Example #1
0
Scalar KmTree::SeedKmppUpdateAssignment(const Node *node, int new_cluster, Scalar *centers,
                                        Scalar *dist_sq) const {
  // See if we can assign all points in this node to one cluster
  if (node->kmpp_cluster_index >= 0) {
    if (ShouldBePruned(node->median, node->radius, centers, node->kmpp_cluster_index, new_cluster))
      return GetNodeCost(node, centers + node->kmpp_cluster_index*d_);
    if (ShouldBePruned(node->median, node->radius, centers, new_cluster,
                       node->kmpp_cluster_index)) {
      SeedKmppSetClusterIndex(node, new_cluster);
      for (int i = node->first_point_index; i < node->first_point_index + node->num_points; i++)
        dist_sq[i] = KMeans_PointDistSq(points_ + point_indices_[i]*d_, centers + new_cluster*d_, d_);
      return GetNodeCost(node, centers + new_cluster*d_);
    }
    
    // It may be that the a leaf-node point is equidistant from the new center or old
    if (node->lower_node == 0)
      return GetNodeCost(node, centers + node->kmpp_cluster_index*d_);
  }

  // Recurse
  Scalar cost = SeedKmppUpdateAssignment(node->lower_node, new_cluster, centers, dist_sq) +
                SeedKmppUpdateAssignment(node->upper_node, new_cluster, centers, dist_sq);
  int i1 = node->lower_node->kmpp_cluster_index, i2 = node->upper_node->kmpp_cluster_index;
  if (i1 == i2 && i1 != -1)
    node->kmpp_cluster_index = i1;
  else
    node->kmpp_cluster_index = -1;
  return cost;
}
Example #2
0
// A recursive version of DoKMeansStep. This determines which clusters all points that are rooted
// node will be assigned to, and updates sums, counts and assignment (if not null) accordingly.
// candidates maintains the set of cluster indices which could possibly be the closest clusters
// for points in this subtree.
Scalar KmTree::DoKMeansStepAtNode(const Node *node, int k, int *candidates, Scalar *centers,
                                  Scalar *sums, int *counts, int *assignment) const {
  // Determine which center the node center is closest to
  Scalar min_dist_sq = KMeans_PointDistSq(node->median, centers + candidates[0]*d_, d_);
  int closest_i = candidates[0];
  for (int i = 1; i < k; i++) {
    Scalar dist_sq = KMeans_PointDistSq(node->median, centers + candidates[i]*d_, d_);
    if (dist_sq < min_dist_sq) {
      min_dist_sq = dist_sq;
      closest_i = candidates[i];
    }
  }

  // If this is a non-leaf node, recurse if necessary
  if (node->lower_node != 0) {
    // Build the new list of candidates
    int new_k = 0;
    int *new_candidates = (int*)malloc(k * sizeof(int));
    KM_ASSERT(new_candidates != 0);
    for (int i = 0; i < k; i++)
    if (!ShouldBePruned(node->median, node->radius, centers, closest_i, candidates[i]))
      new_candidates[new_k++] = candidates[i];

    // Recurse if there's at least two
    if (new_k > 1) {
      Scalar result = DoKMeansStepAtNode(node->lower_node, new_k, new_candidates, centers,
                                         sums, counts, assignment) +
                      DoKMeansStepAtNode(node->upper_node, new_k, new_candidates, centers,
                                         sums, counts, assignment);
      free(new_candidates);
      return result;
    } else {
      free(new_candidates);
    }
  }

  // Assigns all points within this node to a single center
  KMeans_PointAdd(sums + closest_i*d_, node->sum, d_);
  counts[closest_i] += node->num_points;
  if (assignment != 0) {
    for (int i = node->first_point_index; i < node->first_point_index + node->num_points; i++)
      assignment[point_indices_[i]] = closest_i;
  }
  return GetNodeCost(node, centers + closest_i*d_);
}
Example #3
0
// Build a kd tree from the given set of points
KmTree::Node *KmTree::BuildNodes(Scalar *points, int first_index, int last_index,
                                 char **next_node_data) {
  // Allocate the node
  Node *node = (Node*)(*next_node_data);
  (*next_node_data) += sizeof(Node);
  node->sum = (Scalar*)(*next_node_data);
  (*next_node_data) += sizeof(Scalar) * d_;
  node->median = (Scalar*)(*next_node_data);
  (*next_node_data) += sizeof(Scalar) * d_;
  node->radius = (Scalar*)(*next_node_data);
  (*next_node_data) += sizeof(Scalar) * d_;

  // Fill in basic info
  node->num_points = (last_index - first_index + 1);
  node->first_point_index = first_index;

  // Calculate the bounding box
  Scalar *first_point = points + point_indices_[first_index] * d_;
  Scalar *bound_p1 = KMeans_PointAllocate(d_);
  Scalar *bound_p2 = KMeans_PointAllocate(d_);
  KM_ASSERT(bound_p1 != 0 && bound_p2 != 0);
  KMeans_PointCopy(bound_p1, first_point, d_);
  KMeans_PointCopy(bound_p2, first_point, d_);
  for (int i = first_index+1; i <= last_index; i++)
  for (int j = 0; j < d_; j++) {
    Scalar c = points[point_indices_[i]*d_ + j];
    if (bound_p1[j] > c) bound_p1[j] = c;
    if (bound_p2[j] < c) bound_p2[j] = c;
  }

  // Calculate bounding box stats and delete the bounding box memory
  Scalar max_radius = -1;
  int split_d = -1;
  for (int j = 0; j < d_; j++) {
    node->median[j] = (bound_p1[j] + bound_p2[j]) / 2;
    node->radius[j] = (bound_p2[j] - bound_p1[j]) / 2;
    if (node->radius[j] > max_radius) {
      max_radius = node->radius[j];
      split_d = j;
    }
  }
  KMeans_PointFree(bound_p2);
  KMeans_PointFree(bound_p1);

  // If the max spread is 0, make this a leaf node
  if (max_radius == 0) {
    node->lower_node = node->upper_node = 0;
    KMeans_PointCopy(node->sum, first_point, d_);
    if (last_index != first_index)
      KMeans_PointScale(node->sum, Scalar(last_index - first_index + 1), d_);
    node->opt_cost = 0;
    return node;
  }

  // Partition the points around the midpoint in this dimension. The partitioning is done in-place
  // by iterating from left-to-right and right-to-left in the same way that partioning is done for
  // quicksort.
  Scalar split_pos = node->median[split_d];
  int i1 = first_index, i2 = last_index, size1 = 0;
  while (i1 <= i2) {
    bool is_i1_good = (points[point_indices_[i1]*d_ + split_d] < split_pos);
    bool is_i2_good = (points[point_indices_[i2]*d_ + split_d] >= split_pos);
    if (!is_i1_good && !is_i2_good) {
      int temp = point_indices_[i1];
      point_indices_[i1] = point_indices_[i2];
      point_indices_[i2] = temp;
      is_i1_good = is_i2_good = true;
    }
    if (is_i1_good) {
      i1++;
      size1++;
    }
    if (is_i2_good) {
      i2--;
    }
  }

  // Create the child nodes
  KM_ASSERT(size1 >= 1 && size1 <= last_index - first_index);
  node->lower_node = BuildNodes(points, first_index, first_index + size1 - 1, next_node_data);
  node->upper_node = BuildNodes(points, first_index + size1, last_index, next_node_data);

  // Calculate the new sum and opt cost
  KMeans_PointCopy(node->sum, node->lower_node->sum, d_);
  KMeans_PointAdd(node->sum, node->upper_node->sum, d_);
  Scalar *center = KMeans_PointAllocate(d_);
  KM_ASSERT(center != 0);
  KMeans_PointCopy(center, node->sum, d_);
  KMeans_PointScale(center, Scalar(1) / node->num_points, d_);
  node->opt_cost = GetNodeCost(node->lower_node, center) + GetNodeCost(node->upper_node, center);
  KMeans_PointFree(center);
  return node;
}
Example #4
0
ASPath ASPathCreate(const ASPathNodeSource *source, void *context, void *startNodeKey, void *goalNodeKey)
{
    VisitedNodes visitedNodes;
    ASNeighborList neighborList;
    Node current;
    Node goalNode;
    ASPath path = NULL;
    if (!startNodeKey || !source || !source->nodeNeighbors || source->nodeSize == 0) {
        return NULL;
    }
    
    visitedNodes = VisitedNodesCreate(source, context);
    neighborList = NeighborListCreate(source);
    current = GetNode(visitedNodes, startNodeKey);
    goalNode = GetNode(visitedNodes, goalNodeKey);
 
    // mark the goal node as the goal
    SetNodeIsGoal(goalNode);
    
    // set the starting node's estimate cost to the goal and add it to the open set
    SetNodeEstimatedCost(current,  GetPathCostHeuristic(current, goalNode));
    AddNodeToOpenSet(current, 0, NodeNull);
    
    // perform the A* algorithm
    while (HasOpenNode(visitedNodes) && !NodeIsGoal((current = GetOpenNode(visitedNodes)))) {
        size_t n;
        if (source->earlyExit) {
            const int shouldExit = source->earlyExit(visitedNodes->nodeRecordsCount, GetNodeKey(current), goalNodeKey, context);

            if (shouldExit > 0) {
                SetNodeIsGoal(current);
                break;
            } else if (shouldExit < 0) {
                break;
            }
        }
        
        RemoveNodeFromOpenSet(current);
        AddNodeToClosedSet(current);
        
        neighborList->count = 0;
        source->nodeNeighbors(neighborList, GetNodeKey(current), context);

        for (n=0; n<neighborList->count; n++) {
            const float cost = GetNodeCost(current) + NeighborListGetEdgeCost(neighborList, n);
            Node neighbor = GetNode(visitedNodes, NeighborListGetNodeKey(neighborList, n));
            
            if (!NodeHasEstimatedCost(neighbor)) {
                SetNodeEstimatedCost(neighbor, GetPathCostHeuristic(neighbor, goalNode));
            }
            
            if (NodeIsInOpenSet(neighbor) && cost < GetNodeCost(neighbor)) {
                RemoveNodeFromOpenSet(neighbor);
            }
            
            if (NodeIsInClosedSet(neighbor) && cost < GetNodeCost(neighbor)) {
                RemoveNodeFromClosedSet(neighbor);
            }
            
            if (!NodeIsInOpenSet(neighbor) && !NodeIsInClosedSet(neighbor)) {
                AddNodeToOpenSet(neighbor, cost, current);
            }
        }
    }
    
    if (NodeIsNull(goalNode)) {
        SetNodeIsGoal(current);
    }
    
    if (NodeIsGoal(current)) {
        size_t count = 0;
        Node n = current;
        size_t i;
        
        while (!NodeIsNull(n)) {
            count++;
            n = GetParentNode(n);
        }
        
        CMALLOC(path, sizeof(struct __ASPath) + (count * source->nodeSize));
        path->nodeSize = source->nodeSize;
        path->count = count;
        path->cost = GetNodeCost(current);
        
        n = current;
        for (i=count; i>0; i--) {
            memcpy(path->nodeKeys + ((i - 1) * source->nodeSize), GetNodeKey(n), source->nodeSize);
            n = GetParentNode(n);
        }
    }
    
    NeighborListDestroy(neighborList);
    VisitedNodesDestroy(visitedNodes);

    return path;
}