEG decompression object. */
	jpeg_create_decompress(&cinfo);

	/* Step 2: specify data source (eg, a file) */
	//jpeg_stdio_src(&cinfo, infile);
	CxFileJpg src(hFile);
    cinfo.src = &src;

	/* Step 3: read file parameters with jpeg_read_header() */
	(void) jpeg_read_header(&cinfo, TRUE);

	/* Step 4 <chupeev> handle decoder options*/
	if ((GetCodecOption() & DECODE_GRAYSCALE) != 0)
		cinfo.out_color_space = JCS_GRAYSCALE;
	if ((GetCodecOption() & DECODE_QUANTIZE) != 0) {
		cinfo.quantize_colors = TRUE;
		cinfo.desired_number_of_colors = info.nQuality;
	}
	if ((GetCodecOption() & DECODE_DITHER) != 0)
		cinfo.dither_mode = m_nDither;
	if ((GetCodecOption() & DECODE_ONEPASS) != 0)
		cinfo.two_pass_quantize = FALSE;
	if ((GetCodecOption() & DECODE_NOSMOOTH) != 0)
		cinfo.do_fancy_upsampling = FALSE;

//<DP>: Load true color images as RGB (no quantize) 
/* Step 4: set parameters for decompression */
/*  if (cinfo.jpeg_color_space!=JCS_GRAYSCALE) {
 *	cinfo.quantize_colors = TRUE;
 *	cinfo.desired_number_of_colors = 128;
 *}
 */ //</DP>

	// Set the scale <ignacio>
	cinfo.scale_denom = info.nScale;

	// Borrowed the idea from GIF implementation <ignacio>
	if (info.nEscape == -1) {
		// Return output dimensions only
		jpeg_calc_output_dimensions(&cinfo);
		head.biWidth = cinfo.output_width;
		head.biHeight = cinfo.output_height;
		jpeg_destroy_decompress(&cinfo);
		return true;
	}

	/* Step 5: Start decompressor */
	jpeg_start_decompress(&cinfo);

	/* We may need to do some setup of our own at this point before reading
	* the data.  After jpeg_start_decompress() we have the correct scaled
	* output image dimensions available, as well as the output colormap
	* if we asked for color quantization.
	*/
	//Create the image using output dimensions <ignacio>
	//Create(cinfo.image_width, cinfo.image_height, 8*cinfo.output_components, CXIMAGE_FORMAT_JPG);
	Create(cinfo.output_width, cinfo.output_height, 8*cinfo.output_components, CXIMAGE_FORMAT_JPG);

	if (!pDib) longjmp(jerr.setjmp_buffer, 1);  //<DP> check if the image has been created

	if (is_exif){
#if CXIMAGEJPG_SUPPORT_EXIF
	if ((m_exifinfo.Xresolution != 0.0) && (m_exifinfo.ResolutionUnit != 0))
		SetXDPI((long)(m_exifinfo.Xresolution/m_exifinfo.ResolutionUnit));
	if ((m_exifinfo.Yresolution != 0.0) && (m_exifinfo.ResolutionUnit != 0))
		SetYDPI((long)(m_exifinfo.Yresolution/m_exifinfo.ResolutionUnit));
#endif
	} else {
		if (cinfo.density_unit==2){
			SetXDPI((long)floor(cinfo.X_density * 254.0 / 10000.0 + 0.5));
			SetYDPI((long)floor(cinfo.Y_density * 254.0 / 10000.0 + 0.5));
		} else {
			SetXDPI(cinfo.X_density);
			SetYDPI(cinfo.Y_density);
		}
	}

	if (cinfo.out_color_space==JCS_GRAYSCALE){
		SetGrayPalette();
		head.biClrUsed =256;
	} else {
		if (cinfo.quantize_colors==TRUE){
			SetPalette(cinfo.actual_number_of_colors, cinfo.colormap[0], cinfo.colormap[1], cinfo.colormap[2]);
			head.biClrUsed=cinfo.actual_number_of_colors;
		} else {
			head.biClrUsed=0;
		}
	}

	/* JSAMPLEs per row in output buffer */
	row_stride = cinfo.output_width * cinfo.output_components;

	/* Make a one-row-high sample array that will go away when done with image */
	buffer = (*cinfo.mem->alloc_sarray)
		((j_common_ptr) &cinfo, JPOOL_IMAGE, row_stride, 1);

	/* Step 6: while (scan lines remain to be read) */
	/*           jpeg_read_scanlines(...); */
	/* Here we use the library's state variable cinfo.output_scanline as the
	* loop counter, so that we don't have to keep track ourselves.
	*/
	iter.Upset();
	while (cinfo.output_scanline < cinfo.output_height) {

		if (info.nEscape) longjmp(jerr.setjmp_buffer, 1); // <vho> - cancel decoding
		
		(void) jpeg_read_scanlines(&cinfo, buffer, 1);
		// info.nProgress = (long)(100*cinfo.output_scanline/cinfo.output_height);
		//<DP> Step 6a: CMYK->RGB */ 
		if ((cinfo.num_components==4)&&(cinfo.quantize_colors==FALSE)){
			BYTE k,*dst,*src;
			dst=iter.GetRow();
			src=buffer[0];
			for(long x3=0,x4=0; x3<(long)info.dwEffWidth && x4<row_stride; x3+=3, x4+=4){
				k=src[x4+3];
				dst[x3]  =(BYTE)((k * src[x4+2])/255);
				dst[x3+1]=(BYTE)((k * src[x4+1])/255);
				dst[x3+2]=(BYTE)((k * src[x4+0])/255);
			}
		} else {
			/* Assume put_scanline_someplace wants a pointer and sample count. */
			iter.SetRow(buffer[0], row_stride);
		}
			iter.PrevRow();
	}

	/* Step 7: Finish decompression */
	(void) jpeg_finish_decompress(&cinfo);
	/* We can ignore the return value since suspension is not possible
	* with the stdio data source.
	*/

	//<DP> Step 7A: Swap red and blue components
	// not necessary if swapped red and blue definition in jmorecfg.h;ln322 <W. Morrison>
	if ((cinfo.num_components==3)&&(cinfo.quantize_colors==FALSE)){
		BYTE* r0=GetBits();
		for(long y=0;y<head.biHeight;y++){
			if (info.nEscape) longjmp(jerr.setjmp_buffer, 1); // <vho> - cancel decoding
			RGBtoBGR(r0,3*head.biWidth);
			r0+=info.dwEffWidth;
		}
	}

	/* Step 8: Release JPEG decompression object */
	/* This is an important step since it will release a good deal of memory. */
	jpeg_destroy_decompress(&cinfo);

	/* At this point you may want to check to see whether any corrupt-data
	* warnings occurred (test whether jerr.pub.num_warnings is nonzero).
	*/

	/* And we're done! */
	return true;
}
Example #2
0
bool CxImageRAW::Decode(CxFile *hFile)
{
return false;
#if 0
	if (hFile==NULL)
		return false;

	if (mutexInitialized == false)
	{
#ifdef _LINUX
		pthread_mutex_init(&rawMutex, 0);
#else
		rawMutex = ::CreateMutex(NULL, false, NULL);
#endif
		mutexInitialized = true;
	}

#ifdef _LINUX
	pthread_mutex_lock(&rawMutex);
#else
	::WaitForSingleObject(rawMutex, INFINITE);
#endif
 
	DCRAW  dcr;

  cx_try
  {
	// initialization
	dcr_init_dcraw(&dcr);

	dcr.opt.user_qual = GetCodecOption(CXIMAGE_FORMAT_RAW) & 0x03;

	// setup variables for debugging
	char szClass[] = "CxImageRAW";
	dcr.ifname = szClass;
	dcr.sz_error = info.szLastError;

	// setup library options, see dcr_print_manual for the available switches
	// call dcr_parse_command_line_options(&dcr,0,0,0) to set default options
	// if (dcr_parse_command_line_options(&dcr,argc,argv,&arg))
	if (dcr_parse_command_line_options(&dcr,0,0,0)){
		cx_throw("CxImageRAW: unknown option");
	}

	// set return point for error handling
	if (setjmp (dcr.failure)) {
		cx_throw("");
	}

	// install file manager
	CxFileRaw src(hFile,&dcr);

	// check file header
	dcr_identify(&dcr);
	
	if(!dcr.is_raw){
		cx_throw("CxImageRAW: not a raw image");
	}

	if (dcr.load_raw == NULL) {
		cx_throw("CxImageRAW: missing raw decoder");
	}

	// verify special case
	if (dcr.load_raw == dcr_kodak_ycbcr_load_raw) {
		dcr.height += dcr.height & 1;
		dcr.width  += dcr.width  & 1;
	}

	if (info.nEscape == -1){
		head.biWidth = dcr.width;
		head.biHeight= dcr.height;
		info.dwType = CXIMAGE_FORMAT_RAW;
		cx_throw("output dimensions returned");
	}

	// shrinked decoding available and requested?
	dcr.shrink = dcr.filters && (dcr.opt.half_size || dcr.opt.threshold || dcr.opt.aber[0] != 1 || dcr.opt.aber[2] != 1);
	dcr.iheight = (dcr.height + dcr.shrink) >> dcr.shrink;
	dcr.iwidth  = (dcr.width  + dcr.shrink) >> dcr.shrink;

	// install custom camera matrix
	if (dcr.opt.use_camera_matrix && dcr.cmatrix[0][0] > 0.25) {
		memcpy (dcr.rgb_cam, dcr.cmatrix, sizeof dcr.cmatrix);
		dcr.raw_color = 0;
	}
    else {
      dcr.opt.use_camera_wb = 1;
    }

	// allocate memory for the image
	dcr.image = (ushort (*)[4]) calloc (dcr.iheight*dcr.iwidth, sizeof *dcr.image);
	dcr_merror (&dcr, dcr.image, szClass);

	if (dcr.meta_length) {
		dcr.meta_data = (char *) malloc (dcr.meta_length);
		dcr_merror (&dcr, dcr.meta_data, szClass);
	}

	// start image decoder
	hFile->Seek(dcr.data_offset, SEEK_SET);
	(*dcr.load_raw)(&dcr);

	// post processing
	if (dcr.zero_is_bad) dcr_remove_zeroes(&dcr);

	dcr_bad_pixels(&dcr,NULL);

	if (dcr.opt.dark_frame) dcr_subtract (&dcr,dcr.opt.dark_frame);

	dcr.quality = 2 + !dcr.fuji_width;

	if (dcr.opt.user_qual >= 0) dcr.quality = dcr.opt.user_qual;

	if (dcr.opt.user_black >= 0) dcr.black = dcr.opt.user_black;

#ifdef COLORCHECK
	dcr_colorcheck(&dcr);
#endif

#if RESTRICTED
	if (dcr.is_foveon && !dcr.opt.document_mode) dcr_foveon_interpolate(&dcr);
#endif

	if (!dcr.is_foveon && dcr.opt.document_mode < 2) dcr_scale_colors(&dcr);

	// pixel interpolation and filters
	dcr_pre_interpolate(&dcr);

	if (dcr.filters && !dcr.opt.document_mode) {
		if (dcr.quality == 0)
			dcr_lin_interpolate(&dcr);
		else if (dcr.quality == 1 || dcr.colors > 3)
			dcr_vng_interpolate(&dcr);
		else if (dcr.quality == 2)
			dcr_ppg_interpolate(&dcr);
		else
			dcr_ahd_interpolate(&dcr);
	}

	if (dcr.mix_green) {
		long i;
		for (dcr.colors=3, i=0; i < dcr.height*dcr.width; i++) {
			dcr.image[i][1] = (dcr.image[i][1] + dcr.image[i][3]) >> 1;
		}
	}

	if (!dcr.is_foveon && dcr.colors == 3) dcr_median_filter(&dcr);

	if (!dcr.is_foveon && dcr.opt.highlight == 2) dcr_blend_highlights(&dcr);

	if (!dcr.is_foveon && dcr.opt.highlight > 2) dcr_recover_highlights(&dcr);

	if (dcr.opt.use_fuji_rotate) dcr_fuji_rotate(&dcr);

#ifndef NO_LCMS
	if (dcr.opt.cam_profile) dcr_apply_profile (dcr.opt.cam_profile, dcr.opt.out_profile);
#endif

	// final conversion
	dcr_convert_to_rgb(&dcr);

	if (dcr.opt.use_fuji_rotate) dcr_stretch(&dcr);

	dcr.iheight = dcr.height;
	dcr.iwidth  = dcr.width;
	if (dcr.flip & 4) SWAP(dcr.height,dcr.width);

	// ready to transfer data from dcr.image
	if (!Create(dcr.width,dcr.height,24,CXIMAGE_FORMAT_RAW)){
		cx_throw("");
	}

	uchar  *ppm = (uchar *) calloc (dcr.width, dcr.colors*dcr.opt.output_bps/8);
	ushort *ppm2 = (ushort *) ppm;
	dcr_merror (&dcr, ppm, szClass);

	uchar lut[0x10000];
	if (dcr.opt.output_bps == 8) dcr_gamma_lut (&dcr, lut);

	long c, row, col, soff, rstep, cstep;
	soff  = dcr_flip_index (&dcr, 0, 0);
	cstep = dcr_flip_index (&dcr, 0, 1) - soff;
	rstep = dcr_flip_index (&dcr, 1, 0) - dcr_flip_index (&dcr, 0, dcr.width);
	for (row=0; row < dcr.height; row++, soff += rstep) {
		for (col=0; col < dcr.width; col++, soff += cstep) {
			if (dcr.opt.output_bps == 8)
				for (c=0; c < dcr.colors; c++) ppm [col*dcr.colors+c] = lut[dcr.image[soff][c]];
			else
				for (c=0; c < dcr.colors; c++) ppm2[col*dcr.colors+c] = dcr.image[soff][c];
		}
		if (dcr.opt.output_bps == 16 && !dcr.opt.output_tiff && htons(0x55aa) != 0x55aa)
#if defined(_LINUX) || defined(__APPLE__)
			swab ((char*)ppm2, (char*)ppm2, dcr.width*dcr.colors*2);
#else
			_swab ((char*)ppm2, (char*)ppm2, dcr.width*dcr.colors*2);
#endif

		DWORD size = dcr.width * (dcr.colors*dcr.opt.output_bps/8);
		RGBtoBGR(ppm,size);
		memcpy(GetBits(dcr.height - 1 - row), ppm, min(size,GetEffWidth()));
	}
	free (ppm);


	dcr_cleanup_dcraw(&dcr);
#ifdef _LINUX
	pthread_mutex_unlock(&rawMutex);
#else
	::ReleaseMutex(rawMutex);
#endif

  } cx_catch {
Example #3
0
bool CxImageJPG::Encode(CxFile * hFile)
{
	if (EncodeSafeCheck(hFile)) return false;

	if (head.biClrUsed!=0 && !IsGrayScale()){
		strcpy(info.szLastError,"JPEG can save only RGB or GreyScale images");
		return false;
	}	

	/* This struct contains the JPEG compression parameters and pointers to
	* working space (which is allocated as needed by the JPEG library).
	* It is possible to have several such structures, representing multiple
	* compression/decompression processes, in existence at once.  We refer
	* to any one struct (and its associated working data) as a "JPEG object".
	*/
	struct jpeg_compress_struct cinfo;
	/* This struct represents a JPEG error handler.  It is declared separately
	* because applications often want to supply a specialized error handler
	* (see the second half of this file for an example).  But here we just
	* take the easy way out and use the standard error handler, which will
	* print a message on stderr and call exit() if compression fails.
	* Note that this struct must live as long as the main JPEG parameter
	* struct, to avoid dangling-pointer problems.
	*/
	//struct jpeg_error_mgr jerr;
	/* We use our private extension JPEG error handler. <CSC> */
	struct ima_error_mgr jerr;
	jerr.buffer=info.szLastError;
	/* More stuff */
	int row_stride;		/* physical row width in image buffer */
	JSAMPARRAY buffer;		/* Output row buffer */

	/* Step 1: allocate and initialize JPEG compression object */
	/* We have to set up the error handler first, in case the initialization
	* step fails.  (Unlikely, but it could happen if you are out of memory.)
	* This routine fills in the contents of struct jerr, and returns jerr's
	* address which we place into the link field in cinfo.
	*/
	//cinfo.err = jpeg_std_error(&jerr); <CSC>
	/* We set up the normal JPEG error routines, then override error_exit. */
	cinfo.err = jpeg_std_error(&jerr.pub);
	jerr.pub.error_exit = ima_jpeg_error_exit;

	/* Establish the setjmp return context for my_error_exit to use. */
	if (setjmp(jerr.setjmp_buffer)) {
		/* If we get here, the JPEG code has signaled an error.
		* We need to clean up the JPEG object, close the input file, and return.
		*/
		strcpy(info.szLastError, jerr.buffer); //<CSC>
		jpeg_destroy_compress(&cinfo);
		return 0;
	}
	
	/* Now we can initialize the JPEG compression object. */
	jpeg_create_compress(&cinfo);
	/* Step 2: specify data destination (eg, a file) */
	/* Note: steps 2 and 3 can be done in either order. */
	/* Here we use the library-supplied code to send compressed data to a
	* stdio stream.  You can also write your own code to do something else.
	* VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
	* requires it in order to write binary files.
	*/

	//jpeg_stdio_dest(&cinfo, outfile);
	CxFileJpg dest(hFile);
    cinfo.dest = &dest;

	/* Step 3: set parameters for compression */
	/* First we supply a description of the input image.
	* Four fields of the cinfo struct must be filled in:
	*/
	cinfo.image_width = GetWidth(); 	// image width and height, in pixels
	cinfo.image_height = GetHeight();

	if (IsGrayScale()){
		cinfo.input_components = 1;			// # of color components per pixel
		cinfo.in_color_space = JCS_GRAYSCALE; /* colorspace of input image */
	} else {
		cinfo.input_components = 3; 	// # of color components per pixel
		cinfo.in_color_space = JCS_RGB; /* colorspace of input image */
	}

	/* Now use the library's routine to set default compression parameters.
	* (You must set at least cinfo.in_color_space before calling this,
	* since the defaults depend on the source color space.)
	*/
	jpeg_set_defaults(&cinfo);
	/* Now you can set any non-default parameters you wish to.
	* Here we just illustrate the use of quality (quantization table) scaling:
	*/
	//jpeg_set_quality(&cinfo, info.nQuality, TRUE /* limit to baseline-JPEG values */);
#ifdef C_ARITH_CODING_SUPPORTED
	if ((GetCodecOption() & ENCODE_ARITHMETIC) != 0)
		cinfo.arith_code = TRUE;
#endif
#ifdef ENTRPY_OPT_SUPPORTED
	if ((GetCodecOption() & ENCODE_OPTIMIZE) != 0)
		cinfo.optimize_coding = TRUE;
#endif
	if ((GetCodecOption() & ENCODE_GRAYSCALE) != 0)
		jpeg_set_colorspace(&cinfo, JCS_GRAYSCALE);
	if ((GetCodecOption() & ENCODE_SMOOTHING) != 0)
		cinfo.smoothing_factor = m_nSmoothing;
	jpeg_set_quality(&cinfo, GetJpegQuality(), (GetCodecOption() & ENCODE_BASELINE) != 0);
#ifdef C_PROGRESSIVE_SUPPORTED
	if ((GetCodecOption() & ENCODE_PROGRESSIVE) != 0)
		jpeg_simple_progression(&cinfo);
#endif
#ifdef C_LOSSLES_SUPPORTED
	if ((GetCodecOption() & ENCODE_LOSSLESS) != 0)
		jpeg_simple_lossless(&cinfo, m_nPredictor, m_nPointTransform);
#endif

	cinfo.density_unit=1;
	cinfo.X_density=(unsigned short)GetXDPI();
	cinfo.Y_density=(unsigned short)GetYDPI();

	/* Step 4: Start compressor */
	/* TRUE ensures that we will write a complete interchange-JPEG file.
	* Pass TRUE unless you are very sure of what you're doing.
	*/
	jpeg_start_compress(&cinfo, TRUE);

	/* Step 5: while (scan lines remain to be written) */
	/*           jpeg_write_scanlines(...); */
	/* Here we use the library's state variable cinfo.next_scanline as the
	* loop counter, so that we don't have to keep track ourselves.
	* To keep things simple, we pass one scanline per call; you can pass
	* more if you wish, though.
	*/
	row_stride = info.dwEffWidth;	/* JSAMPLEs per row in image_buffer */

	//<DP> "8+row_stride" fix heap deallocation problem during debug???
	buffer = (*cinfo.mem->alloc_sarray)
		((j_common_ptr) &cinfo, JPOOL_IMAGE, 8+row_stride, 1);

	CImageIterator iter(this);

	iter.Upset();
	while (cinfo.next_scanline < cinfo.image_height) {
		// info.nProgress = (long)(100*cinfo.next_scanline/cinfo.image_height);
		iter.GetRow(buffer[0], row_stride);
		// not necessary if swapped red and blue definition in jmorecfg.h;ln322 <W. Morrison>
		if (head.biClrUsed==0){				 // swap R & B for RGB images
			RGBtoBGR(buffer[0], row_stride); // Lance : 1998/09/01 : Bug ID: EXP-2.1.1-9
		}
		iter.PrevRow();
		(void) jpeg_write_scanlines(&cinfo, buffer, 1);
	}

	/* Step 6: Finish compression */
	jpeg_finish_compress(&cinfo);

	/* Step 7: release JPEG compression object */
	/* This is an important step since it will release a good deal of memory. */
	jpeg_destroy_compress(&cinfo);

	/* And we're done! */
	return true;
}
Example #4
0
bool CxImageTIF::EncodeBody(TIFF *m_tif, bool multipage, int page, int pagecount)
{
    uint32 height=head.biHeight;
    uint32 width=head.biWidth;
    uint16 bitcount=head.biBitCount;
    uint16 bitspersample;
    uint16 samplesperpixel;
    uint16 photometric=0;
    uint16 compression;
//	uint16 pitch;
//	int line;
    uint32 x, y;

    samplesperpixel = ((bitcount == 24) || (bitcount == 32)) ? (BYTE)3 : (BYTE)1;
#if CXIMAGE_SUPPORT_ALPHA
    if (bitcount==24 && AlphaIsValid()) { bitcount=32; samplesperpixel=4; }
#endif //CXIMAGE_SUPPORT_ALPHA

    bitspersample = bitcount / samplesperpixel;

    //set the PHOTOMETRIC tag
    RGBQUAD *rgb = GetPalette();
    switch (bitcount) {
        case 1:
            if (CompareColors(&rgb[0],&rgb[1])<0) {
                /* <abe> some viewers do not handle PHOTOMETRIC_MINISBLACK:
                 * let's transform the image in PHOTOMETRIC_MINISWHITE
                 */
                //invert the colors
                RGBQUAD tempRGB=GetPaletteColor(0);
                SetPaletteColor(0,GetPaletteColor(1));
                SetPaletteColor(1,tempRGB);
                //invert the pixels
                BYTE *iSrc=info.pImage;
                for (unsigned long i=0;i<head.biSizeImage;i++){
                    *iSrc=(BYTE)~(*(iSrc));
                    iSrc++;
                }
                photometric = PHOTOMETRIC_MINISWHITE;
                //photometric = PHOTOMETRIC_MINISBLACK;
            } else {
                photometric = PHOTOMETRIC_MINISWHITE;
            }
            break;
        case 4:	// Check if the DIB has a color or a greyscale palette
        case 8:
            photometric = PHOTOMETRIC_MINISBLACK; //default to gray scale
            for (x = 0; x < head.biClrUsed; x++) {
                if ((rgb->rgbRed != x)||(rgb->rgbRed != rgb->rgbGreen)||(rgb->rgbRed != rgb->rgbBlue)){
                    photometric = PHOTOMETRIC_PALETTE;
                    break;
                }
                rgb++;
            }
            break;
        case 24:
        case 32:
            photometric = PHOTOMETRIC_RGB;			
            break;
    }

#if CXIMAGE_SUPPORT_ALPHA
    if (AlphaIsValid() && bitcount==8) samplesperpixel=2; //8bpp + alpha layer
#endif //CXIMAGE_SUPPORT_ALPHA

//	line = CalculateLine(width, bitspersample * samplesperpixel);
//	pitch = (uint16)CalculatePitch(line);

    //prepare the palette struct
    RGBQUAD pal[256];
    if (GetPalette()){
        BYTE b;
        memcpy(pal,GetPalette(),GetPaletteSize());
        for(WORD a=0;a<head.biClrUsed;a++){	//swap blue and red components
            b=pal[a].rgbBlue; pal[a].rgbBlue=pal[a].rgbRed; pal[a].rgbRed=b;
        }
    }

    // handle standard width/height/bpp stuff
    TIFFSetField(m_tif, TIFFTAG_IMAGEWIDTH, width);
    TIFFSetField(m_tif, TIFFTAG_IMAGELENGTH, height);
    TIFFSetField(m_tif, TIFFTAG_SAMPLESPERPIXEL, samplesperpixel);
    TIFFSetField(m_tif, TIFFTAG_BITSPERSAMPLE, bitspersample);
    TIFFSetField(m_tif, TIFFTAG_PHOTOMETRIC, photometric);
    TIFFSetField(m_tif, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG);	// single image plane 
    TIFFSetField(m_tif, TIFFTAG_ORIENTATION, ORIENTATION_TOPLEFT);

    uint32 rowsperstrip = TIFFDefaultStripSize(m_tif, (uint32) -1);  //<REC> gives better compression
    TIFFSetField(m_tif, TIFFTAG_ROWSPERSTRIP, rowsperstrip);

    // handle metrics
    TIFFSetField(m_tif, TIFFTAG_RESOLUTIONUNIT, RESUNIT_INCH);
    TIFFSetField(m_tif, TIFFTAG_XRESOLUTION, (float)info.xDPI);
    TIFFSetField(m_tif, TIFFTAG_YRESOLUTION, (float)info.yDPI);
//	TIFFSetField(m_tif, TIFFTAG_XPOSITION, (float)info.xOffset);
//	TIFFSetField(m_tif, TIFFTAG_YPOSITION, (float)info.yOffset);

    // multi-paging - Thanks to Abe <God(dot)bless(at)marihuana(dot)com>
    if (multipage)
    {
        char page_number[20];
        sprintf(page_number, "Page %d", page);

        TIFFSetField(m_tif, TIFFTAG_SUBFILETYPE, FILETYPE_PAGE);
        TIFFSetField(m_tif, TIFFTAG_PAGENUMBER, page,pagecount);
        TIFFSetField(m_tif, TIFFTAG_PAGENAME, page_number);
    } else {
        TIFFSetField(m_tif, TIFFTAG_SUBFILETYPE, 0);
    }

    // palettes (image colormaps are automatically scaled to 16-bits)
    if (photometric == PHOTOMETRIC_PALETTE) {
        uint16 *r, *g, *b;
        r = (uint16 *) _TIFFmalloc(sizeof(uint16) * 3 * 256);
        g = r + 256;
        b = g + 256;

        for (int i = 255; i >= 0; i--) {
            b[i] = (uint16)SCALE((uint16)pal[i].rgbRed);
            g[i] = (uint16)SCALE((uint16)pal[i].rgbGreen);
            r[i] = (uint16)SCALE((uint16)pal[i].rgbBlue);
        }

        TIFFSetField(m_tif, TIFFTAG_COLORMAP, r, g, b);
        _TIFFfree(r);
    }

    // compression
    if (GetCodecOption(CXIMAGE_FORMAT_TIF)) {
        compression = (WORD)GetCodecOption(CXIMAGE_FORMAT_TIF);
    } else {
        switch (bitcount) {
            case 1 :
                compression = COMPRESSION_CCITTFAX4;
                break;
            case 4 :
            case 8 :
                compression = COMPRESSION_LZW;
                break;
            case 24 :
            case 32 :
                compression = COMPRESSION_JPEG;
                break;
            default :
                compression = COMPRESSION_NONE;
                break;
        }
    }
    TIFFSetField(m_tif, TIFFTAG_COMPRESSION, compression);

    switch (compression) {
    case COMPRESSION_JPEG:
        TIFFSetField(m_tif, TIFFTAG_JPEGQUALITY, info.nQuality);
        TIFFSetField(m_tif, TIFFTAG_ROWSPERSTRIP, ((7+rowsperstrip)>>3)<<3);
        break;
    case COMPRESSION_LZW:
        if (bitcount>=8) TIFFSetField(m_tif, TIFFTAG_PREDICTOR, 2);
        break;
    }

    // read the DIB lines from bottom to top and save them in the TIF

    BYTE *bits;
    switch(bitcount) {				
        case 1 :
        case 4 :
        case 8 :
        {
            if (samplesperpixel==1){
                for (y = 0; y < height; y++) {
                    bits= info.pImage + (height - y - 1)*info.dwEffWidth;
                    if (TIFFWriteScanline(m_tif,bits, y, 0)==-1) return false;
                }
            }
#if CXIMAGE_SUPPORT_ALPHA
            else { //8bpp + alpha layer
                bits = (BYTE*)malloc(2*width);
                if (!bits) return false;
                for (y = 0; y < height; y++) {
                    for (x=0;x<width;x++){
                        bits[2*x]=GetPixelIndex(x,height - y - 1);
                        bits[2*x+1]=AlphaGet(x,height - y - 1);
                    }
                    if (TIFFWriteScanline(m_tif,bits, y, 0)==-1) {
                        free(bits);
                        return false;
                    }
                }
                free(bits);
            }
#endif //CXIMAGE_SUPPORT_ALPHA
            break;
        }				
        case 24:
        {
            BYTE *buffer = (BYTE *)malloc(info.dwEffWidth);
            if (!buffer) return false;
            for (y = 0; y < height; y++) {
                // get a pointer to the scanline
                memcpy(buffer, info.pImage + (height - y - 1)*info.dwEffWidth, info.dwEffWidth);
                // TIFFs store color data RGB instead of BGR
                BYTE *pBuf = buffer;
                for (x = 0; x < width; x++) {
                    BYTE tmp = pBuf[0];
                    pBuf[0] = pBuf[2];
                    pBuf[2] = tmp;
                    pBuf += 3;
                }
                // write the scanline to disc
                if (TIFFWriteScanline(m_tif, buffer, y, 0)==-1){
                    free(buffer);
                    return false;
                }
            }
            free(buffer);
            break;
        }				
        case 32 :
        {
#if CXIMAGE_SUPPORT_ALPHA
            BYTE *buffer = (BYTE *)malloc((info.dwEffWidth*4)/3);
            if (!buffer) return false;
            for (y = 0; y < height; y++) {
                // get a pointer to the scanline
                memcpy(buffer, info.pImage + (height - y - 1)*info.dwEffWidth, info.dwEffWidth);
                // TIFFs store color data RGB instead of BGR
                BYTE *pSrc = buffer + 3 * width;
                BYTE *pDst = buffer + 4 * width;
                for (x = 0; x < width; x++) {
                    pDst-=4;
                    pSrc-=3;
                    pDst[3] = AlphaGet(width-x-1,height-y-1);
                    pDst[2] = pSrc[0];
                    pDst[1] = pSrc[1];
                    pDst[0] = pSrc[2];
                }
                // write the scanline to disc
                if (TIFFWriteScanline(m_tif, buffer, y, 0)==-1){
                    free(buffer);
                    return false;
                }
            }
            free(buffer);
#endif //CXIMAGE_SUPPORT_ALPHA
            break;
        }				
    }
    return true;
}