Example #1
0
/// <summary>
/// Add captured audio data to the circular queue of buffers ready for client reading.
/// </summary>
/// <param name="pData">Pointer to audio data to be added to queue.</param>
/// <param name="cbData">Number of bytes to be added to queue.</param>
void KinectAudioStream::QueueCapturedData(BYTE *pData, UINT cbData)
{
    BYTE *pWriteData = NULL;
    DWORD cbWriteData = 0;
    DWORD cbMaxLength = 0;

    if (cbData <= 0)
    {
        return;
    }

    if (NULL == m_CurrentWriteBuffer)
    {
        m_CurrentWriteBuffer = GetWriteBuffer();
    }

    m_CurrentWriteBuffer->GetBufferAndLength(&pWriteData, &cbWriteData);
    m_CurrentWriteBuffer->GetMaxLength(&cbMaxLength);

    if (cbWriteData + cbData < cbMaxLength)
    {
        memcpy(pWriteData + cbWriteData, pData, cbData);
        m_CurrentWriteBuffer->SetLength(cbWriteData + cbData);
    }
    else
    {
        QueueCapturedBuffer(m_CurrentWriteBuffer);

        m_CurrentWriteBuffer = GetWriteBuffer();
        m_CurrentWriteBuffer->GetBufferAndLength(&pWriteData, &cbWriteData);

        memcpy(pWriteData, pData, cbData);
        m_CurrentWriteBuffer->SetLength(cbData);
    }
}
Example #2
0
bool KOSocket::Send(Packet * pkt)
{
    if (!IsConnected() || pkt->size() + 1 > GetWriteBuffer().GetAllocatedSize())
        return false;

    bool r;

    uint8 opcode = pkt->GetOpcode();
    uint8 * out_stream = nullptr;
    uint16 len = (uint16)(pkt->size() + 1);

    if (isCryptoEnabled())
    {
        len += 5;

        out_stream = new uint8[len];

        *(uint16 *)&out_stream[0] = 0x1efc;
        *(uint16 *)&out_stream[2] = (uint16)(m_sequence); // this isn't actually incremented here
        out_stream[4] = 0;
        out_stream[5] = pkt->GetOpcode();

        if (pkt->size() > 0)
            memcpy(&out_stream[6], pkt->contents(), pkt->size());

        m_crypto.JvEncryptionFast(len, out_stream, out_stream);
    }
    else
    {
        out_stream = new uint8[len];
        out_stream[0] = pkt->GetOpcode();
        if (pkt->size() > 0)
            memcpy(&out_stream[1], pkt->contents(), pkt->size());
    }

    BurstBegin();

    if (GetWriteBuffer().GetSpace() < size_t(len + 6))
    {
        BurstEnd();
        Disconnect();
        return false;
    }

    r = BurstSend((const uint8*)"\xaa\x55", 2);
    if (r) r = BurstSend((const uint8*)&len, 2);
    if (r) r = BurstSend((const uint8*)out_stream, len);
    if (r) r = BurstSend((const uint8*)"\x55\xaa", 2);
    if (r) BurstPush();
    BurstEnd();

    delete [] out_stream;
    return r;
}
void XnUncompressedDepthProcessor::ProcessFramePacketChunk(const XnSensorProtocolResponseHeader* pHeader, const XnUChar* pData, XnUInt32 nDataOffset, XnUInt32 nDataSize)
{
	XN_PROFILING_START_SECTION("XnUncompressedDepthProcessor::ProcessFramePacketChunk")

	// when depth is uncompressed, we can just copy it directly to write buffer
	XnBuffer* pWriteBuffer = GetWriteBuffer();

	// make sure we have enough room
	if (CheckWriteBufferForOverflow(nDataSize))
	{
		// sometimes, when packets are lost, we get uneven number of bytes, so we need to complete
		// one byte, in order to keep UINT16 alignment
		if (nDataSize % 2 != 0)
		{
			nDataSize--;
			pData++;
		}

		// copy values. Make sure we do not get corrupted shifts
		XnUInt16* pRaw = (XnUInt16*)(pData);
		XnUInt16* pRawEnd = (XnUInt16*)(pData + nDataSize);
		XnDepthPixel* pWriteBuf = (XnDepthPixel*)pWriteBuffer->GetUnsafeWritePointer();

		while (pRaw < pRawEnd)
		{
			*pWriteBuf = GetOutput(XN_MIN(*pRaw, XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1));
			++pRaw;
			++pWriteBuf;
		}

 		pWriteBuffer->UnsafeUpdateSize(nDataSize);
	}

	XN_PROFILING_END_SECTION
}
Example #4
0
void AuthSocket::HandleReconnectProof()
{
	/*
	printf("Len: %u\n", this->GetReadBufferSize());
	ByteBuffer buf(58);
	buf.resize(58);
	Read(58, const_cast<uint8*>(buf.contents()));
	buf.hexlike();*/

	if (!m_account)
		return;

	// Don't update when IP banned, but update anyway if it's an account ban
	sLogonSQL->Execute("UPDATE accounts SET lastlogin=NOW(), lastip='%s' WHERE acct=%u;", GetRemoteIP().c_str(), m_account->AccountId);
	//RemoveReadBufferBytes(GetReadBufferSize(), true);
	GetReadBuffer().Remove(GetWriteBuffer().GetSize());

	if(!m_account->SessionKey)
	{
		uint8 buffer[4];
		buffer[0] = 3;
		buffer[1] = 0;
		buffer[2] = 1;
		buffer[3] = 0;
		Send(buffer, 4);
	}
	else
	{
		uint32 x = 3;
		Send((const uint8*)&x, 4);
	}
}
Example #5
0
void VoiceChatClientSocket::SendPacket(WorldPacket* data)
{
	//if((m_writeByteCount + len + 4) >= m_writeBufferSize)
	//if( GetWriteBuffer().GetSpace() < (len+4) )
	//if( m_writeByteCount + 4 + data->size() > m_writeBufferSize )
	if(	GetWriteBuffer().GetSpace() < (data->size()+4) )
	{
		Log.Error("VoiceChatHandler","!!! VOICE CHAT CLIENT SOCKET OVERLOAD !!!");
		return;
	}
	uint16 opcode = data->GetOpcode();
	uint32 sz = (uint32)data->size();
	bool rv;

	BurstBegin();
	rv = BurstSend((const uint8*)&opcode, 2);
	if(rv) BurstSend((const uint8*)&sz, 2);

	if( sz > 0 && rv )
	{
		rv = BurstSend((const uint8*)data->contents(), (uint32)data->size());
	}

	Log.Debug("VoiceChatHandler","sent packet of %u bytes with op %u, buffer len is now %u", data->size(), data->GetOpcode(), GetWriteBuffer().GetSize());
	if( rv )
		BurstPush();


	BurstEnd();
}
Example #6
0
void MessageConnection::Write(Buffer& msg)
{
    GetWriteBuffer().Appendf("%#B", &msg);

    if (autoFlush)
        Flush();
}
Example #7
0
void MessageConnection::Write(Buffer& prefix, Buffer& msg)
{
    unsigned length;

    length = prefix.GetLength() + 1 + msg.GetLength();

    GetWriteBuffer().Appendf("%u:%B:%B", length, &prefix, &msg);

    if (autoFlush)
        Flush();
}
void XnImageProcessor::OnEndOfFrame(const XnSensorProtocolResponseHeader* pHeader)
{
	XnUInt32 nExpectedSize = CalculateExpectedSize();
	if (GetWriteBuffer()->GetSize() != nExpectedSize)
	{
		xnLogWarning(XN_MASK_SENSOR_READ, "Read: Image buffer is corrupt. Size is %u (!= %u)", GetWriteBuffer()->GetSize(), nExpectedSize);
		FrameIsCorrupted();
	}

	// call base
	XnFrameStreamProcessor::OnEndOfFrame(pHeader);
}
Example #9
0
void MessageConnection::Write(Message& msg)
{
    // TODO: optimize

    Buffer tmpBuffer;

    msg.Write(tmpBuffer);

    GetWriteBuffer().Appendf("%#B", &tmpBuffer);

    if (autoFlush)
        Flush();
}
void XnUncompressedYUVtoRGBImageProcessor::ProcessFramePacketChunk(const XnSensorProtocolResponseHeader* pHeader, const XnUChar* pData, XnUInt32 nDataOffset, XnUInt32 nDataSize)
{
	XN_PROFILING_START_SECTION("XnUncompressedYUVtoRGBImageProcessor::ProcessFramePacketChunk")

	XnBuffer* pWriteBuffer = GetWriteBuffer();

	if (m_ContinuousBuffer.GetSize() != 0)
	{
		// fill in to a whole element
		XnUInt32 nReadBytes = XN_MIN(nDataSize, XN_YUV_TO_RGB_INPUT_ELEMENT_SIZE - m_ContinuousBuffer.GetSize());
		m_ContinuousBuffer.UnsafeWrite(pData, nReadBytes);
		pData += nReadBytes;
		nDataSize -= nReadBytes;

		if (m_ContinuousBuffer.GetSize() == XN_YUV_TO_RGB_INPUT_ELEMENT_SIZE)
		{
			if (CheckWriteBufferForOverflow(XN_YUV_TO_RGB_OUTPUT_ELEMENT_SIZE))
			{
				// process it
				XnUInt32 nActualRead = 0;
				XnUInt32 nOutputSize = pWriteBuffer->GetFreeSpaceInBuffer();
				YUV422ToRGB888(m_ContinuousBuffer.GetData(), pWriteBuffer->GetUnsafeWritePointer(), XN_YUV_TO_RGB_INPUT_ELEMENT_SIZE, &nActualRead, &nOutputSize);
				pWriteBuffer->UnsafeUpdateSize(XN_YUV_TO_RGB_OUTPUT_ELEMENT_SIZE);
			}

			m_ContinuousBuffer.Reset();
		}
	}

	if (CheckWriteBufferForOverflow(nDataSize / XN_YUV_TO_RGB_INPUT_ELEMENT_SIZE * XN_YUV_TO_RGB_OUTPUT_ELEMENT_SIZE))
	{
		XnUInt32 nActualRead = 0;
		XnUInt32 nOutputSize = pWriteBuffer->GetFreeSpaceInBuffer();
		YUV422ToRGB888(pData, pWriteBuffer->GetUnsafeWritePointer(), nDataSize, &nActualRead, &nOutputSize);
		pWriteBuffer->UnsafeUpdateSize(nOutputSize);
		pData += nActualRead;
		nDataSize -= nActualRead;

		// if we have any bytes left, store them for next packet.
		if (nDataSize > 0)
		{
			// no need to check for overflow. there can not be a case in which more than XN_INPUT_ELEMENT_SIZE
			// are left.
			m_ContinuousBuffer.UnsafeWrite(pData, nDataSize);
		}
	}

	XN_PROFILING_END_SECTION
}
void XnPassThroughImageProcessor::ProcessFramePacketChunk(const XnSensorProtocolResponseHeader* /*pHeader*/, const XnUChar* pData, XnUInt32 /*nDataOffset*/, XnUInt32 nDataSize)
{
	XN_PROFILING_START_SECTION("XnUncompressedYUVImageProcessor::ProcessFramePacketChunk")

	// when image is uncompressed, we can just copy it directly to write buffer
	XnBuffer* pWriteBuffer = GetWriteBuffer();

	// make sure we have enough room
	if (CheckWriteBufferForOverflow(nDataSize))
	{
		pWriteBuffer->UnsafeWrite(pData, nDataSize);
	}

	XN_PROFILING_END_SECTION
}
Example #12
0
void MessageConnection::Write(Buffer& prefix, Message& msg)
{
    // TODO: optimize

    unsigned    length;
    Buffer      tmpBuffer;

    msg.Write(tmpBuffer);
    length = prefix.GetLength() + 1 + tmpBuffer.GetLength();

    GetWriteBuffer().Appendf("%u:%B:%B", length, &prefix, &tmpBuffer);

    if (autoFlush)
        Flush();
}
XnStatus XnPacked11DepthProcessor::Unpack11to16(const XnUInt8* pcInput, const XnUInt32 nInputSize, XnUInt32* pnActualRead)
{
	const XnUInt8* pOrigInput = pcInput;

	XnUInt32 nElements = nInputSize / XN_INPUT_ELEMENT_SIZE; // floored
	XnUInt32 nNeededOutput = nElements * XN_OUTPUT_ELEMENT_SIZE;

	*pnActualRead = 0;
	XnBuffer* pWriteBuffer = GetWriteBuffer();

	if (!CheckWriteBufferForOverflow(nNeededOutput))
	{
		return XN_STATUS_OUTPUT_BUFFER_OVERFLOW;
	}

	XnUInt16* pnOutput = (XnUInt16*)pWriteBuffer->GetUnsafeWritePointer();

	// Convert the 11bit packed data into 16bit shorts
	for (XnUInt32 nElem = 0; nElem < nElements; ++nElem)
	{
		// input:	0,  1,  2,3,  4,  5,  6,7,  8,  9,10
		//			-,---,---,-,---,---,---,-,---,---,-
		// bits:	8,3,5,6,2,8,1,7,4,4,7,1,8,2,6,5,3,8
		//			---,---,-----,---,---,-----,---,---
		// output:	  0,  1,    2,  3,  4,    5,  6,  7

		pnOutput[0] = GetOutput((XN_TAKE_BITS(pcInput[0],8,0) << 3) | XN_TAKE_BITS(pcInput[1],3,5));
		pnOutput[1] = GetOutput((XN_TAKE_BITS(pcInput[1],5,0) << 6) | XN_TAKE_BITS(pcInput[2],6,2));
		pnOutput[2] = GetOutput((XN_TAKE_BITS(pcInput[2],2,0) << 9) | (XN_TAKE_BITS(pcInput[3],8,0) << 1) | XN_TAKE_BITS(pcInput[4],1,7));
		pnOutput[3] = GetOutput((XN_TAKE_BITS(pcInput[4],7,0) << 4) | XN_TAKE_BITS(pcInput[5],4,4));
		pnOutput[4] = GetOutput((XN_TAKE_BITS(pcInput[5],4,0) << 7) | XN_TAKE_BITS(pcInput[6],7,1));
		pnOutput[5] = GetOutput((XN_TAKE_BITS(pcInput[6],1,0) << 10) | (XN_TAKE_BITS(pcInput[7],8,0) << 2) | XN_TAKE_BITS(pcInput[8],2,6));
		pnOutput[6] = GetOutput((XN_TAKE_BITS(pcInput[8],6,0) << 5) | XN_TAKE_BITS(pcInput[9],5,3));
		pnOutput[7] = GetOutput((XN_TAKE_BITS(pcInput[9],3,0) << 8) | XN_TAKE_BITS(pcInput[10],8,0));

		pcInput += XN_INPUT_ELEMENT_SIZE;
		pnOutput += 8;
	}

	*pnActualRead = (XnUInt32)(pcInput - pOrigInput);
	pWriteBuffer->UnsafeUpdateSize(nNeededOutput);

	return XN_STATUS_OK;
}
void XnUncompressedDepthProcessor::ProcessFramePacketChunk(const XnSensorProtocolResponseHeader* /*pHeader*/, const XnUChar* pData, XnUInt32 /*nDataOffset*/, XnUInt32 nDataSize)
{
	XN_PROFILING_START_SECTION("XnUncompressedDepthProcessor::ProcessFramePacketChunk")

	// when depth is uncompressed, we can just copy it directly to write buffer
	XnBuffer* pWriteBuffer = GetWriteBuffer();

	// Check there is enough room for the depth pixels
	if (CheckDepthBufferForOverflow(nDataSize))
	{
		// sometimes, when packets are lost, we get uneven number of bytes, so we need to complete
		// one byte, in order to keep UINT16 alignment
		if (nDataSize % 2 != 0)
		{
			nDataSize--;
			pData++;
		}

		// copy values. Make sure we do not get corrupted shifts
		XnUInt16* pRaw = (XnUInt16*)(pData);
		XnUInt16* pRawEnd = (XnUInt16*)(pData + nDataSize);
		OniDepthPixel* pDepthBuf = GetDepthOutputBuffer();
		OniDepthPixel* pShiftBuf = GetShiftsOutputBuffer();

		XnUInt16 shift;
		while (pRaw < pRawEnd)
		{
			shift = (((*pRaw) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (*pRaw) : 0);
			*pShiftBuf = shift;
			*pDepthBuf = GetOutput(shift);

			++pRaw;
			++pDepthBuf;
			++pShiftBuf;

		}

 		pWriteBuffer->UnsafeUpdateSize(nDataSize);
	}

	XN_PROFILING_END_SECTION
}
Example #15
0
OUTPACKET_RESULT WorldSocket::_OutPacket(uint16 opcode, size_t len, const void* data, bool InWorld)
{
	bool rv;
	if(!IsConnected())
		return OUTPACKET_RESULT_NOT_CONNECTED;

	if( GetWriteBuffer()->GetSpace() < (len+4) )
		return OUTPACKET_RESULT_NO_ROOM_IN_BUFFER;

/*	if(InWorld)
	{
		if(Uniques.find(opcode) == Uniques.end())
		{
			Log.Notice("", "Sent packet %s (0x%03X)", LookupOpcodeName(opcode), uint(opcode), uint(opcode));
			Uniques.insert(opcode);
		}
	}
	else if(opcode != SMSG_UPDATE_OBJECT && opcode != SMSG_PONG && opcode != SMSG_WORLD_STATE_UI_TIMER_UPDATE && opcode != SMSG_WEATHER)
		printf("Sent packet %s (0x%03X)\n", LookupOpcodeName(opcode), uint(opcode), uint(opcode));*/

	LockWriteBuffer();
	// Encrypt the packet
	// First, create the header.
	ServerPktHeader Header;
	Header.cmd = opcode;
	Header.size = ntohs((uint16)len + 2);
	_crypt.EncryptSend((uint8*)&Header, sizeof (ServerPktHeader));

	// Pass the header to our send buffer
	rv = WriteButHold((const uint8*)&Header, 4);

	// Pass the rest of the packet to our send buffer (if there is any)
	if(len > 0 && rv)
		rv = Write((const uint8*)data, (uint32)len);
	else if(rv)
		rv = ForceSend();

	UnlockWriteBuffer();
	if(len > 0 && rv && !bServerShutdown)
		sWorld.NetworkStressOut += float(float(len+4)/1024);
	return rv ? OUTPACKET_RESULT_SUCCESS : OUTPACKET_RESULT_SOCKET_ERROR;
}
Example #16
0
OUTPACKET_RESULT WorldSocket::_OutPacket(uint16 opcode, size_t len, const void* data)
{
    bool rv;
    if(!IsConnected())
        return OUTPACKET_RESULT_NOT_CONNECTED;

    BurstBegin();
    //if((m_writeByteCount + len + 4) >= m_writeBufferSize)
    if( GetWriteBuffer().GetSpace() < (len+4) )
    {
        BurstEnd();
        return OUTPACKET_RESULT_NO_ROOM_IN_BUFFER;
    }

    // Packet logger :)
    sWorldLog.LogPacket((uint32)len, opcode, (const uint8*)data, 1);

    // Encrypt the packet
    // First, create the header.
    ServerPktHeader Header;
#ifdef USING_BIG_ENDIAN
    Header.size = len + 2;
    Header.cmd = swap16(opcode);
#else
    Header.cmd = opcode;
    Header.size = ntohs((uint16)len + 2);
#endif
    _crypt.EncryptFourSend((uint8*)&Header);

    // Pass the header to our send buffer
    rv = BurstSend((const uint8*)&Header, 4);

    // Pass the rest of the packet to our send buffer (if there is any)
    if(len > 0 && rv)
    {
        rv = BurstSend((const uint8*)data, (uint32)len);
    }

    if(rv) BurstPush();
    BurstEnd();
    return rv ? OUTPACKET_RESULT_SUCCESS : OUTPACKET_RESULT_SOCKET_ERROR;
}
Example #17
0
/*----------------------------------------------------------------------------*/
uint8_t *
EthernetOutput(struct mtcp_manager *mtcp, struct pkt_ctx *pctx,
		uint16_t h_proto, int nif, unsigned char* dst_haddr, uint16_t iplen,
		uint32_t cur_ts)
{
	uint8_t *buf;
	struct ethhdr *ethh;
	int i;
#if E_PSIO || USE_CHUNK_BUF
	if (!mtcp->iom->get_wptr) {
		TRACE_INFO("get_wptr() in io_module is undefined.");
		return NULL;
	}
	buf = mtcp->iom->get_wptr(mtcp->ctx, nif, iplen + ETHERNET_HEADER_LEN);
#else
	buf = GetWriteBuffer(mtcp->ctx, 
			BUF_RET_MAYBE, nif, iplen + ETHERNET_HEADER_LEN);
#endif
	if (!buf) {
		TRACE_DBG("Failed to get available write buffer\n");
		return NULL;
	}

	TRACE_DBG("dst_hwaddr: %02X:%02X:%02X:%02X:%02X:%02X\n",
				stream->sndvar->d_haddr[0], stream->sndvar->d_haddr[1], 
				stream->sndvar->d_haddr[2],	stream->sndvar->d_haddr[3], 
				stream->sndvar->d_haddr[4], stream->sndvar->d_haddr[5]);

	ethh = (struct ethhdr *)buf;
	for (i = 0; i < ETH_ALEN; i++) {
		ethh->h_source[i] = g_config.mos->netdev_table->ent[nif]->haddr[i];
		ethh->h_dest[i] = dst_haddr[i];
	}
	ethh->h_proto = htons(h_proto);

	if (pctx)
		FillOutPacketEthContext(pctx, cur_ts, nif,
					ethh, iplen + ETHERNET_HEADER_LEN);

	return (uint8_t *)(ethh + 1);
}
void XnUncompressedBayerProcessor::ProcessFramePacketChunk(const XnSensorProtocolResponseHeader* pHeader, const XnUChar* pData, XnUInt32 nDataOffset, XnUInt32 nDataSize)
{
	XN_PROFILING_START_SECTION("XnUncompressedBayerProcessor::ProcessFramePacketChunk")

	// if output format is Gray8, we can write directly to output buffer. otherwise, we need
	// to write to a temp buffer.
	XnBuffer* pWriteBuffer = (GetStream()->GetOutputFormat() == XN_OUTPUT_FORMAT_GRAYSCALE8) ? GetWriteBuffer() : &m_UncompressedBayerBuffer;

	// make sure we have enough room
	if (CheckWriteBufferForOverflow(nDataSize))
	{
		pWriteBuffer->UnsafeWrite(pData, nDataSize);
	}

	XN_PROFILING_END_SECTION
}
void XnBayerImageProcessor::ProcessFramePacketChunk(const XnSensorProtocolResponseHeader* pHeader, const XnUChar* pData, XnUInt32 nDataOffset, XnUInt32 nDataSize)
{
	XN_PROFILING_START_SECTION("XnBayerImageProcessor::ProcessFramePacketChunk")

	// if output format is Gray8, we can write directly to output buffer. otherwise, we need
	// to write to a temp buffer.
	XnBuffer* pWriteBuffer = (GetStream()->GetOutputFormat() == XN_OUTPUT_FORMAT_GRAYSCALE8) ? GetWriteBuffer() : &m_UncompressedBayerBuffer;

	const XnUChar* pBuf = NULL;
	XnUInt32 nBufSize = 0;

	// check if we have bytes stored from previous calls
	if (m_ContinuousBuffer.GetSize() > 0)
	{
		// we have no choice. We need to append current buffer to previous bytes
		if (m_ContinuousBuffer.GetFreeSpaceInBuffer() < nDataSize)
		{
			xnLogWarning(XN_MASK_SENSOR_PROTOCOL_DEPTH, "Bad overflow image! %d", m_ContinuousBuffer.GetSize());
			FrameIsCorrupted();
		}
		else
		{
			m_ContinuousBuffer.UnsafeWrite(pData, nDataSize);
		}

		pBuf = m_ContinuousBuffer.GetData();
		nBufSize = m_ContinuousBuffer.GetSize();
	}
	else
	{
		// we can process the data directly
		pBuf = pData;
		nBufSize = nDataSize;
	}

	XnUInt32 nOutputSize = pWriteBuffer->GetFreeSpaceInBuffer();
	XnUInt32 nWrittenOutput = nOutputSize;
	XnUInt32 nActualRead = 0;
	XnBool bLastPart = pHeader->nType == XN_SENSOR_PROTOCOL_RESPONSE_IMAGE_END && (nDataOffset + nDataSize) == pHeader->nBufSize;
	XnStatus nRetVal = XnStreamUncompressImageNew(pBuf, nBufSize, pWriteBuffer->GetUnsafeWritePointer(), 
		&nWrittenOutput, (XnUInt16)GetActualXRes(), &nActualRead, bLastPart);

	if (nRetVal != XN_STATUS_OK)
	{
		xnLogWarning(XN_MASK_SENSOR_PROTOCOL_IMAGE, "Image decompression failed: %s (%d of %d, requested %d, last %d)", xnGetStatusString(nRetVal), nWrittenOutput, nBufSize, nOutputSize, bLastPart);
		FrameIsCorrupted();
	}

	pWriteBuffer->UnsafeUpdateSize(nWrittenOutput);

	nBufSize -= nActualRead;
	m_ContinuousBuffer.Reset();

	// if we have any bytes left, keep them for next time
	if (nBufSize > 0)
	{
		pBuf += nActualRead;
		m_ContinuousBuffer.UnsafeWrite(pBuf, nBufSize);
	}

	XN_PROFILING_END_SECTION
}
XnStatus XnPacked11DepthProcessor::Unpack11to16(const XnUInt8* pcInput, const XnUInt32 nInputSize, XnUInt32* pnActualRead)
{
	const XnUInt8* pOrigInput = pcInput;

	XnUInt32 nElements = nInputSize / XN_INPUT_ELEMENT_SIZE; // floored
	XnUInt32 nNeededOutput = nElements * XN_OUTPUT_ELEMENT_SIZE;

	*pnActualRead = 0;
	XnBuffer* pWriteBuffer = GetWriteBuffer();

	// Check there is enough room for the depth pixels
	if (!CheckWriteBufferForOverflow(nNeededOutput))
	{
		return XN_STATUS_OUTPUT_BUFFER_OVERFLOW;
	}

	XnUInt16* pnOutput = (XnUInt16*)pWriteBuffer->GetUnsafeWritePointer();

	XnUInt16 a0,a1,a2,a3,a4,a5,a6,a7;
#ifdef XN_NEON
	XnUInt16 depth[8];
	uint16x8_t Q0;
#endif

	// Convert the 11bit packed data into 16bit shorts
	for (XnUInt32 nElem = 0; nElem < nElements; ++nElem)
	{
    if(m_nScaleFactor > 1)
    {
      XnUInt32 px = m_nOffsetInFrame%m_CurrentVideoMode.resolutionX;
      XnUInt32 py = (m_nOffsetInFrame)/m_CurrentVideoMode.resolutionX;

      if(py%m_nScaleFactor != 0)
      {
        // Skip as many pixels as possible
        XnUInt32 nEltsToSkip =
            XN_MIN(nElements - nElem,
                   (m_CurrentVideoMode.resolutionX - px)/8
                   + (m_nScaleFactor-(py%m_nScaleFactor) - 1)*m_CurrentVideoMode.resolutionX/8);

        //      ::memset(pnOutput, 0, nEltsToSkip*8*sizeof(XnUInt16));
        pcInput += nEltsToSkip*XN_INPUT_ELEMENT_SIZE;
        pnOutput += nEltsToSkip*8;
        m_nOffsetInFrame += nEltsToSkip*8;
        nElem += (nEltsToSkip-1);
        continue;
      }
    }

    // input:  0,  1,  2,3,  4,  5,  6,7,  8,  9,10
    //         -,---,---,-,---,---,---,-,---,---,-
    // bits:   8,3,5,6,2,8,1,7,4,4,7,1,8,2,6,5,3,8
    //         ---,---,-----,---,---,-----,---,---
    // output:   0,  1,    2,  3,  4,    5,  6,  7
    if(m_nScaleFactor == 2)
    {
      a0 = (XN_TAKE_BITS(pcInput[0],8,0) << 3) | XN_TAKE_BITS(pcInput[1],3,5);
      a2 = (XN_TAKE_BITS(pcInput[2],2,0) << 9) | (XN_TAKE_BITS(pcInput[3],8,0) << 1) | XN_TAKE_BITS(pcInput[4],1,7);
      a4 = (XN_TAKE_BITS(pcInput[5],4,0) << 7) | XN_TAKE_BITS(pcInput[6],7,1);
      a6 = (XN_TAKE_BITS(pcInput[8],6,0) << 5) | XN_TAKE_BITS(pcInput[9],5,3);
    }
    else if(m_nScaleFactor == 4)
    {
      a0 = (XN_TAKE_BITS(pcInput[0],8,0) << 3) | XN_TAKE_BITS(pcInput[1],3,5);
      a4 = (XN_TAKE_BITS(pcInput[5],4,0) << 7) | XN_TAKE_BITS(pcInput[6],7,1);
    }
    else
    {
      a0 = (XN_TAKE_BITS(pcInput[0],8,0) << 3) | XN_TAKE_BITS(pcInput[1],3,5);
      a1 = (XN_TAKE_BITS(pcInput[1],5,0) << 6) | XN_TAKE_BITS(pcInput[2],6,2);
      a2 = (XN_TAKE_BITS(pcInput[2],2,0) << 9) | (XN_TAKE_BITS(pcInput[3],8,0) << 1) | XN_TAKE_BITS(pcInput[4],1,7);
      a3 = (XN_TAKE_BITS(pcInput[4],7,0) << 4) | XN_TAKE_BITS(pcInput[5],4,4);
      a4 = (XN_TAKE_BITS(pcInput[5],4,0) << 7) | XN_TAKE_BITS(pcInput[6],7,1);
      a5 = (XN_TAKE_BITS(pcInput[6],1,0) << 10) | (XN_TAKE_BITS(pcInput[7],8,0) << 2) | XN_TAKE_BITS(pcInput[8],2,6);
      a6 = (XN_TAKE_BITS(pcInput[8],6,0) << 5) | XN_TAKE_BITS(pcInput[9],5,3);
      a7 = (XN_TAKE_BITS(pcInput[9],3,0) << 8) | XN_TAKE_BITS(pcInput[10],8,0);
    }



#ifdef XN_NEON
		depth[0] = GetOutput(a0);
		depth[1] = GetOutput(a1);
		depth[2] = GetOutput(a2);
		depth[3] = GetOutput(a3);
		depth[4] = GetOutput(a4);
		depth[5] = GetOutput(a5);
		depth[6] = GetOutput(a6);
		depth[7] = GetOutput(a7);

		// Load
		Q0 = vld1q_u16(depth);
		// Store
		vst1q_u16(pnOutput, Q0);
#else
    if(m_nScaleFactor == 2)
    {
      *pnOutput++ = GetOutput(a0);
      *pnOutput++ = 0;
      *pnOutput++ = GetOutput(a2);
      *pnOutput++ = 0;
      *pnOutput++ = GetOutput(a4);
      *pnOutput++ = 0;
      *pnOutput++ = GetOutput(a6);
      *pnOutput++ = 0;
    }
    else if(m_nScaleFactor == 4)
    {
      *pnOutput++ = GetOutput(a0);
      *pnOutput++ = 0;
      *pnOutput++ = 0;
      *pnOutput++ = 0;
      *pnOutput++ = GetOutput(a4);
      *pnOutput++ = 0;
      *pnOutput++ = 0;
      *pnOutput++ = 0;
    }
    else
    {
      *pnOutput++ = GetOutput(a0);
      *pnOutput++ = GetOutput(a1);
      *pnOutput++ = GetOutput(a2);
      *pnOutput++ = GetOutput(a3);
      *pnOutput++ = GetOutput(a4);
      *pnOutput++ = GetOutput(a5);
      *pnOutput++ = GetOutput(a6);
      *pnOutput++ = GetOutput(a7);
    }
#endif

		pcInput += XN_INPUT_ELEMENT_SIZE;
    m_nOffsetInFrame+=8;
	}

	*pnActualRead = (XnUInt32)(pcInput - pOrigInput);
	pWriteBuffer->UnsafeUpdateSize(nNeededOutput);

	return XN_STATUS_OK;
}
XnStatus XnPacked12DepthProcessor::Unpack12to16(const XnUInt8* pcInput, const XnUInt32 nInputSize, XnUInt32* pnActualRead)
{
    const XnUInt8* pOrigInput = pcInput;

    XnUInt32 nElements = nInputSize / XN_INPUT_ELEMENT_SIZE; // floored
    XnUInt32 nNeededOutput = nElements * XN_OUTPUT_ELEMENT_SIZE;

    *pnActualRead = 0;
    XnBuffer* pWriteBuffer = GetWriteBuffer();

    if (!CheckDepthBufferForOverflow(nNeededOutput))
    {
        return XN_STATUS_OUTPUT_BUFFER_OVERFLOW;
    }

    XnUInt16* pnOutput = GetDepthOutputBuffer();
    XnUInt16* pShiftOut = GetShiftsOutputBuffer();
    XnUInt16 shift[16];
#ifdef XN_NEON
    XnUInt16 depth[16];
    uint8x8x3_t inD3;
    uint8x8_t rshft4D, lshft4D;
    uint16x8_t rshft4Q, lshft4Q;
    uint16x8_t depthQ;
    uint16x8x2_t shiftQ2;
#endif

    // Convert the 11bit packed data into 16bit shorts
    for (XnUInt32 nElem = 0; nElem < nElements; ++nElem)
    {
#ifndef XN_NEON
        // input:	0,  1,2,3,  4,5,6,  7,8,9, 10,11,12, 13,14,15, 16,17,18, 19,20,21, 22,23
        //			-,---,-,-,---,-,-,---,-,-,---,--,--,---,--,--,---,--,--,---,--,--,---,--
        // bits:	8,4,4,8,8,4,4,8,8,4,4,8,8,4,4, 8, 8,4,4, 8, 8,4,4, 8, 8,4,4, 8, 8,4,4, 8
        //			---,---,---,---,---,---,---,----,----,----,----,----,----,----,----,----
        // output:	  0,  1,  2,  3,  4,  5,  6,   7,   8,   9,  10,  11,  12,  13,  14,  15

        shift[0] = (XN_TAKE_BITS(pcInput[0],8,0) << 4) | XN_TAKE_BITS(pcInput[1],4,4);
        shift[1] = (XN_TAKE_BITS(pcInput[1],4,0) << 8) | XN_TAKE_BITS(pcInput[2],8,0);
        shift[2] = (XN_TAKE_BITS(pcInput[3],8,0) << 4) | XN_TAKE_BITS(pcInput[4],4,4);
        shift[3] = (XN_TAKE_BITS(pcInput[4],4,0) << 8) | XN_TAKE_BITS(pcInput[5],8,0);
        shift[4] = (XN_TAKE_BITS(pcInput[6],8,0) << 4) | XN_TAKE_BITS(pcInput[7],4,4);
        shift[5] = (XN_TAKE_BITS(pcInput[7],4,0) << 8) | XN_TAKE_BITS(pcInput[8],8,0);
        shift[6] = (XN_TAKE_BITS(pcInput[9],8,0) << 4) | XN_TAKE_BITS(pcInput[10],4,4);
        shift[7] = (XN_TAKE_BITS(pcInput[10],4,0) << 8) | XN_TAKE_BITS(pcInput[11],8,0);
        shift[8] = (XN_TAKE_BITS(pcInput[12],8,0) << 4) | XN_TAKE_BITS(pcInput[13],4,4);
        shift[9] = (XN_TAKE_BITS(pcInput[13],4,0) << 8) | XN_TAKE_BITS(pcInput[14],8,0);
        shift[10] = (XN_TAKE_BITS(pcInput[15],8,0) << 4) | XN_TAKE_BITS(pcInput[16],4,4);
        shift[11] = (XN_TAKE_BITS(pcInput[16],4,0) << 8) | XN_TAKE_BITS(pcInput[17],8,0);
        shift[12] = (XN_TAKE_BITS(pcInput[18],8,0) << 4) | XN_TAKE_BITS(pcInput[19],4,4);
        shift[13] = (XN_TAKE_BITS(pcInput[19],4,0) << 8) | XN_TAKE_BITS(pcInput[20],8,0);
        shift[14] = (XN_TAKE_BITS(pcInput[21],8,0) << 4) | XN_TAKE_BITS(pcInput[22],4,4);
        shift[15] = (XN_TAKE_BITS(pcInput[22],4,0) << 8) | XN_TAKE_BITS(pcInput[23],8,0);

        pShiftOut[0] = (((shift[0]) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (shift[0]) : 0);
        pShiftOut[1] = (((shift[1]) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (shift[1]) : 0);
        pShiftOut[2] = (((shift[2]) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (shift[2]) : 0);
        pShiftOut[3] = (((shift[3]) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (shift[3]) : 0);
        pShiftOut[4] = (((shift[4]) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (shift[4]) : 0);
        pShiftOut[5] = (((shift[5]) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (shift[5]) : 0);
        pShiftOut[6] = (((shift[6]) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (shift[6]) : 0);
        pShiftOut[7] = (((shift[7]) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (shift[7]) : 0);
        pShiftOut[8] = (((shift[0]) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (shift[8]) : 0);
        pShiftOut[9] = (((shift[1]) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (shift[9]) : 0);
        pShiftOut[10] = (((shift[2]) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (shift[10]) : 0);
        pShiftOut[11] = (((shift[3]) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (shift[11]) : 0);
        pShiftOut[12] = (((shift[4]) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (shift[12]) : 0);
        pShiftOut[13] = (((shift[5]) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (shift[13]) : 0);
        pShiftOut[14] = (((shift[6]) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (shift[14]) : 0);
        pShiftOut[15] = (((shift[7]) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (shift[15]) : 0);

        pnOutput[0] = GetOutput(shift[0]);
        pnOutput[1] = GetOutput(shift[1]);
        pnOutput[2] = GetOutput(shift[2]);
        pnOutput[3] = GetOutput(shift[3]);
        pnOutput[4] = GetOutput(shift[4]);
        pnOutput[5] = GetOutput(shift[5]);
        pnOutput[6] = GetOutput(shift[6]);
        pnOutput[7] = GetOutput(shift[7]);
        pnOutput[8] = GetOutput(shift[8]);
        pnOutput[9] = GetOutput(shift[9]);
        pnOutput[10] = GetOutput(shift[10]);
        pnOutput[11] = GetOutput(shift[11]);
        pnOutput[12] = GetOutput(shift[12]);
        pnOutput[13] = GetOutput(shift[13]);
        pnOutput[14] = GetOutput(shift[14]);
        pnOutput[15] = GetOutput(shift[15]);

#else
        // input:	0,  1,2    (X8)
        //			-,---,-
        // bits:	8,4,4,8    (X8)
        //			---,---
        // output:	  0,  1    (X8)

        // Split 24 bytes into 3 vectors (64 bit each)
        inD3 = vld3_u8(pcInput);

        // rshft4D0 contains 4 MSB of second vector (placed at offset 0)
        rshft4D = vshr_n_u8(inD3.val[1], 4);
        // lshft4D0 contains 4 LSB of second vector (placed at offset 4)
        lshft4D = vshl_n_u8(inD3.val[1], 4);

        // Expand 64 bit vectors to 128 bit (8 values of 16 bits)
        shiftQ2.val[0] = vmovl_u8(inD3.val[0]);
        shiftQ2.val[1] = vmovl_u8(inD3.val[2]);
        rshft4Q = vmovl_u8(rshft4D);
        lshft4Q = vmovl_u8(lshft4D);

        // Even indexed shift = 8 bits from first vector + 4 MSB bits of second vector
        shiftQ2.val[0] = vshlq_n_u16(shiftQ2.val[0], 4);
        shiftQ2.val[0] = vorrq_u16(shiftQ2.val[0], rshft4Q);

        // Odd indexed shift = 4 LSB bits of second vector + 8 bits from third vector
        lshft4Q = vshlq_n_u16(lshft4Q, 4);
        shiftQ2.val[1] = vorrq_u16(shiftQ2.val[1], lshft4Q);

        // Interleave shift values to a single vector
        vst2q_u16(shift, shiftQ2);

        shift[0] = (((shift[0]) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (shift[0]) : 0);
        shift[1] = (((shift[1]) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (shift[1]) : 0);
        shift[2] = (((shift[2]) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (shift[2]) : 0);
        shift[3] = (((shift[3]) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (shift[3]) : 0);
        shift[4] = (((shift[4]) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (shift[4]) : 0);
        shift[5] = (((shift[5]) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (shift[5]) : 0);
        shift[6] = (((shift[6]) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (shift[6]) : 0);
        shift[7] = (((shift[7]) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (shift[7]) : 0);
        shift[8] = (((shift[0]) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (shift[8]) : 0);
        shift[9] = (((shift[1]) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (shift[9]) : 0);
        shift[10] = (((shift[2]) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (shift[10]) : 0);
        shift[11] = (((shift[3]) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (shift[11]) : 0);
        shift[12] = (((shift[4]) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (shift[12]) : 0);
        shift[13] = (((shift[5]) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (shift[13]) : 0);
        shift[14] = (((shift[6]) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (shift[14]) : 0);
        shift[15] = (((shift[7]) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (shift[15]) : 0);

        depth[0] = GetOutput(shift[0]);
        depth[1] = GetOutput(shift[1]);

        depth[2] = GetOutput(shift[2]);
        depth[3] = GetOutput(shift[3]);

        depth[4] = GetOutput(shift[4]);
        depth[5] = GetOutput(shift[5]);

        depth[6] = GetOutput(shift[6]);
        depth[7] = GetOutput(shift[7]);

        // Load
        depthQ = vld1q_u16(depth);
        //Store
        vst1q_u16(pnOutput, depthQ);

        // Load
        depthQ = vld1q_u16(shift);
        // Store
        vst1q_u16(pShiftOut, depthQ);

        depth[8] = GetOutput(shift[8]);
        depth[9] = GetOutput(shift[9]);

        depth[10] = GetOutput(shift[10]);
        depth[11] = GetOutput(shift[11]);

        depth[12] = GetOutput(shift[12]);
        depth[13] = GetOutput(shift[13]);

        depth[14] = GetOutput(shift[14]);
        depth[15] = GetOutput(shift[15]);

        // Load
        depthQ = vld1q_u16(depth + 8);
        // Store
        vst1q_u16(pnOutput + 8, depthQ);

        // Load
        depthQ = vld1q_u16(shift + 8);
        // Store
        vst1q_u16(pShiftOut + 8, depthQ);

#endif

        pcInput += XN_INPUT_ELEMENT_SIZE;
        pnOutput += 16;
        pShiftOut += 16;
    }


    *pnActualRead = (XnUInt32)(pcInput - pOrigInput);
    pWriteBuffer->UnsafeUpdateSize(nNeededOutput);

    return XN_STATUS_OK;
}
void XnFrameStreamProcessor::WriteBufferOverflowed()
{
	XnBuffer* pBuffer = GetWriteBuffer();
	xnLogWarning(XN_MASK_SENSOR_PROTOCOL, "%s Frame Buffer overflow! current size: %d", m_csName, pBuffer->GetSize());
	FrameIsCorrupted();
}
Example #23
0
void AuthSocket::HandleReconnectProof()
{
	if( m_account == NULL )
		return;

	// Load sessionkey from account database.
	QueryResult * result = sLogonSQL->Query ("SELECT SessionKey FROM accounts WHERE acct = %u", m_account->AccountId);
	if(result)
	{
		Field * field = result->Fetch();
		K.SetHexStr(field[0].GetString ());
		delete result;
	}
	else
	{
		// Disconnect if the sessionkey invalid or not found
		DEBUG_LOG("AuthReConnectProof","No matching SessionKey found while user %s tried to login.", AccountName.c_str());
		Disconnect();
		return;
	}

	if(GetBuild() <= 6005)
	{
		GetReadBuffer()->Remove(GetWriteBuffer()->GetSize());

		if(!m_account->SessionKey)
		{
			uint8 buffer[4];
			buffer[0] = 3;
			buffer[1] = 0;
			buffer[2] = 1;
			buffer[3] = 0;
			Send(buffer, 4);
		}
		else
		{
			uint32 x = 3;
			Send((const uint8*)&x, 4);
		}
		return;
	}

	if(GetReadBuffer()->GetSize() < sizeof(sAuthLogonProofKey_C))
		return;

	sAuthLogonProofKey_C lp;
	GetReadBuffer()->Read(&lp, sizeof(sAuthLogonProofKey_C));

	BigNumber A;
	A.SetBinary(lp.R1, 16);

	Sha1Hash sha;
	sha.Initialize();
	sha.UpdateData(AccountName);
	sha.UpdateBigNumbers(&A, &rs, &K, 0);
	sha.Finalize();

	if (!memcmp(sha.GetDigest(), lp.R2, SHA_DIGEST_LENGTH))
	{
		///- Sending response
		ByteBuffer pkt;
		pkt << (uint8)  0x03;	//ReconnectProof
		pkt << (uint8)  0x00;
		pkt << (uint16) 0x00;	// 2 bytes zeros
		Send(pkt.contents(), uint32(pkt.size()));

		// we're authenticated now :)
		m_authenticated = true;

		DEBUG_LOG("AuthReConnectProof","Authentication Success.");
	}
	else
		DEBUG_LOG("AuthReConnectProof","Authentication Failed.");

}
XnStatus XnPacked11DepthProcessor::Unpack11to16(const XnUInt8* pcInput, const XnUInt32 nInputSize, XnUInt32* pnActualRead)
{
	const XnUInt8* pOrigInput = pcInput;

	XnUInt32 nElements = nInputSize / XN_INPUT_ELEMENT_SIZE; // floored
	XnUInt32 nNeededOutput = nElements * XN_OUTPUT_ELEMENT_SIZE;

	*pnActualRead = 0;
	XnBuffer* pWriteBuffer = GetWriteBuffer();

	// Check there is enough room for the depth pixels
	if (!CheckDepthBufferForOverflow(nNeededOutput))
	{
		return XN_STATUS_OUTPUT_BUFFER_OVERFLOW;
	}

	XnUInt16* pShiftOut = GetShiftsOutputBuffer();
	XnUInt16* pnOutput = GetDepthOutputBuffer();

	XnUInt16 a0,a1,a2,a3,a4,a5,a6,a7;
#ifdef XN_NEON
	XnUInt16 shift[8];
	XnUInt16 depth[8];
	uint16x8_t Q0;
#endif

	// Convert the 11bit packed data into 16bit shorts
	for (XnUInt32 nElem = 0; nElem < nElements; ++nElem)
	{
		// input:	0,  1,  2,3,  4,  5,  6,7,  8,  9,10
		//			-,---,---,-,---,---,---,-,---,---,-
		// bits:	8,3,5,6,2,8,1,7,4,4,7,1,8,2,6,5,3,8
		//			---,---,-----,---,---,-----,---,---
		// output:	  0,  1,    2,  3,  4,    5,  6,  7

		a0 = (XN_TAKE_BITS(pcInput[0],8,0) << 3) | XN_TAKE_BITS(pcInput[1],3,5);
		a1 = (XN_TAKE_BITS(pcInput[1],5,0) << 6) | XN_TAKE_BITS(pcInput[2],6,2);
		a2 = (XN_TAKE_BITS(pcInput[2],2,0) << 9) | (XN_TAKE_BITS(pcInput[3],8,0) << 1) | XN_TAKE_BITS(pcInput[4],1,7);
		a3 = (XN_TAKE_BITS(pcInput[4],7,0) << 4) | XN_TAKE_BITS(pcInput[5],4,4);
		a4 = (XN_TAKE_BITS(pcInput[5],4,0) << 7) | XN_TAKE_BITS(pcInput[6],7,1);
		a5 = (XN_TAKE_BITS(pcInput[6],1,0) << 10) | (XN_TAKE_BITS(pcInput[7],8,0) << 2) | XN_TAKE_BITS(pcInput[8],2,6);
		a6 = (XN_TAKE_BITS(pcInput[8],6,0) << 5) | XN_TAKE_BITS(pcInput[9],5,3);
		a7 = (XN_TAKE_BITS(pcInput[9],3,0) << 8) | XN_TAKE_BITS(pcInput[10],8,0);


#ifdef XN_NEON
		shift[0] = (((a0) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (a0) : 0);
		shift[1] = (((a1) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (a1) : 0);
		shift[2] = (((a2) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (a2) : 0);
		shift[3] = (((a3) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (a3) : 0);
		shift[4] = (((a4) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (a4) : 0);
		shift[5] = (((a5) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (a5) : 0);
		shift[6] = (((a6) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (a6) : 0);
		shift[7] = (((a7) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (a7) : 0);

		depth[0] = GetOutput(a0);
		depth[1] = GetOutput(a1);
		depth[2] = GetOutput(a2);
		depth[3] = GetOutput(a3);
		depth[4] = GetOutput(a4);
		depth[5] = GetOutput(a5);
		depth[6] = GetOutput(a6);
		depth[7] = GetOutput(a7);

		// Load
		Q0 = vld1q_u16(depth);
		// Store
		vst1q_u16(pnOutput, Q0);

		// Load
		Q0 = vld1q_u16(shift);
		// Store
		vst1q_u16(pShiftOut, Q0);
#else
		pShiftOut[0] = (((a0) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (a0) : 0);
		pShiftOut[1] = (((a1) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (a1) : 0);
		pShiftOut[2] = (((a2) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (a2) : 0);
		pShiftOut[3] = (((a3) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (a3) : 0);
		pShiftOut[4] = (((a4) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (a4) : 0);
		pShiftOut[5] = (((a5) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (a5) : 0);
		pShiftOut[6] = (((a6) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (a6) : 0);
		pShiftOut[7] = (((a7) < (XN_DEVICE_SENSOR_MAX_SHIFT_VALUE-1)) ? (a7) : 0);

		pnOutput[0] = GetOutput(a0);
		pnOutput[1] = GetOutput(a1);
		pnOutput[2] = GetOutput(a2);
		pnOutput[3] = GetOutput(a3);
		pnOutput[4] = GetOutput(a4);
		pnOutput[5] = GetOutput(a5);
		pnOutput[6] = GetOutput(a6);
		pnOutput[7] = GetOutput(a7);

#endif

		pcInput += XN_INPUT_ELEMENT_SIZE;
		pnOutput += 8;
		pShiftOut += 8;
	}

	*pnActualRead = (XnUInt32)(pcInput - pOrigInput);
	pWriteBuffer->UnsafeUpdateSize(nNeededOutput);

	return XN_STATUS_OK;
}
void XnPSCompressedDepthProcessor::ProcessFramePacketChunk(const XnSensorProtocolResponseHeader* pHeader, const XnUChar* pData, XnUInt32 nDataOffset, XnUInt32 nDataSize)
{
	XN_PROFILING_START_SECTION("XnPSCompressedDepthProcessor::ProcessFramePacketChunk")

	XnBuffer* pWriteBuffer = GetWriteBuffer();

	const XnUChar* pBuf = NULL;
	XnUInt32 nBufSize = 0;

	// check if we have bytes stored from previous calls
	if (m_RawData.GetSize() > 0)
	{
		// we have no choice. We need to append current buffer to previous bytes
		if (m_RawData.GetFreeSpaceInBuffer() < nDataSize)
		{
			xnLogWarning(XN_MASK_SENSOR_PROTOCOL_DEPTH, "Bad overflow depth! %d", m_RawData.GetSize());
			FrameIsCorrupted();
		}
		else
		{
			m_RawData.UnsafeWrite(pData, nDataSize);
		}

		pBuf = m_RawData.GetData();
		nBufSize = m_RawData.GetSize();
	}
	else
	{
		// we can process the data directly
		pBuf = pData;
		nBufSize = nDataSize;
	}

	XnUInt32 nOutputSize = pWriteBuffer->GetFreeSpaceInBuffer();
	XnUInt32 nWrittenOutput = nOutputSize;
	XnUInt32 nActualRead = 0;
	XnBool bLastPart = pHeader->nType == XN_SENSOR_PROTOCOL_RESPONSE_DEPTH_END && (nDataOffset + nDataSize) == pHeader->nBufSize;
	XnStatus nRetVal = UncompressDepthPS(pBuf, nBufSize, (XnUInt16*)pWriteBuffer->GetUnsafeWritePointer(), 
		&nWrittenOutput, &nActualRead, bLastPart);

	if (nRetVal != XN_STATUS_OK)
	{
		FrameIsCorrupted();

		static XnUInt64 nLastPrinted = 0;

		XnUInt64 nCurrTime;
		xnOSGetTimeStamp(&nCurrTime);

		if (nOutputSize != 0 || (nCurrTime - nLastPrinted) > 1000) 
		{
			xnLogWarning(XN_MASK_SENSOR_PROTOCOL_DEPTH, "Uncompress depth failed: %s. Input Size: %u, Output Space: %u, Last Part: %d.", xnGetStatusString(nRetVal), nBufSize, nOutputSize, bLastPart);

			xnOSGetTimeStamp(&nLastPrinted);
		}
	}

	pWriteBuffer->UnsafeUpdateSize(nWrittenOutput);

	nBufSize -= nActualRead;
	m_RawData.Reset();

	// if we have any bytes left, keep them for next time
	if (nBufSize > 0)
	{
		pBuf += nActualRead;
		m_RawData.UnsafeWrite(pBuf, nBufSize);
	}

	XN_PROFILING_END_SECTION
}