void Net<Dtype>::Init(const NetParameter& in_param) { // Create a copy of in_param with splits added where necessary. NetParameter param; InsertSplits(in_param, ¶m); // Basically, build all the layers and set up its connections. name_ = param.name(); map<string, int> blob_name_to_idx; set<string> available_blobs; int num_layers = param.layers_size(); CHECK_EQ(param.input_size() * 4, param.input_dim_size()) << "Incorrect bottom blob dimension specifications."; size_t memory_used = 0; // set the input blobs for (int i = 0; i < param.input_size(); ++i) { const string& blob_name = param.input(i); shared_ptr<Blob<Dtype> > blob_pointer( new Blob<Dtype>(param.input_dim(i * 4), param.input_dim(i * 4 + 1), param.input_dim(i * 4 + 2), param.input_dim(i * 4 + 3))); blobs_.push_back(blob_pointer); blob_names_.push_back(blob_name); blob_need_backward_.push_back(param.force_backward()); net_input_blob_indices_.push_back(i); net_input_blobs_.push_back(blob_pointer.get()); blob_name_to_idx[blob_name] = i; available_blobs.insert(blob_name); memory_used += blob_pointer->count(); } DLOG(INFO) << "Memory required for Data" << memory_used*sizeof(Dtype); // For each layer, set up their input and output bottom_vecs_.resize(param.layers_size()); top_vecs_.resize(param.layers_size()); bottom_id_vecs_.resize(param.layers_size()); top_id_vecs_.resize(param.layers_size()); for (int i = 0; i < param.layers_size(); ++i) { bool in_place = false; const LayerParameter& layer_param = param.layers(i); layers_.push_back(shared_ptr<Layer<Dtype> >(GetLayer<Dtype>(layer_param))); layer_names_.push_back(layer_param.name()); LOG(INFO) << "Creating Layer " << layer_param.name(); bool need_backward = param.force_backward(); // Figure out this layer's input for (int j = 0; j < layer_param.bottom_size(); ++j) { const string& blob_name = layer_param.bottom(j); const int blob_id = blob_name_to_idx[blob_name]; if (available_blobs.find(blob_name) == available_blobs.end()) { LOG(FATAL) << "Unknown blob input " << blob_name << " to layer" << j; } LOG(INFO) << layer_param.name() << " <- " << blob_name; bottom_vecs_[i].push_back(blobs_[blob_id].get()); bottom_id_vecs_[i].push_back(blob_id); // If a blob needs backward, this layer should provide it. need_backward |= blob_need_backward_[blob_id]; available_blobs.erase(blob_name); } // Figure out this layer's output for (int j = 0; j < layer_param.top_size(); ++j) { const string& blob_name = layer_param.top(j); // Check if we are doing in-place computation if (layer_param.bottom_size() > j && blob_name == layer_param.bottom(j)) { // In-place computation LOG(INFO) << layer_param.name() << " -> " << blob_name << " (in-place)"; in_place = true; available_blobs.insert(blob_name); top_vecs_[i].push_back( blobs_[blob_name_to_idx[blob_name]].get()); top_id_vecs_[i].push_back(blob_name_to_idx[blob_name]); } else if (blob_name_to_idx.find(blob_name) != blob_name_to_idx.end()) { // If we are not doing in-place computation but has duplicated blobs, // raise an error. LOG(FATAL) << "Duplicate blobs produced by multiple sources."; } else { // Normal output. LOG(INFO) << layer_param.name() << " -> " << blob_name; shared_ptr<Blob<Dtype> > blob_pointer(new Blob<Dtype>()); blobs_.push_back(blob_pointer); blob_names_.push_back(blob_name); blob_need_backward_.push_back(param.force_backward()); blob_name_to_idx[blob_name] = blob_names_.size() - 1; available_blobs.insert(blob_name); top_vecs_[i].push_back(blobs_[blob_names_.size() - 1].get()); top_id_vecs_[i].push_back(blob_names_.size() - 1); } } // After this layer is connected, set it up. //LOG(INFO) << "Setting up " << layer_names_[i]; layers_[i]->SetUp(bottom_vecs_[i], &(top_vecs_[i])); for (int topid = 0; topid < top_vecs_[i].size(); ++topid) { LOG(INFO) << "Top shape: " << top_vecs_[i][topid]->num() << " " << top_vecs_[i][topid]->channels() << " " << top_vecs_[i][topid]->height() << " " << top_vecs_[i][topid]->width() << " (" << top_vecs_[i][topid]->count() << ")"; if (!in_place) memory_used += top_vecs_[i][topid]->count(); } DLOG(INFO) << "Memory required for Data " << memory_used*sizeof(Dtype); // blobs: 0# weights, 1# bias term; blob_lr: 1# learning rate for weights, 2# learning rate for bias int blobs_lr_size = layers_[i]->layer_param().blobs_lr_size(); CHECK(blobs_lr_size == layers_[i]->blobs().size() || blobs_lr_size == 0) // 0, 1, 2 << "Incorrect blobs lr size: should be either 0 or the same as " "the number of the layer's parameter blobs."; if (blobs_lr_size) { // Check if this layer needs backward operation itself for (int j = 0; j < blobs_lr_size; ++j) { need_backward |= (layers_[i]->layer_param().blobs_lr(j) > 0); } } else if (layers_[i]->blobs().size()) { // catch: if a layer param does not specify blobs_lr, we should assume the // learning rate to be 1. Thus we will need to perform backward. need_backward = true; } // Finally, set the backward flag layer_need_backward_.push_back(need_backward); if (need_backward) { LOG(INFO) << layer_names_[i] << " needs backward computation."; for (int j = 0; j < top_id_vecs_[i].size(); ++j) { blob_need_backward_[top_id_vecs_[i][j]] = true; } } else { LOG(INFO) << layer_names_[i] << " does not need backward computation."; } } // In the end, all remaining blobs are considered output blobs. for (set<string>::iterator it = available_blobs.begin(); it != available_blobs.end(); ++it) { LOG(INFO) << "This network produces output " << *it; net_output_blobs_.push_back(blobs_[blob_name_to_idx[*it]].get()); net_output_blob_indices_.push_back(blob_name_to_idx[*it]); } for (size_t i = 0; i < blob_names_.size(); ++i) { blob_names_index_[blob_names_[i]] = i; } for (size_t i = 0; i < layer_names_.size(); ++i) { layer_names_index_[layer_names_[i]] = i; } GetLearningRateAndWeightDecay(); LOG(INFO) << "Network initialization done."; LOG(INFO) << "Memory required for Data " << memory_used*sizeof(Dtype); }
void Net<Dtype>::Init(const NetParameter& param) { // Basically, build all the layers and set up its connections. name_ = param.name(); map<string, int> blob_name_to_idx; set<string> available_blobs; int num_layers = param.layers_size(); CHECK_EQ(param.input_size() * 4, param.input_dim_size()) << "Incorrect bottom blob dimension specifications."; // set the input blobs for (int i = 0; i < param.input_size(); ++i) { const string& blob_name = param.input(i); shared_ptr<Blob<Dtype> > blob_pointer( new Blob<Dtype>(param.input_dim(i * 4), param.input_dim(i * 4 + 1), param.input_dim(i * 4 + 2), param.input_dim(i * 4 + 3))); blobs_.push_back(blob_pointer); blob_names_.push_back(blob_name); blob_need_backward_.push_back(param.force_backward()); net_input_blob_indices_.push_back(i); net_input_blobs_.push_back(blob_pointer.get()); blob_name_to_idx[blob_name] = i; available_blobs.insert(blob_name); } // For each layer, set up their input and output bottom_vecs_.resize(param.layers_size()); top_vecs_.resize(param.layers_size()); bottom_id_vecs_.resize(param.layers_size()); top_id_vecs_.resize(param.layers_size()); for (int i = 0; i < param.layers_size(); ++i) { const LayerConnection& layer_connection = param.layers(i); const LayerParameter& layer_param = layer_connection.layer(); layers_.push_back(shared_ptr<Layer<Dtype> >(GetLayer<Dtype>(layer_param))); layer_names_.push_back(layer_param.name()); LOG(INFO) << "Creating Layer " << layer_param.name(); bool need_backward = param.force_backward(); // Figure out this layer's input and output for (int j = 0; j < layer_connection.bottom_size(); ++j) { const string& blob_name = layer_connection.bottom(j); const int blob_id = blob_name_to_idx[blob_name]; if (available_blobs.find(blob_name) == available_blobs.end()) { LOG(FATAL) << "Unknown blob input " << blob_name << " to layer" << j; } LOG(INFO) << layer_param.name() << " <- " << blob_name; bottom_vecs_[i].push_back( blobs_[blob_id].get()); bottom_id_vecs_[i].push_back(blob_id); // If a blob needs backward, this layer should provide it. need_backward |= blob_need_backward_[blob_id]; available_blobs.erase(blob_name); } for (int j = 0; j < layer_connection.top_size(); ++j) { const string& blob_name = layer_connection.top(j); // Check if we are doing in-place computation if (layer_connection.bottom_size() > j && blob_name == layer_connection.bottom(j)) { // In-place computation LOG(INFO) << layer_param.name() << " -> " << blob_name << " (in-place)"; available_blobs.insert(blob_name); top_vecs_[i].push_back( blobs_[blob_name_to_idx[blob_name]].get()); top_id_vecs_[i].push_back(blob_name_to_idx[blob_name]); } else if (blob_name_to_idx.find(blob_name) != blob_name_to_idx.end()) { // If we are not doing in-place computation but has duplicated blobs, // raise an error. LOG(FATAL) << "Duplicate blobs produced by multiple sources."; } else { // Normal output. LOG(INFO) << layer_param.name() << " -> " << blob_name; shared_ptr<Blob<Dtype> > blob_pointer(new Blob<Dtype>()); blobs_.push_back(blob_pointer); blob_names_.push_back(blob_name); blob_need_backward_.push_back(param.force_backward()); blob_name_to_idx[blob_name] = blob_names_.size() - 1; available_blobs.insert(blob_name); top_vecs_[i].push_back(blobs_[blob_names_.size() - 1].get()); top_id_vecs_[i].push_back(blob_names_.size() - 1); } } // After this layer is connected, set it up. // LOG(INFO) << "Setting up " << layer_names_[i]; layers_[i]->SetUp(bottom_vecs_[i], &top_vecs_[i]); for (int topid = 0; topid < top_vecs_[i].size(); ++topid) { LOG(INFO) << "Top shape: " << top_vecs_[i][topid]->channels() << " " << top_vecs_[i][topid]->height() << " " << top_vecs_[i][topid]->width(); } // Check if this layer needs backward operation itself for (int j = 0; j < layers_[i]->layer_param().blobs_lr_size(); ++j) { need_backward |= (layers_[i]->layer_param().blobs_lr(j) > 0); } // Finally, set the backward flag layer_need_backward_.push_back(need_backward); if (need_backward) { LOG(INFO) << layer_names_[i] << " needs backward computation."; for (int j = 0; j < top_id_vecs_[i].size(); ++j) { blob_need_backward_[top_id_vecs_[i][j]] = true; } } else { LOG(INFO) << layer_names_[i] << " does not need backward computation."; } } // In the end, all remaining blobs are considered output blobs. for (set<string>::iterator it = available_blobs.begin(); it != available_blobs.end(); ++it) { LOG(INFO) << "This network produces output " << *it; net_output_blobs_.push_back(blobs_[blob_name_to_idx[*it]].get()); } GetLearningRateAndWeightDecay(); LOG(INFO) << "Network initialization done."; }