Example #1
0
bool CVertexBuffer::Cache(CDisplayDevice *poDisplayDevice) {
#if RENDER == DX9
	IDirect3DVertexBuffer9* VB;

	int len = GetVertexStructSize() * m_iNumVertex; 
	HRESULT result = poDisplayDevice->m_pDevice->CreateVertexBuffer(
		len, 
		D3DUSAGE_WRITEONLY, 
		poDisplayDevice->GetFVF(GetVertexType()),
		D3DPOOL_SYSTEMMEM, 
		&VB, 
		0);

	if (result != D3D_OK)
		return false;

	char *buffer;
	VB->Lock(0, 0, (void **)&buffer, 0);
	memcpy(buffer, GetVertexBuffer(), len);
	VB->Unlock();

	m_pCachedData = VB;
#endif

	return true;
}
Example #2
0
void D3D9VideoInfo::BeginFastDraw(IDirect3DDevice9* pDevice, const Sprite::RECT_MODE mode)
{
	IDirect3DVertexBuffer9 *pSprite = GetVertexBuffer(mode);
	if (FAILED(pDevice->SetStreamSource(0, pSprite, 0, sizeof(SPRITE_VERTEX))))
		return;
	pDevice->SetFVF(SPRITE_FVF);
}
Example #3
0
bool D3D9VideoInfo::DrawSprite(IDirect3DDevice9 *pDevice, const Sprite::RECT_MODE mode)
{
	IDirect3DVertexBuffer9* pSprite = GetVertexBuffer(mode);
	unsigned int polyCount = GetPolyCount(mode);
	D3DPRIMITIVETYPE primType = GetPrimitiveType(mode);

	if (FAILED(pDevice->SetStreamSource(0, pSprite, 0, sizeof(SPRITE_VERTEX))))
		return false;
	pDevice->SetFVF(SPRITE_FVF);
	if (FAILED(pDevice->DrawPrimitive(primType, 0, polyCount)))
		return false;
	return true;
}
void
OsdClKernelDispatcher::ApplyBilinearVertexVerticesKernel(FarMesh<OsdVertex> * mesh, int offset,
        int level, int start, int end, void * data) const {

    cl_int ciErrNum;
    size_t globalWorkSize[1] = { end-start };
    cl_kernel kernel = _clKernel->GetBilinearVertexKernel();

    clSetKernelArg(kernel, 0, sizeof(cl_mem), GetVertexBuffer());
    clSetKernelArg(kernel, 1, sizeof(cl_mem), GetVaryingBuffer());
    clSetKernelArg(kernel, 2, sizeof(cl_mem), &_tables[V_ITa].devicePtr);
    clSetKernelArg(kernel, 3, sizeof(int), &_tableOffsets[V_ITa][level-1]);
    clSetKernelArg(kernel, 4, sizeof(int), (void*)&offset);
    clSetKernelArg(kernel, 5, sizeof(int), (void*)&start);
    clSetKernelArg(kernel, 6, sizeof(int), (void*)&end);
    ciErrNum = clEnqueueNDRangeKernel(_clQueue, kernel, 1, NULL, globalWorkSize, NULL, 0, NULL, NULL);
    CL_CHECK_ERROR(ciErrNum, "bilinear vertex kernel 1 %d\n", ciErrNum);
}
Example #5
0
void FUE1Model::BuildVertexBuffer( FModelRenderer *renderer )
{
	if (GetVertexBuffer(renderer))
		return;
	if ( !mDataLoaded )
		LoadGeometry();
	int vsize = 0;
	for ( int i=0; i<numGroups; i++ )
		vsize += groups[i].numPolys*3;
	vsize *= numFrames;
	auto vbuf = renderer->CreateVertexBuffer(false,numFrames==1);
	SetVertexBuffer(renderer, vbuf);
	FModelVertex *vptr = vbuf->LockVertexBuffer(vsize);
	int vidx = 0;
	for ( int i=0; i<numFrames; i++ )
	{
		for ( int j=0; j<numGroups; j++ )
		{
			for ( int k=0; k<groups[j].numPolys; k++ )
			{
				for ( int l=0; l<3; l++ )
				{
					UE1Vertex V = verts[polys[groups[j].P[k]].V[l]+i*numVerts];
					FVector2 C = polys[groups[j].P[k]].C[l];
					FModelVertex *vert = &vptr[vidx++];
					vert->Set(V.Pos.X,V.Pos.Y,V.Pos.Z,C.X,C.Y);
					if ( groups[j].type&PT_Curvy )	// use facet normal
					{
						vert->SetNormal(polys[groups[j].P[k]].Normals[i].X,
							polys[groups[j].P[k]].Normals[i].Y,
							polys[groups[j].P[k]].Normals[i].Z);
					}
					else vert->SetNormal(V.Normal.X,V.Normal.Y,V.Normal.Z);
				}
			}
		}
	}
	vbuf->UnlockVertexBuffer();
}
Example #6
0
void FUE1Model::RenderFrame( FModelRenderer *renderer, FTexture *skin, int frame, int frame2, double inter, int translation )
{
	// the moment of magic
	if ( (frame >= numFrames) || (frame2 >= numFrames) ) return;
	renderer->SetInterpolation(inter);
	int vsize, fsize = 0, vofs = 0;
	for ( int i=0; i<numGroups; i++ ) fsize += groups[i].numPolys*3;
	for ( int i=0; i<numGroups; i++ )
	{
		vsize = groups[i].numPolys*3;
		if ( groups[i].type&PT_WeaponTriangle )
		{
			// weapon triangle should never be drawn, it only exists to calculate attachment position and orientation
			vofs += vsize;
			continue;
		}
		FTexture *sskin = skin;
		if ( !sskin )
		{
			if ( curSpriteMDLFrame->surfaceskinIDs[curMDLIndex][groups[i].texNum].isValid() )
				sskin = TexMan.GetTexture(curSpriteMDLFrame->surfaceskinIDs[curMDLIndex][groups[i].texNum], true);
			if ( !sskin )
			{
				vofs += vsize;
				continue;
			}
		}
		// TODO: Handle per-group render styles and other flags once functions for it are implemented
		// Future note: poly renderstyles should always be enforced unless the actor itself has a style other than Normal
		renderer->SetMaterial(sskin,false,translation);
		GetVertexBuffer(renderer)->SetupFrame(renderer,vofs+frame*fsize,vofs+frame2*fsize,vsize);
		renderer->DrawArrays(0,vsize);
		vofs += vsize;
	}
	renderer->SetInterpolation(0.f);
}
Example #7
0
void ccGenericMesh::drawMeOnly(CC_DRAW_CONTEXT& context)
{
	ccGenericPointCloud* vertices = getAssociatedCloud();
	if (!vertices)
		return;

	handleColorRamp(context);

	//3D pass
	if (MACRO_Draw3D(context))
	{
		//any triangle?
		unsigned triNum = size();
		if (triNum == 0)
			return;

		//L.O.D.
		bool lodEnabled = (triNum > GET_MAX_LOD_FACES_NUMBER() && context.decimateMeshOnMove && MACRO_LODActivated(context));
		unsigned decimStep = (lodEnabled ? (unsigned)ceil((float)triNum*3 / (float)GET_MAX_LOD_FACES_NUMBER()) : 1);
		unsigned displayedTriNum = triNum / decimStep;

		//display parameters
		glDrawParams glParams;
		getDrawingParameters(glParams);
		glParams.showNorms &= bool(MACRO_LightIsEnabled(context));

		//vertices visibility
		const ccGenericPointCloud::VisibilityTableType* verticesVisibility = vertices->getTheVisibilityArray();
		bool visFiltering = (verticesVisibility && verticesVisibility->isAllocated());

		//wireframe ? (not compatible with LOD)
		bool showWired = isShownAsWire() && !lodEnabled;

		//per-triangle normals?
		bool showTriNormals = (hasTriNormals() && triNormsShown());
		//fix 'showNorms'
		glParams.showNorms = showTriNormals || (vertices->hasNormals() && m_normalsDisplayed);

		//materials & textures
		bool applyMaterials = (hasMaterials() && materialsShown());
		bool showTextures = (hasTextures() && materialsShown() && !lodEnabled);

		//GL name pushing
		bool pushName = MACRO_DrawEntityNames(context);
		//special case: triangle names pushing (for picking)
		bool pushTriangleNames = MACRO_DrawTriangleNames(context);
		pushName |= pushTriangleNames;

		if (pushName)
		{
			//not fast at all!
			if (MACRO_DrawFastNamesOnly(context))
				return;
			glPushName(getUniqueIDForDisplay());
			//minimal display for picking mode!
			glParams.showNorms = false;
			glParams.showColors = false;
			//glParams.showSF --> we keep it only if SF 'NaN' values are hidden
			showTriNormals = false;
			applyMaterials = false;
			showTextures = false;
		}

		//in the case we need to display scalar field colors
		ccScalarField* currentDisplayedScalarField = 0;
		bool greyForNanScalarValues = true;
		unsigned colorRampSteps = 0;
		ccColorScale::Shared colorScale(0);

		if (glParams.showSF)
		{
			assert(vertices->isA(CC_TYPES::POINT_CLOUD));
			ccPointCloud* cloud = static_cast<ccPointCloud*>(vertices);

			greyForNanScalarValues = (cloud->getCurrentDisplayedScalarField() && cloud->getCurrentDisplayedScalarField()->areNaNValuesShownInGrey());
			if (greyForNanScalarValues && pushName)
			{
				//in picking mode, no need to take SF into account if we don't hide any points!
				glParams.showSF = false;
			}
			else
			{
				currentDisplayedScalarField = cloud->getCurrentDisplayedScalarField();
				colorScale = currentDisplayedScalarField->getColorScale();
				colorRampSteps = currentDisplayedScalarField->getColorRampSteps();

				assert(colorScale);
				//get default color ramp if cloud has no scale associated?!
				if (!colorScale)
					colorScale = ccColorScalesManager::GetUniqueInstance()->getDefaultScale(ccColorScalesManager::BGYR);
			}
		}

		//materials or color?
		bool colorMaterial = false;
		if (glParams.showSF || glParams.showColors)
		{
			applyMaterials = false;
			colorMaterial = true;
			glColorMaterial(GL_FRONT_AND_BACK, GL_DIFFUSE);
			glEnable(GL_COLOR_MATERIAL);
		}

		//in the case we need to display vertex colors
		ColorsTableType* rgbColorsTable = 0;
		if (glParams.showColors)
		{
			if (isColorOverriden())
			{
				glColor3ubv(m_tempColor);
				glParams.showColors = false;
			}
			else
			{
				assert(vertices->isA(CC_TYPES::POINT_CLOUD));
				rgbColorsTable = static_cast<ccPointCloud*>(vertices)->rgbColors();
			}
		}
		else
		{
			glColor3fv(context.defaultMat.diffuseFront);
		}

		if (glParams.showNorms)
		{
			//DGM: Strangely, when Qt::renderPixmap is called, the OpenGL version can fall to 1.0!
			glEnable((QGLFormat::openGLVersionFlags() & QGLFormat::OpenGL_Version_1_2 ? GL_RESCALE_NORMAL : GL_NORMALIZE));
			glEnable(GL_LIGHTING);
			context.defaultMat.applyGL(true,colorMaterial);
		}

		//in the case we need normals (i.e. lighting)
		NormsIndexesTableType* normalsIndexesTable = 0;
		ccNormalVectors* compressedNormals = 0;
		if (glParams.showNorms)
		{
			assert(vertices->isA(CC_TYPES::POINT_CLOUD));
			normalsIndexesTable = static_cast<ccPointCloud*>(vertices)->normals();
			compressedNormals = ccNormalVectors::GetUniqueInstance();
		}

		//stipple mask
		if (stipplingEnabled())
			EnableGLStippleMask(true);

		if (!pushTriangleNames && !visFiltering && !(applyMaterials || showTextures) && (!glParams.showSF || greyForNanScalarValues))
		{
			//the GL type depends on the PointCoordinateType 'size' (float or double)
			GLenum GL_COORD_TYPE = sizeof(PointCoordinateType) == 4 ? GL_FLOAT : GL_DOUBLE;
			
			glEnableClientState(GL_VERTEX_ARRAY);
			glVertexPointer(3,GL_COORD_TYPE,0,GetVertexBuffer());

			if (glParams.showNorms)
			{
				glEnableClientState(GL_NORMAL_ARRAY);
				glNormalPointer(GL_COORD_TYPE,0,GetNormalsBuffer());
			}
			if (glParams.showSF || glParams.showColors)
			{
				glEnableClientState(GL_COLOR_ARRAY);
				glColorPointer(3,GL_UNSIGNED_BYTE,0,GetColorsBuffer());
			}

			//we can scan and process each chunk separately in an optimized way
			//we mimic the way ccMesh beahves by using virtual chunks!
			unsigned chunks = static_cast<unsigned>(ceil((double)displayedTriNum/(double)MAX_NUMBER_OF_ELEMENTS_PER_CHUNK));
			unsigned chunkStart = 0;
			const colorType* col = 0;
			for (unsigned k=0; k<chunks; ++k, chunkStart += MAX_NUMBER_OF_ELEMENTS_PER_CHUNK)
			{
				//virtual chunk size
				const unsigned chunkSize = k+1 < chunks ? MAX_NUMBER_OF_ELEMENTS_PER_CHUNK : (displayedTriNum % MAX_NUMBER_OF_ELEMENTS_PER_CHUNK);

				//vertices
				PointCoordinateType* _vertices = GetVertexBuffer();
				for (unsigned n=0; n<chunkSize; n+=decimStep)
				{
					const CCLib::TriangleSummitsIndexes* ti = getTriangleIndexes(chunkStart + n);
					memcpy(_vertices,vertices->getPoint(ti->i1)->u,sizeof(PointCoordinateType)*3);
					_vertices+=3;
					memcpy(_vertices,vertices->getPoint(ti->i2)->u,sizeof(PointCoordinateType)*3);
					_vertices+=3;
					memcpy(_vertices,vertices->getPoint(ti->i3)->u,sizeof(PointCoordinateType)*3);
					_vertices+=3;
				}

				//scalar field
				if (glParams.showSF)
				{
					colorType* _rgbColors = GetColorsBuffer();
					assert(colorScale);
					for (unsigned n=0; n<chunkSize; n+=decimStep)
					{
						const CCLib::TriangleSummitsIndexes* ti = getTriangleIndexes(chunkStart + n);
						col = currentDisplayedScalarField->getValueColor(ti->i1);
						memcpy(_rgbColors,col,sizeof(colorType)*3);
						_rgbColors += 3;
						col = currentDisplayedScalarField->getValueColor(ti->i2);
						memcpy(_rgbColors,col,sizeof(colorType)*3);
						_rgbColors += 3;
						col = currentDisplayedScalarField->getValueColor(ti->i3);
						memcpy(_rgbColors,col,sizeof(colorType)*3);
						_rgbColors += 3;
					}
				}
				//colors
				else if (glParams.showColors)
				{
					colorType* _rgbColors = GetColorsBuffer();

					for (unsigned n=0; n<chunkSize; n+=decimStep)
					{
						const CCLib::TriangleSummitsIndexes* ti = getTriangleIndexes(chunkStart + n);
						memcpy(_rgbColors,rgbColorsTable->getValue(ti->i1),sizeof(colorType)*3);
						_rgbColors += 3;
						memcpy(_rgbColors,rgbColorsTable->getValue(ti->i2),sizeof(colorType)*3);
						_rgbColors += 3;
						memcpy(_rgbColors,rgbColorsTable->getValue(ti->i3),sizeof(colorType)*3);
						_rgbColors += 3;
					}
				}

				//normals
				if (glParams.showNorms)
				{
					PointCoordinateType* _normals = GetNormalsBuffer();
					if (showTriNormals)
					{
						for (unsigned n=0; n<chunkSize; n+=decimStep)
						{
							CCVector3 Na, Nb, Nc;
							getTriangleNormals(chunkStart + n, Na, Nb, Nc);
							memcpy(_normals,Na.u,sizeof(PointCoordinateType)*3);
							_normals+=3;
							memcpy(_normals,Nb.u,sizeof(PointCoordinateType)*3);
							_normals+=3;
							memcpy(_normals,Nc.u,sizeof(PointCoordinateType)*3);
							_normals+=3;
						}
					}
					else
					{
						for (unsigned n=0; n<chunkSize; n+=decimStep)
						{
							const CCLib::TriangleSummitsIndexes* ti = getTriangleIndexes(chunkStart + n);
							memcpy(_normals,vertices->getPointNormal(ti->i1).u,sizeof(PointCoordinateType)*3);
							_normals+=3;
							memcpy(_normals,vertices->getPointNormal(ti->i2).u,sizeof(PointCoordinateType)*3);
							_normals+=3;
							memcpy(_normals,vertices->getPointNormal(ti->i3).u,sizeof(PointCoordinateType)*3);
							_normals+=3;
						}
					}
				}

				if (!showWired)
				{
					glDrawArrays(lodEnabled ? GL_POINTS : GL_TRIANGLES,0,(chunkSize/decimStep)*3);
				}
				else
				{
					glDrawElements(GL_LINES,(chunkSize/decimStep)*6,GL_UNSIGNED_INT,GetWireVertexIndexes());
				}
			}

			//disable arrays
			glDisableClientState(GL_VERTEX_ARRAY);
			if (glParams.showNorms)
				glDisableClientState(GL_NORMAL_ARRAY);
			if (glParams.showSF || glParams.showColors)
				glDisableClientState(GL_COLOR_ARRAY);
		}
		else
		{
			//current vertex color
			const colorType *col1=0,*col2=0,*col3=0;
			//current vertex normal
			const PointCoordinateType *N1=0,*N2=0,*N3=0;
			//current vertex texture coordinates
			float *Tx1=0,*Tx2=0,*Tx3=0;

			//loop on all triangles
			int lasMtlIndex = -1;

			if (showTextures)
			{
				//#define TEST_TEXTURED_BUNDLER_IMPORT
#ifdef TEST_TEXTURED_BUNDLER_IMPORT
				glPushAttrib(GL_COLOR_BUFFER_BIT);
				glEnable(GL_BLEND);
				glBlendFunc(context.sourceBlend, context.destBlend);
#endif

				glEnable(GL_TEXTURE_2D);
			}

			if (pushTriangleNames)
				glPushName(0);

			GLenum triangleDisplayType = lodEnabled ? GL_POINTS : showWired ? GL_LINE_LOOP : GL_TRIANGLES;
			glBegin(triangleDisplayType);

			//per-triangle normals
			const NormsIndexesTableType* triNormals = getTriNormsTable();
			//materials
			const ccMaterialSet* materials = getMaterialSet();

			for (unsigned n=0; n<triNum; ++n)
			{
				//current triangle vertices
				const CCLib::TriangleSummitsIndexes* tsi = getTriangleIndexes(n);

				//LOD: shall we display this triangle?
				if (n % decimStep)
					continue;

				if (visFiltering)
				{
					//we skip the triangle if at least one vertex is hidden
					if ((verticesVisibility->getValue(tsi->i1) != POINT_VISIBLE) ||
						(verticesVisibility->getValue(tsi->i2) != POINT_VISIBLE) ||
						(verticesVisibility->getValue(tsi->i3) != POINT_VISIBLE))
						continue;
				}

				if (glParams.showSF)
				{
					assert(colorScale);
					col1 = currentDisplayedScalarField->getValueColor(tsi->i1);
					if (!col1)
						continue;
					col2 = currentDisplayedScalarField->getValueColor(tsi->i2);
					if (!col2)
						continue;
					col3 = currentDisplayedScalarField->getValueColor(tsi->i3);
					if (!col3)
						continue;
				}
				else if (glParams.showColors)
				{
					col1 = rgbColorsTable->getValue(tsi->i1);
					col2 = rgbColorsTable->getValue(tsi->i2);
					col3 = rgbColorsTable->getValue(tsi->i3);
				}

				if (glParams.showNorms)
				{
					if (showTriNormals)
					{
						assert(triNormals);
						int n1,n2,n3;
						getTriangleNormalIndexes(n,n1,n2,n3);
						N1 = (n1>=0 ? ccNormalVectors::GetNormal(triNormals->getValue(n1)).u : 0);
						N2 = (n1==n2 ? N1 : n1>=0 ? ccNormalVectors::GetNormal(triNormals->getValue(n2)).u : 0);
						N3 = (n1==n3 ? N1 : n3>=0 ? ccNormalVectors::GetNormal(triNormals->getValue(n3)).u : 0);

					}
					else
					{
						N1 = compressedNormals->getNormal(normalsIndexesTable->getValue(tsi->i1)).u;
						N2 = compressedNormals->getNormal(normalsIndexesTable->getValue(tsi->i2)).u;
						N3 = compressedNormals->getNormal(normalsIndexesTable->getValue(tsi->i3)).u;
					}
				}

				if (applyMaterials || showTextures)
				{
					assert(materials);
					int newMatlIndex = this->getTriangleMtlIndex(n);

					//do we need to change material?
					if (lasMtlIndex != newMatlIndex)
					{
						assert(newMatlIndex<(int)materials->size());
						glEnd();
						if (showTextures)
						{
							GLuint texID = (newMatlIndex>=0 ? (*materials)[newMatlIndex].texID : 0);
							if (texID>0)
								assert(glIsTexture(texID));
							glBindTexture(GL_TEXTURE_2D, texID);
						}

						//if we don't have any current material, we apply default one
						(newMatlIndex>=0 ? (*materials)[newMatlIndex] : context.defaultMat).applyGL(glParams.showNorms,false);
						glBegin(triangleDisplayType);
						lasMtlIndex=newMatlIndex;
					}

					if (showTextures)
					{
						getTriangleTexCoordinates(n,Tx1,Tx2,Tx3);
					}
				}

				if (pushTriangleNames)
				{
					glEnd();
					glLoadName(n);
					glBegin(triangleDisplayType);
				}
				else if (showWired)
				{
					glEnd();
					glBegin(triangleDisplayType);
				}

				//vertex 1
				if (N1)
					ccGL::Normal3v(N1);
				if (col1)
					glColor3ubv(col1);
				if (Tx1)
					glTexCoord2fv(Tx1);
				ccGL::Vertex3v(vertices->getPoint(tsi->i1)->u);

				//vertex 2
				if (N2)
					ccGL::Normal3v(N2);
				if (col2)
					glColor3ubv(col2);
				if (Tx2)
					glTexCoord2fv(Tx2);
				ccGL::Vertex3v(vertices->getPoint(tsi->i2)->u);

				//vertex 3
				if (N3)
					ccGL::Normal3v(N3);
				if (col3)
					glColor3ubv(col3);
				if (Tx3)
					glTexCoord2fv(Tx3);
				ccGL::Vertex3v(vertices->getPoint(tsi->i3)->u);
			}

			glEnd();

			if (pushTriangleNames)
				glPopName();

			if (showTextures)
			{
#ifdef TEST_TEXTURED_BUNDLER_IMPORT
				glPopAttrib(); //GL_COLOR_BUFFER_BIT 
#endif
				glBindTexture(GL_TEXTURE_2D, 0);
				glDisable(GL_TEXTURE_2D);
			}
		}

		if (stipplingEnabled())
			EnableGLStippleMask(false);

		if (colorMaterial)
			glDisable(GL_COLOR_MATERIAL);

		if (glParams.showNorms)
		{
			glDisable(GL_LIGHTING);
			glDisable((QGLFormat::openGLVersionFlags() & QGLFormat::OpenGL_Version_1_2 ? GL_RESCALE_NORMAL : GL_NORMALIZE));
		}

		if (pushName)
			glPopName();
	}
}
Example #8
0
	void CustomDrawBox::Draw(){
		//デバイスの取得
		auto Dev = App::GetApp()->GetDeviceResources();
		auto pDx11Device = Dev->GetD3DDevice();
		auto pID3D11DeviceContext = Dev->GetD3DDeviceContext();
		//ステータスのポインタ
		auto RenderStatePtr = GetStage()->GetRenderState();

		auto PtrT = GetComponent<Transform>();
		//ステージからカメラを取り出す
		auto PtrCamera = GetStage()->GetTargetCamera();
		//カメラの取得
		Matrix4X4 View, Proj, WorldViewProj;
		View = PtrCamera->GetViewMatrix();
		Proj = PtrCamera->GetProjMatrix();


		//ストライドとオフセット
		UINT stride = sizeof(VertexPositionNormalTexture);
		UINT offset = 0;
		//頂点バッファの設定
		auto PtrMeshResource = App::GetApp()->GetResource<MeshResource>(L"DEFAULT_CUBE");
		pID3D11DeviceContext->IASetVertexBuffers(0, 1, PtrMeshResource->GetVertexBuffer().GetAddressOf(), &stride, &offset);
		//インデックスバッファのセット
		pID3D11DeviceContext->IASetIndexBuffer(PtrMeshResource->GetIndexBuffer().Get(), DXGI_FORMAT_R16_UINT, 0);
		//描画方法(3角形)
		pID3D11DeviceContext->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST);
		//ステータスのポインタ
		//テクスチャを取得
		ID3D11ShaderResourceView* pNull[1] = { 0 };
		ID3D11SamplerState* pNullSR[1] = { 0 };
		//テクスチャを設定
		auto PtrTextureResource = App::GetApp()->GetResource<TextureResource>(L"TRACE_TX");
		pID3D11DeviceContext->PSSetShaderResources(0, 1, PtrTextureResource->GetShaderResourceView().GetAddressOf());
		//リニアサンプラーを設定
		ID3D11SamplerState* samplerState = RenderStatePtr->GetLinearClamp();
		pID3D11DeviceContext->PSSetSamplers(0, 1, &samplerState);
		//半透明処理
		pID3D11DeviceContext->OMSetBlendState(RenderStatePtr->GetAlphaBlendEx(), nullptr, 0xffffffff);

		//デプスステンシルは使用する
		pID3D11DeviceContext->OMSetDepthStencilState(RenderStatePtr->GetDepthDefault(), 0);
		//シェーダの設定
		pID3D11DeviceContext->VSSetShader(m_VirtexShader->GetShader(), nullptr, 0);
		pID3D11DeviceContext->PSSetShader(m_PixelShader->GetShader(), nullptr, 0);
		//インプットレイアウトの設定
		pID3D11DeviceContext->IASetInputLayout(m_VirtexShader->GetInputLayout());



		//コンスタントバッファの設定
		ConstantBuffer cb1;
		ZeroMemory(&cb1, sizeof(cb1));
		//行列の設定(転置する)
		cb1.World = Matrix4X4EX::Transpose(PtrT->GetWorldMatrix());;
		cb1.View = Matrix4X4EX::Transpose(View);
		cb1.Projection = Matrix4X4EX::Transpose(Proj);
		//ライトの設定
		//ステージから0番目のライトを取り出す
		auto PtrLight = GetStage()->GetTargetLight(0);
		cb1.LightDir = PtrLight->GetDirectional();
		//xとzだけ逆にする
		cb1.LightDir.x *= -1.0f;
		cb1.LightDir.z *= -1.0f;
		cb1.LightDir.w = 1.0f;
		//トータルタイムをコンスタントバッファに渡す
		float ElapsedTime = App::GetApp()->GetElapsedTime();
		m_TotalTime += ElapsedTime;
		if (m_TotalTime >= 1.0f){
			m_TotalTime = 0.0f;
		}
		cb1.Param.x = m_TotalTime;
		//コンスタントバッファの更新
		pID3D11DeviceContext->UpdateSubresource(m_ConstantBuffer->GetBuffer(), 0, nullptr, &cb1, 0, 0);
		//コンスタントバッファの設定
		ID3D11Buffer* pConstantBuffer = m_ConstantBuffer->GetBuffer();
		pID3D11DeviceContext->VSSetConstantBuffers(0, 1, &pConstantBuffer);
		pID3D11DeviceContext->PSSetConstantBuffers(0, 1, &pConstantBuffer);

		//レンダリングステート
		pID3D11DeviceContext->RSSetState(RenderStatePtr->GetCullFront());
		//内側描画
		pID3D11DeviceContext->DrawIndexed(PtrMeshResource->GetNumIndicis(), 0, 0);

		//ライトの向きを変える
		cb1.LightDir = PtrLight->GetDirectional();
		cb1.LightDir.w = 1.0f;

		//コンスタントバッファの更新
		pID3D11DeviceContext->UpdateSubresource(m_ConstantBuffer->GetBuffer(), 0, nullptr, &cb1, 0, 0);
		//コンスタントバッファの設定
		pConstantBuffer = m_ConstantBuffer->GetBuffer();
		pID3D11DeviceContext->VSSetConstantBuffers(0, 1, &pConstantBuffer);
		pID3D11DeviceContext->PSSetConstantBuffers(0, 1, &pConstantBuffer);

		//レンダリングステート
		pID3D11DeviceContext->RSSetState(RenderStatePtr->GetCullBack());
		//描画(外側)
		pID3D11DeviceContext->DrawIndexed(PtrMeshResource->GetNumIndicis(), 0, 0);
		//後始末
		Dev->InitializeStates(RenderStatePtr);


	}