Example #1
0
void GrDrawTarget::stencilPath(const GrPath* path, GrPathFill fill) {
    // TODO: extract portions of checkDraw that are relevant to path stenciling.
    GrAssert(NULL != path);
    GrAssert(fCaps.pathStencilingSupport());
    GrAssert(kHairLine_GrPathFill != fill);
    GrAssert(!GrIsFillInverted(fill));
    this->onStencilPath(path, fill);
}
////////////////////////////////////////////////////////////////////////////////
// return true on success; false on failure
bool GrSoftwarePathRenderer::onDrawPath(const SkPath& path,
                                        GrPathFill fill,
                                        const GrVec* translate,
                                        GrDrawTarget* target,
                                        GrDrawState::StageMask stageMask,
                                        bool antiAlias) {

    if (NULL == fContext) {
        return false;
    }

    GrAutoScratchTexture ast;
    GrIRect pathBounds, clipBounds;
    if (!get_path_and_clip_bounds(target, path, translate,
                                  &pathBounds, &clipBounds)) {
        return true;    // path is empty so there is nothing to do
    }
    if (sw_draw_path_to_mask_texture(path, pathBounds,
                                     fill, fContext,
                                     translate, &ast, antiAlias)) {
        GrTexture* texture = ast.texture();
        GrAssert(NULL != texture);
        GrDrawTarget::AutoDeviceCoordDraw adcd(target, stageMask);
        enum {
            // the SW path renderer shares this stage with glyph
            // rendering (kGlyphMaskStage in GrBatchedTextContext)
            kPathMaskStage = GrPaint::kTotalStages,
        };
        GrAssert(NULL == target->drawState()->getTexture(kPathMaskStage));
        target->drawState()->setTexture(kPathMaskStage, texture);
        target->drawState()->sampler(kPathMaskStage)->reset();
        GrScalar w = GrIntToScalar(pathBounds.width());
        GrScalar h = GrIntToScalar(pathBounds.height());
        GrRect maskRect = GrRect::MakeWH(w / texture->width(),
                                         h / texture->height());
        const GrRect* srcRects[GrDrawState::kNumStages] = {NULL};
        srcRects[kPathMaskStage] = &maskRect;
        stageMask |= 1 << kPathMaskStage;
        GrRect dstRect = GrRect::MakeLTRB(
                              SK_Scalar1* pathBounds.fLeft,
                              SK_Scalar1* pathBounds.fTop,
                              SK_Scalar1* pathBounds.fRight,
                              SK_Scalar1* pathBounds.fBottom);
        target->drawRect(dstRect, NULL, stageMask, srcRects, NULL);
        target->drawState()->setTexture(kPathMaskStage, NULL);
        if (GrIsFillInverted(fill)) {
            draw_around_inv_path(target, stageMask,
                                 clipBounds, pathBounds);
        }
        return true;
    }

    return false;
}
Example #3
0
bool GrAAConvexPathRenderer::canDrawPath(const SkPath& path,
                                         GrPathFill fill,
                                         const GrDrawTarget* target,
                                         bool antiAlias) const {
    if (!target->getCaps().shaderDerivativeSupport() || !antiAlias ||
        kHairLine_GrPathFill == fill || GrIsFillInverted(fill) ||
        !path.isConvex()) {
        return false;
    }  else {
        return true;
    }
}
bool GrAAConvexPathRenderer::staticCanDrawPath(bool pathIsConvex,
                                               GrPathFill fill,
                                               const GrDrawTarget* target,
                                               bool antiAlias) {
    if (!target->getCaps().fShaderDerivativeSupport || !antiAlias ||
        kHairLine_PathFill == fill || GrIsFillInverted(fill) ||
        !pathIsConvex) {
        return false;
    }  else {
        return true;
    }
}
Example #5
0
////////////////////////////////////////////////////////////////////////////////
// return true on success; false on failure
bool GrSoftwarePathRenderer::onDrawPath(const SkPath& path,
                                        GrPathFill fill,
                                        GrDrawTarget* target,
                                        bool antiAlias) {

    if (NULL == fContext) {
        return false;
    }

    GrDrawState* drawState = target->drawState();

    GrMatrix vm = drawState->getViewMatrix();

    GrIRect devPathBounds, devClipBounds;
    if (!get_path_and_clip_bounds(target, path, vm,
                                  &devPathBounds, &devClipBounds)) {
        if (GrIsFillInverted(fill)) {
            draw_around_inv_path(target, devClipBounds, devPathBounds);
        }
        return true;
    }

    SkAutoTUnref<GrTexture> texture(
            GrSWMaskHelper::DrawPathMaskToTexture(fContext, path,
                                                  devPathBounds, fill,
                                                  antiAlias, &vm));
    if (NULL == texture) {
        return false;
    }

    GrSWMaskHelper::DrawToTargetWithPathMask(texture, target, devPathBounds);

    if (GrIsFillInverted(fill)) {
        draw_around_inv_path(target, devClipBounds, devPathBounds);
    }

    return true;
}
Example #6
0
bool GrGpu::setupClipAndFlushState(GrPrimitiveType type) {
    const GrIRect* r = NULL;
    GrIRect clipRect;

    GrDrawState* drawState = this->drawState();
    const GrRenderTarget* rt = drawState->getRenderTarget();

    // GrDrawTarget should have filtered this for us
    GrAssert(NULL != rt);

    if (drawState->isClipState()) {

        GrRect bounds;
        GrRect rtRect;
        rtRect.setLTRB(0, 0,
                       GrIntToScalar(rt->width()), GrIntToScalar(rt->height()));
        if (fClip.hasConservativeBounds()) {
            bounds = fClip.getConservativeBounds();
            if (!bounds.intersect(rtRect)) {
                bounds.setEmpty();
            }
        } else {
            bounds = rtRect;
        }

        bounds.roundOut(&clipRect);
        if  (clipRect.isEmpty()) {
            clipRect.setLTRB(0,0,0,0);
        }
        r = &clipRect;

        // use the stencil clip if we can't represent the clip as a rectangle.
        fClipInStencil = !fClip.isRect() && !fClip.isEmpty() && 
                         !bounds.isEmpty();

        // TODO: dynamically attach a SB when needed.
        GrStencilBuffer* stencilBuffer = rt->getStencilBuffer();
        if (fClipInStencil && NULL == stencilBuffer) {
            return false;
        }

        if (fClipInStencil &&
            stencilBuffer->mustRenderClip(fClip, rt->width(), rt->height())) {

            stencilBuffer->setLastClip(fClip, rt->width(), rt->height());

            // we set the current clip to the bounds so that our recursive
            // draws are scissored to them. We use the copy of the complex clip
            // we just stashed on the SB to render from. We set it back after
            // we finish drawing it into the stencil.
            const GrClip& clip = stencilBuffer->getLastClip();
            fClip.setFromRect(bounds);

            AutoStateRestore asr(this);
            AutoGeometryPush agp(this);

            drawState->setViewMatrix(GrMatrix::I());
            this->flushScissor(NULL);
#if !VISUALIZE_COMPLEX_CLIP
            drawState->enableState(GrDrawState::kNoColorWrites_StateBit);
#else
            drawState->disableState(GrDrawState::kNoColorWrites_StateBit);
#endif
            int count = clip.getElementCount();
            int clipBit = stencilBuffer->bits();
            SkASSERT((clipBit <= 16) &&
                     "Ganesh only handles 16b or smaller stencil buffers");
            clipBit = (1 << (clipBit-1));
            
            bool clearToInside;
            GrSetOp startOp = kReplace_SetOp; // suppress warning
            int start = process_initial_clip_elements(clip,
                                                      rtRect,
                                                      &clearToInside,
                                                      &startOp);

            this->clearStencilClip(clipRect, clearToInside);

            // walk through each clip element and perform its set op
            // with the existing clip.
            for (int c = start; c < count; ++c) {
                GrPathFill fill;
                bool fillInverted;
                // enabled at bottom of loop
                drawState->disableState(kModifyStencilClip_StateBit);

                bool canRenderDirectToStencil; // can the clip element be drawn
                                               // directly to the stencil buffer
                                               // with a non-inverted fill rule
                                               // without extra passes to
                                               // resolve in/out status.

                GrPathRenderer* pr = NULL;
                const GrPath* clipPath = NULL;
                GrPathRenderer::AutoClearPath arp;
                if (kRect_ClipType == clip.getElementType(c)) {
                    canRenderDirectToStencil = true;
                    fill = kEvenOdd_PathFill;
                    fillInverted = false;
                    // there is no point in intersecting a screen filling
                    // rectangle.
                    if (kIntersect_SetOp == clip.getOp(c) &&
                        clip.getRect(c).contains(rtRect)) {
                        continue;
                    }
                } else {
                    fill = clip.getPathFill(c);
                    fillInverted = GrIsFillInverted(fill);
                    fill = GrNonInvertedFill(fill);
                    clipPath = &clip.getPath(c);
                    pr = this->getClipPathRenderer(*clipPath, fill);
                    if (NULL == pr) {
                        fClipInStencil = false;
                        fClip = clip;
                        return false;
                    }
                    canRenderDirectToStencil =
                        !pr->requiresStencilPass(this, *clipPath, fill);
                    arp.set(pr, this, clipPath, fill, false, NULL);
                }

                GrSetOp op = (c == start) ? startOp : clip.getOp(c);
                int passes;
                GrStencilSettings stencilSettings[GrStencilSettings::kMaxStencilClipPasses];

                bool canDrawDirectToClip; // Given the renderer, the element,
                                          // fill rule, and set operation can
                                          // we render the element directly to
                                          // stencil bit used for clipping.
                canDrawDirectToClip =
                    GrStencilSettings::GetClipPasses(op,
                                                     canRenderDirectToStencil,
                                                     clipBit,
                                                     fillInverted,
                                                     &passes, stencilSettings);

                // draw the element to the client stencil bits if necessary
                if (!canDrawDirectToClip) {
                    GR_STATIC_CONST_SAME_STENCIL(gDrawToStencil,
                        kIncClamp_StencilOp,
                        kIncClamp_StencilOp,
                        kAlways_StencilFunc,
                        0xffff,
                        0x0000,
                        0xffff);
                    SET_RANDOM_COLOR
                    if (kRect_ClipType == clip.getElementType(c)) {
                        *drawState->stencil() = gDrawToStencil;
                        this->drawSimpleRect(clip.getRect(c), NULL, 0);
                    } else {
                        if (canRenderDirectToStencil) {
                            *drawState->stencil() = gDrawToStencil;
                            pr->drawPath(0);
                        } else {
                            pr->drawPathToStencil();
                        }
                    }
                }

                // now we modify the clip bit by rendering either the clip
                // element directly or a bounding rect of the entire clip.
                drawState->enableState(kModifyStencilClip_StateBit);
                for (int p = 0; p < passes; ++p) {
                    *drawState->stencil() = stencilSettings[p];
                    if (canDrawDirectToClip) {
                        if (kRect_ClipType == clip.getElementType(c)) {
                            SET_RANDOM_COLOR
                            this->drawSimpleRect(clip.getRect(c), NULL, 0);
                        } else {
                            SET_RANDOM_COLOR
                            pr->drawPath(0);
                        }
                    } else {
                        SET_RANDOM_COLOR
                        this->drawSimpleRect(bounds, NULL, 0);
                    }
                }
            }
Example #7
0
////////////////////////////////////////////////////////////////////////////////
// Create a 1-bit clip mask in the stencil buffer. 'devClipBounds' are in device
// (as opposed to canvas) coordinates
bool GrClipMaskManager::createStencilClipMask(const GrClipData& clipDataIn,
                                              const GrIRect& devClipBounds) {

    GrAssert(kNone_ClipMaskType == fCurrClipMaskType);

    GrDrawState* drawState = fGpu->drawState();
    GrAssert(drawState->isClipState());

    GrRenderTarget* rt = drawState->getRenderTarget();
    GrAssert(NULL != rt);

    // TODO: dynamically attach a SB when needed.
    GrStencilBuffer* stencilBuffer = rt->getStencilBuffer();
    if (NULL == stencilBuffer) {
        return false;
    }

    if (stencilBuffer->mustRenderClip(clipDataIn, rt->width(), rt->height())) {

        stencilBuffer->setLastClip(clipDataIn, rt->width(), rt->height());

        // we set the current clip to the bounds so that our recursive
        // draws are scissored to them. We use the copy of the complex clip
        // we just stashed on the SB to render from. We set it back after
        // we finish drawing it into the stencil.
        const GrClipData* oldClipData = fGpu->getClip();

        // The origin of 'newClipData' is (0, 0) so it is okay to place
        // a device-coordinate bound in 'newClipStack'
        SkClipStack newClipStack(devClipBounds);
        GrClipData newClipData;
        newClipData.fClipStack = &newClipStack;

        fGpu->setClip(&newClipData);

        GrDrawTarget::AutoStateRestore asr(fGpu, GrDrawTarget::kReset_ASRInit);
        drawState = fGpu->drawState();
        drawState->setRenderTarget(rt);
        GrDrawTarget::AutoGeometryPush agp(fGpu);

        if (0 != clipDataIn.fOrigin.fX || 0 != clipDataIn.fOrigin.fY) {
            // Add the saveLayer's offset to the view matrix rather than
            // offset each individual draw
            drawState->viewMatrix()->setTranslate(
                           SkIntToScalar(-clipDataIn.fOrigin.fX),
                           SkIntToScalar(-clipDataIn.fOrigin.fY));
        }

#if !VISUALIZE_COMPLEX_CLIP
        drawState->enableState(GrDrawState::kNoColorWrites_StateBit);
#endif

        int clipBit = stencilBuffer->bits();
        SkASSERT((clipBit <= 16) &&
                    "Ganesh only handles 16b or smaller stencil buffers");
        clipBit = (1 << (clipBit-1));

        GrIRect devRTRect = GrIRect::MakeWH(rt->width(), rt->height());

        bool clearToInside;
        SkRegion::Op firstOp = SkRegion::kReplace_Op; // suppress warning

        SkClipStack::Iter iter(*oldClipData->fClipStack,
                               SkClipStack::Iter::kBottom_IterStart);
        const SkClipStack::Iter::Clip* clip = process_initial_clip_elements(&iter,
                                                  devRTRect,
                                                  &clearToInside,
                                                  &firstOp,
                                                  clipDataIn);

        fGpu->clearStencilClip(devClipBounds, clearToInside);
        bool first = true;

        // walk through each clip element and perform its set op
        // with the existing clip.
        for ( ; NULL != clip; clip = iter.nextCombined()) {
            GrPathFill fill;
            bool fillInverted = false;
            // enabled at bottom of loop
            drawState->disableState(GrGpu::kModifyStencilClip_StateBit);
            // if the target is MSAA then we want MSAA enabled when the clip is soft
            if (rt->isMultisampled()) {
                drawState->setState(GrDrawState::kHWAntialias_StateBit, clip->fDoAA);
            }

            // Can the clip element be drawn directly to the stencil buffer
            // with a non-inverted fill rule without extra passes to
            // resolve in/out status?
            bool canRenderDirectToStencil = false;

            SkRegion::Op op = clip->fOp;
            if (first) {
                first = false;
                op = firstOp;
            }

            GrPathRenderer* pr = NULL;
            const SkPath* clipPath = NULL;
            if (NULL != clip->fRect) {
                canRenderDirectToStencil = true;
                fill = kEvenOdd_GrPathFill;
                fillInverted = false;
                // there is no point in intersecting a screen filling
                // rectangle.
                if (SkRegion::kIntersect_Op == op &&
                    contains(*clip->fRect, devRTRect, oldClipData->fOrigin)) {
                    continue;
                }
            } else {
                GrAssert(NULL != clip->fPath);
                fill = get_path_fill(*clip->fPath);
                fillInverted = GrIsFillInverted(fill);
                fill = GrNonInvertedFill(fill);
                clipPath = clip->fPath;
                pr = this->getContext()->getPathRenderer(*clipPath, fill, fGpu, false, true);
                if (NULL == pr) {
                    fGpu->setClip(oldClipData);
                    return false;
                }
                canRenderDirectToStencil =
                    !pr->requiresStencilPass(*clipPath, fill, fGpu);
            }

            int passes;
            GrStencilSettings stencilSettings[GrStencilSettings::kMaxStencilClipPasses];

            bool canDrawDirectToClip; // Given the renderer, the element,
                                        // fill rule, and set operation can
                                        // we render the element directly to
                                        // stencil bit used for clipping.
            canDrawDirectToClip =
                GrStencilSettings::GetClipPasses(op,
                                                 canRenderDirectToStencil,
                                                 clipBit,
                                                 fillInverted,
                                                 &passes,
                                                 stencilSettings);

            // draw the element to the client stencil bits if necessary
            if (!canDrawDirectToClip) {
                GR_STATIC_CONST_SAME_STENCIL(gDrawToStencil,
                    kIncClamp_StencilOp,
                    kIncClamp_StencilOp,
                    kAlways_StencilFunc,
                    0xffff,
                    0x0000,
                    0xffff);
                SET_RANDOM_COLOR
                if (NULL != clip->fRect) {
                    *drawState->stencil() = gDrawToStencil;
                    fGpu->drawSimpleRect(*clip->fRect, NULL);
                } else {
                    if (canRenderDirectToStencil) {
                        *drawState->stencil() = gDrawToStencil;
                        pr->drawPath(*clipPath, fill, fGpu, false);
                    } else {
                        pr->drawPathToStencil(*clipPath, fill, fGpu);
                    }
                }
            }

            // now we modify the clip bit by rendering either the clip
            // element directly or a bounding rect of the entire clip.
            drawState->enableState(GrGpu::kModifyStencilClip_StateBit);
            for (int p = 0; p < passes; ++p) {
                *drawState->stencil() = stencilSettings[p];
                if (canDrawDirectToClip) {
                    if (NULL != clip->fRect) {
                        SET_RANDOM_COLOR
                        fGpu->drawSimpleRect(*clip->fRect, NULL);
                    } else {
                        SET_RANDOM_COLOR
                        pr->drawPath(*clipPath, fill, fGpu, false);
                    }
                } else {
                    SET_RANDOM_COLOR
                    // 'devClipBounds' is already in device coordinates so the
                    // translation in the view matrix is inappropriate.
                    // Convert it to canvas space so the drawn rect will
                    // be in the correct location
                    GrRect canvClipBounds;
                    canvClipBounds.set(devClipBounds);
                    device_to_canvas(&canvClipBounds, clipDataIn.fOrigin);
                    fGpu->drawSimpleRect(canvClipBounds, NULL);
                }
            }
        }
bool GrTesselatedPathRenderer::onDrawPath(const SkPath& path,
                                          GrPathFill fill,
                                          const GrVec* translate,
                                          GrDrawTarget* target,
                                          GrDrawState::StageMask stageMask,
                                          bool antiAlias) {

    GrDrawTarget::AutoStateRestore asr(target);
    GrDrawState* drawState = target->drawState();
    // face culling doesn't make sense here
    GrAssert(GrDrawState::kBoth_DrawFace == drawState->getDrawFace());

    GrMatrix viewM = drawState->getViewMatrix();

    GrScalar tol = GR_Scalar1;
    tol = GrPathUtils::scaleToleranceToSrc(tol, viewM, path.getBounds());
    GrScalar tolSqd = GrMul(tol, tol);

    int subpathCnt;
    int maxPts = GrPathUtils::worstCasePointCount(path, &subpathCnt, tol);

    GrVertexLayout layout = 0;
    for (int s = 0; s < GrDrawState::kNumStages; ++s) {
        if ((1 << s) & stageMask) {
            layout |= GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(s);
        }
    }

    bool inverted = GrIsFillInverted(fill);
    if (inverted) {
        maxPts += 4;
        subpathCnt++;
    }
    if (maxPts > USHRT_MAX) {
        return false;
    }
    SkAutoSTMalloc<8, GrPoint> baseMem(maxPts);
    GrPoint* base = baseMem;
    GrPoint* vert = base;
    GrPoint* subpathBase = base;

    SkAutoSTMalloc<8, uint16_t> subpathVertCount(subpathCnt);

    GrPoint pts[4];
    SkPath::Iter iter(path, false);

    bool first = true;
    int subpath = 0;

    for (;;) {
        switch (iter.next(pts)) {
            case kMove_PathCmd:
                if (!first) {
                    subpathVertCount[subpath] = vert-subpathBase;
                    subpathBase = vert;
                    ++subpath;
                }
                *vert = pts[0];
                vert++;
                break;
            case kLine_PathCmd:
                *vert = pts[1];
                vert++;
                break;
            case kQuadratic_PathCmd: {
                GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2],
                                                     tolSqd, &vert,
                                                     GrPathUtils::quadraticPointCount(pts, tol));
                break;
            }
            case kCubic_PathCmd: {
                GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3],
                                                 tolSqd, &vert,
                                                 GrPathUtils::cubicPointCount(pts, tol));
                break;
            }
            case kClose_PathCmd:
                break;
            case kEnd_PathCmd:
                subpathVertCount[subpath] = vert-subpathBase;
                ++subpath; // this could be only in debug
                goto FINISHED;
        }
        first = false;
    }
FINISHED:
    if (NULL != translate && 0 != translate->fX && 0 != translate->fY) {
        for (int i = 0; i < vert - base; i++) {
            base[i].offset(translate->fX, translate->fY);
        }
    }

    if (inverted) {
        GrRect bounds;
        GrAssert(NULL != drawState->getRenderTarget());
        bounds.setLTRB(0, 0,
                       GrIntToScalar(drawState->getRenderTarget()->width()),
                       GrIntToScalar(drawState->getRenderTarget()->height()));
        GrMatrix vmi;
        if (drawState->getViewInverse(&vmi)) {
            vmi.mapRect(&bounds);
        }
        *vert++ = GrPoint::Make(bounds.fLeft, bounds.fTop);
        *vert++ = GrPoint::Make(bounds.fLeft, bounds.fBottom);
        *vert++ = GrPoint::Make(bounds.fRight, bounds.fBottom);
        *vert++ = GrPoint::Make(bounds.fRight, bounds.fTop);
        subpathVertCount[subpath++] = 4;
    }

    GrAssert(subpath == subpathCnt);
    GrAssert((vert - base) <= maxPts);

    size_t count = vert - base;

    if (count < 3) {
        return true;
    }

    if (subpathCnt == 1 && !inverted && path.isConvex()) {
        if (antiAlias) {
            GrEdgeArray edges;
            GrMatrix inverse, matrix = drawState->getViewMatrix();
            drawState->getViewInverse(&inverse);

            count = computeEdgesAndIntersect(matrix, inverse, base, count, &edges, 0.0f);
            size_t maxEdges = target->getMaxEdges();
            if (count == 0) {
                return true;
            }
            if (count <= maxEdges) {
                // All edges fit; upload all edges and draw all verts as a fan
                target->setVertexSourceToArray(layout, base, count);
                drawState->setEdgeAAData(&edges[0], count);
                target->drawNonIndexed(kTriangleFan_PrimitiveType, 0, count);
            } else {
                // Upload "maxEdges" edges and verts at a time, and draw as
                // separate fans
                for (size_t i = 0; i < count - 2; i += maxEdges - 2) {
                    edges[i] = edges[0];
                    base[i] = base[0];
                    int size = GR_CT_MIN(count - i, maxEdges);
                    target->setVertexSourceToArray(layout, &base[i], size);
                    drawState->setEdgeAAData(&edges[i], size);
                    target->drawNonIndexed(kTriangleFan_PrimitiveType, 0, size);
                }
            }
            drawState->setEdgeAAData(NULL, 0);
        } else {
            target->setVertexSourceToArray(layout, base, count);
            target->drawNonIndexed(kTriangleFan_PrimitiveType, 0, count);
        }
        return true;
    }

    if (antiAlias) {
        // Run the tesselator once to get the boundaries.
        GrBoundaryTess btess(count, fill_type_to_glu_winding_rule(fill));
        btess.addVertices(base, subpathVertCount, subpathCnt);

        GrMatrix inverse, matrix = drawState->getViewMatrix();
        if (!drawState->getViewInverse(&inverse)) {
            return false;
        }

        if (btess.vertices().count() > USHRT_MAX) {
            return false;
        }

        // Inflate the boundary, and run the tesselator again to generate
        // interior polys.
        const GrPointArray& contourPoints = btess.contourPoints();
        const GrIndexArray& contours = btess.contours();
        GrEdgePolygonTess ptess(contourPoints.count(), GLU_TESS_WINDING_NONZERO, matrix);

        size_t i = 0;
        Sk_gluTessBeginPolygon(ptess.tess(), &ptess);
        for (int contour = 0; contour < contours.count(); ++contour) {
            int count = contours[contour];
            GrEdgeArray edges;
            int newCount = computeEdgesAndIntersect(matrix, inverse, &btess.contourPoints()[i], count, &edges, 1.0f);
            Sk_gluTessBeginContour(ptess.tess());
            for (int j = 0; j < newCount; j++) {
                ptess.addVertex(contourPoints[i + j], ptess.vertices().count());
            }
            i += count;
            Sk_gluTessEndContour(ptess.tess());
        }

        Sk_gluTessEndPolygon(ptess.tess());

        if (ptess.vertices().count() > USHRT_MAX) {
            return false;
        }

        // Draw the resulting polys and upload their edge data.
        drawState->enableState(GrDrawState::kEdgeAAConcave_StateBit);
        const GrPointArray& vertices = ptess.vertices();
        const GrIndexArray& indices = ptess.indices();
        const GrDrawState::Edge* edges = ptess.edges();
        GR_DEBUGASSERT(indices.count() % 3 == 0);
        for (int i = 0; i < indices.count(); i += 3) {
            GrPoint tri_verts[3];
            int index0 = indices[i];
            int index1 = indices[i + 1];
            int index2 = indices[i + 2];
            tri_verts[0] = vertices[index0];
            tri_verts[1] = vertices[index1];
            tri_verts[2] = vertices[index2];
            GrDrawState::Edge tri_edges[6];
            int t = 0;
            const GrDrawState::Edge& edge0 = edges[index0 * 2];
            const GrDrawState::Edge& edge1 = edges[index0 * 2 + 1];
            const GrDrawState::Edge& edge2 = edges[index1 * 2];
            const GrDrawState::Edge& edge3 = edges[index1 * 2 + 1];
            const GrDrawState::Edge& edge4 = edges[index2 * 2];
            const GrDrawState::Edge& edge5 = edges[index2 * 2 + 1];
            if (validEdge(edge0) && validEdge(edge1)) {
                tri_edges[t++] = edge0;
                tri_edges[t++] = edge1;
            }
            if (validEdge(edge2) && validEdge(edge3)) {
                tri_edges[t++] = edge2;
                tri_edges[t++] = edge3;
            }
            if (validEdge(edge4) && validEdge(edge5)) {
                tri_edges[t++] = edge4;
                tri_edges[t++] = edge5;
            }
            drawState->setEdgeAAData(&tri_edges[0], t);
            target->setVertexSourceToArray(layout, &tri_verts[0], 3);
            target->drawNonIndexed(kTriangles_PrimitiveType, 0, 3);
        }
        drawState->setEdgeAAData(NULL, 0);
        drawState->disableState(GrDrawState::kEdgeAAConcave_StateBit);
        return true;
    }

    GrPolygonTess ptess(count, fill_type_to_glu_winding_rule(fill));
    ptess.addVertices(base, subpathVertCount, subpathCnt);
    const GrPointArray& vertices = ptess.vertices();
    const GrIndexArray& indices = ptess.indices();
    if (indices.count() > 0) {
        target->setVertexSourceToArray(layout, vertices.begin(), vertices.count());
        target->setIndexSourceToArray(indices.begin(), indices.count());
        target->drawIndexed(kTriangles_PrimitiveType,
                            0,
                            0,
                            vertices.count(),
                            indices.count());
    }
    return true;
}
Example #9
0
////////////////////////////////////////////////////////////////////////////////
// Create a 1-bit clip mask in the stencil buffer
bool GrClipMaskManager::createStencilClipMask(GrGpu* gpu, 
                                              const GrClip& clipIn,
                                              const GrRect& bounds,
                                              ScissoringSettings* scissorSettings) {

    GrAssert(fClipMaskInStencil);

    GrDrawState* drawState = gpu->drawState();
    GrAssert(drawState->isClipState());

    GrRenderTarget* rt = drawState->getRenderTarget();
    GrAssert(NULL != rt);

    // TODO: dynamically attach a SB when needed.
    GrStencilBuffer* stencilBuffer = rt->getStencilBuffer();
    if (NULL == stencilBuffer) {
        return false;
    }

    if (stencilBuffer->mustRenderClip(clipIn, rt->width(), rt->height())) {

        stencilBuffer->setLastClip(clipIn, rt->width(), rt->height());

        // we set the current clip to the bounds so that our recursive
        // draws are scissored to them. We use the copy of the complex clip
        // we just stashed on the SB to render from. We set it back after
        // we finish drawing it into the stencil.
        const GrClip& clipCopy = stencilBuffer->getLastClip();
        gpu->setClip(GrClip(bounds));

        GrDrawTarget::AutoStateRestore asr(gpu, GrDrawTarget::kReset_ASRInit);
        drawState = gpu->drawState();
        drawState->setRenderTarget(rt);
        GrDrawTarget::AutoGeometryPush agp(gpu);

        gpu->disableScissor();
#if !VISUALIZE_COMPLEX_CLIP
        drawState->enableState(GrDrawState::kNoColorWrites_StateBit);
#endif

        int count = clipCopy.getElementCount();
        int clipBit = stencilBuffer->bits();
        SkASSERT((clipBit <= 16) &&
                    "Ganesh only handles 16b or smaller stencil buffers");
        clipBit = (1 << (clipBit-1));

        GrIRect rtRect = GrIRect::MakeWH(rt->width(), rt->height());

        bool clearToInside;
        SkRegion::Op startOp = SkRegion::kReplace_Op; // suppress warning
        int start = process_initial_clip_elements(clipCopy,
                                                    rtRect,
                                                    &clearToInside,
                                                    &startOp);

        gpu->clearStencilClip(scissorSettings->fScissorRect, clearToInside);

        // walk through each clip element and perform its set op
        // with the existing clip.
        for (int c = start; c < count; ++c) {
            GrPathFill fill;
            bool fillInverted;
            // enabled at bottom of loop
            drawState->disableState(GrGpu::kModifyStencilClip_StateBit);

            bool canRenderDirectToStencil; // can the clip element be drawn
                                           // directly to the stencil buffer
                                           // with a non-inverted fill rule
                                           // without extra passes to
                                           // resolve in/out status.

            SkRegion::Op op = (c == start) ? startOp : clipCopy.getOp(c);

            GrPathRenderer* pr = NULL;
            const SkPath* clipPath = NULL;
            if (kRect_ClipType == clipCopy.getElementType(c)) {
                canRenderDirectToStencil = true;
                fill = kEvenOdd_PathFill;
                fillInverted = false;
                // there is no point in intersecting a screen filling
                // rectangle.
                if (SkRegion::kIntersect_Op == op &&
                    contains(clipCopy.getRect(c), rtRect)) {
                    continue;
                }
            } else {
                fill = clipCopy.getPathFill(c);
                fillInverted = GrIsFillInverted(fill);
                fill = GrNonInvertedFill(fill);
                clipPath = &clipCopy.getPath(c);
                pr = this->getClipPathRenderer(gpu, *clipPath, fill, false);
                if (NULL == pr) {
                    fClipMaskInStencil = false;
                    gpu->setClip(clipCopy);     // restore to the original
                    return false;
                }
                canRenderDirectToStencil =
                    !pr->requiresStencilPass(*clipPath, fill, gpu);
            }

            int passes;
            GrStencilSettings stencilSettings[GrStencilSettings::kMaxStencilClipPasses];

            bool canDrawDirectToClip; // Given the renderer, the element,
                                        // fill rule, and set operation can
                                        // we render the element directly to
                                        // stencil bit used for clipping.
            canDrawDirectToClip =
                GrStencilSettings::GetClipPasses(op,
                                                    canRenderDirectToStencil,
                                                    clipBit,
                                                    fillInverted,
                                                    &passes, stencilSettings);

            // draw the element to the client stencil bits if necessary
            if (!canDrawDirectToClip) {
                GR_STATIC_CONST_SAME_STENCIL(gDrawToStencil,
                    kIncClamp_StencilOp,
                    kIncClamp_StencilOp,
                    kAlways_StencilFunc,
                    0xffff,
                    0x0000,
                    0xffff);
                SET_RANDOM_COLOR
                if (kRect_ClipType == clipCopy.getElementType(c)) {
                    *drawState->stencil() = gDrawToStencil;
                    gpu->drawSimpleRect(clipCopy.getRect(c), NULL, 0);
                } else {
                    if (canRenderDirectToStencil) {
                        *drawState->stencil() = gDrawToStencil;
                        pr->drawPath(*clipPath, fill, NULL, gpu, 0, false);
                    } else {
                        pr->drawPathToStencil(*clipPath, fill, gpu);
                    }
                }
            }

            // now we modify the clip bit by rendering either the clip
            // element directly or a bounding rect of the entire clip.
            drawState->enableState(GrGpu::kModifyStencilClip_StateBit);
            for (int p = 0; p < passes; ++p) {
                *drawState->stencil() = stencilSettings[p];
                if (canDrawDirectToClip) {
                    if (kRect_ClipType == clipCopy.getElementType(c)) {
                        SET_RANDOM_COLOR
                        gpu->drawSimpleRect(clipCopy.getRect(c), NULL, 0);
                    } else {
                        SET_RANDOM_COLOR
                        pr->drawPath(*clipPath, fill, NULL, gpu, 0, false);
                    }
                } else {
                    SET_RANDOM_COLOR
                    gpu->drawSimpleRect(bounds, NULL, 0);
                }
            }
        }