Example #1
0
void  H5Dataset_readPalette(H5Dataset *d, hid_t did)
{
    hid_t pal_id=-1, tid=-1;
    hobj_ref_t *refs;

    if (!d || did<=0 ) return;

    refs = H5Dataset_get_paletteRef(did);
    if (refs) {
        // use the fist palette
        pal_id =  H5Rdereference(d->fid, H5R_OBJECT, refs);
        tid = H5Dget_type(pal_id);
        if (H5Dget_storage_size(pal_id) <= 768) 
        {
            H5Attribute *attr;
            d->nattributes = 1;
            d->attributes = (H5Attribute*)malloc(sizeof(H5Attribute));
            attr = &(d->attributes[0]);
            H5Attribute_ctor(attr);
            attr->value = (unsigned char *)malloc(3*256); 
            memset(attr->value, 0, 768);
            attr->nvalue = 768;
            attr->name = (char*)malloc(20);
            strcpy(attr->name, PALETTE_VALUE);
            H5Dread( pal_id, tid, H5S_ALL, H5S_ALL, H5P_DEFAULT, attr->value);
        }

        if (tid > 0) H5Tclose(tid);
        if (pal_id > 0) H5Dclose(pal_id);
        free(refs);
    }

}
Example #2
0
File: H5Df.c Project: ElaraFX/hdf5
int_f
h5dget_storage_size_c ( hid_t_f *dset_id , hsize_t_f *size)
/******/
{
  int ret_value = -1;
  hsize_t c_size;
  hid_t c_dset_id;

  c_dset_id = (hid_t)*dset_id;
  c_size = H5Dget_storage_size(c_dset_id);
  if (c_size == 0) return ret_value;
  *size = (hsize_t_f)c_size;
  ret_value = 0;
  return ret_value;
}
Example #3
0
 void h5_read(group g, std::string const& name, std::string& value) {
  dataset ds = g.open_dataset(name);
  h5::dataspace d_space = H5Dget_space(ds);
  int rank = H5Sget_simple_extent_ndims(d_space);
  if (rank != 0) TRIQS_RUNTIME_ERROR << "Reading a string and got rank !=0";
  size_t size = H5Dget_storage_size(ds);

  datatype strdatatype = H5Tcopy(H5T_C_S1);
  H5Tset_size(strdatatype, size);
  //auto status = H5Tset_size(strdatatype, size);
  // auto status = H5Tset_size (strdatatype, H5T_VARIABLE);

  std::vector<char> buf(size + 1, 0x00);
  auto err = H5Dread(ds, strdatatype, H5S_ALL, H5S_ALL, H5P_DEFAULT, &buf[0]);
  if (err < 0) TRIQS_RUNTIME_ERROR << "Error reading the string named" << name << " in the group" << g.name();

  value = "";
  value.append(&(buf.front()));
 }
Example #4
0
/*-------------------------------------------------------------------------
* Function: diff_datasetid
*
* Purpose: check for comparable datasets and read into a compatible
*  memory type
*
* Return: Number of differences found
*
* Programmer: Pedro Vicente, [email protected]
*
* Date: May 9, 2003
*
* Modifications:
*
*
* October 2006:  Read by hyperslabs for big datasets.
*
*  A threshold of H5TOOLS_MALLOCSIZE (128 MB) is the limit upon which I/O hyperslab is done
*  i.e., if the memory needed to read a dataset is greater than this limit,
*  then hyperslab I/O is done instead of one operation I/O
*  For each dataset, the memory needed is calculated according to
*
*  memory needed = number of elements * size of each element
*
*  if the memory needed is lower than H5TOOLS_MALLOCSIZE, then the following operations
*  are done
*
*  H5Dread( input_dataset1 )
*  H5Dread( input_dataset2 )
*
*  with all elements in the datasets selected. If the memory needed is greater than
*  H5TOOLS_MALLOCSIZE, then the following operations are done instead:
*
*  a strip mine is defined for each dimension k (a strip mine is defined as a
*  hyperslab whose size is memory manageable) according to the formula
*
*  (1) strip_mine_size[k ] = MIN(dimension[k ], H5TOOLS_BUFSIZE / size of memory type)
*
*  where H5TOOLS_BUFSIZE is a constant currently defined as 1MB. This formula assures
*  that for small datasets (small relative to the H5TOOLS_BUFSIZE constant), the strip
*  mine size k is simply defined as its dimension k, but for larger datasets the
*  hyperslab size is still memory manageable.
*  a cycle is done until the number of elements in the dataset is reached. In each
*  iteration, two parameters are defined for the function H5Sselect_hyperslab,
*  the start and size of each hyperslab, according to
*
*  (2) hyperslab_size [k] = MIN(dimension[k] - hyperslab_offset[k], strip_mine_size [k])
*
*  where hyperslab_offset [k] is initially set to zero, and later incremented in
*  hyperslab_size[k] offsets. The reason for the operation
*
*  dimension[k] - hyperslab_offset[k]
*
*  in (2) is that, when using the strip mine size, it assures that the "remaining" part
*  of the dataset that does not fill an entire strip mine is processed.
*
*-------------------------------------------------------------------------
*/
hsize_t diff_datasetid( hid_t did1,
                        hid_t did2,
                        const char *obj1_name,
                        const char *obj2_name,
                        diff_opt_t *options)
{
    hid_t      sid1=-1;
    hid_t      sid2=-1;
    hid_t      f_tid1=-1;
    hid_t      f_tid2=-1;
    hid_t      m_tid1=-1;
    hid_t      m_tid2=-1;
    size_t     m_size1;
    size_t     m_size2;
    H5T_sign_t sign1;
    H5T_sign_t sign2;
    int        rank1;
    int        rank2;
    hsize_t    nelmts1;
    hsize_t    nelmts2;
    hsize_t    dims1[H5S_MAX_RANK];
    hsize_t    dims2[H5S_MAX_RANK];
    hsize_t    maxdim1[H5S_MAX_RANK];
    hsize_t    maxdim2[H5S_MAX_RANK];
    const char *name1=NULL;            /* relative names */
    const char *name2=NULL;
    hsize_t    storage_size1;
    hsize_t    storage_size2;
    hsize_t    nfound=0;               /* number of differences found */
    int        can_compare=1;          /* do diff or not */
    void       *buf1=NULL;
    void       *buf2=NULL;
    void       *sm_buf1=NULL;
    void       *sm_buf2=NULL;
    hid_t      sm_space;               /*stripmine data space */
    size_t     need;                   /* bytes needed for malloc */
    int        i;
    unsigned int  vl_data = 0;         /*contains VL datatypes */

    /* Get the dataspace handle */
    if ( (sid1 = H5Dget_space(did1)) < 0 )
        goto error;

    /* Get rank */
    if ( (rank1 = H5Sget_simple_extent_ndims(sid1)) < 0 )
        goto error;

    /* Get the dataspace handle */
    if ( (sid2 = H5Dget_space(did2)) < 0 )
        goto error;

    /* Get rank */
    if ( (rank2 = H5Sget_simple_extent_ndims(sid2)) < 0 )
        goto error;

    /* Get dimensions */
    if ( H5Sget_simple_extent_dims(sid1,dims1,maxdim1) < 0 )
        goto error;

    /* Get dimensions */
    if ( H5Sget_simple_extent_dims(sid2,dims2,maxdim2) < 0 )
    {
        goto error;
    }

    /*-------------------------------------------------------------------------
    * get the file data type
    *-------------------------------------------------------------------------
    */

    /* Get the data type */
    if ( (f_tid1 = H5Dget_type(did1)) < 0 )
        goto error;

    /* Get the data type */
    if ( (f_tid2 = H5Dget_type(did2)) < 0 )
    {
        goto error;
    }

    /*-------------------------------------------------------------------------
    * check for empty datasets
    *-------------------------------------------------------------------------
    */

    storage_size1=H5Dget_storage_size(did1);
    storage_size2=H5Dget_storage_size(did2);

    if (storage_size1==0 || storage_size2==0)
    {
        if ( (options->m_verbose||options->m_list_not_cmp) && obj1_name && obj2_name)
            parallel_print("Not comparable: <%s> or <%s> is an empty dataset\n", obj1_name, obj2_name);
        can_compare=0;
        options->not_cmp=1;
    }

    /*-------------------------------------------------------------------------
    * check for comparable TYPE and SPACE
    *-------------------------------------------------------------------------
    */

    if (diff_can_type(f_tid1,
        f_tid2,
        rank1,
        rank2,
        dims1,
        dims2,
        maxdim1,
        maxdim2,
        obj1_name,
        obj2_name,
        options,
        0)!=1)
    {
        can_compare=0;
    }

    /*-------------------------------------------------------------------------
    * memory type and sizes
    *-------------------------------------------------------------------------
    */
    if ((m_tid1=h5tools_get_native_type(f_tid1)) < 0)
        goto error;

    if ((m_tid2=h5tools_get_native_type(f_tid2)) < 0)
        goto error;

    m_size1 = H5Tget_size( m_tid1 );
    m_size2 = H5Tget_size( m_tid2 );

    /*-------------------------------------------------------------------------
    * check for different signed/unsigned types
    *-------------------------------------------------------------------------
    */
    if (can_compare)
    {
        sign1=H5Tget_sign(m_tid1);
        sign2=H5Tget_sign(m_tid2);
        if ( sign1 != sign2 )
        {
            if ((options->m_verbose||options->m_list_not_cmp) && obj1_name && obj2_name)
            {
                parallel_print("Not comparable: <%s> has sign %s ", obj1_name, get_sign(sign1));
                parallel_print("and <%s> has sign %s\n", obj2_name, get_sign(sign2));
            }
    
            can_compare=0;
            options->not_cmp=1;
        }
    }

    /* Check if type is either VLEN-data or VLEN-string to reclaim any
     * VLEN memory buffer later */
    if( TRUE == h5tools_detect_vlen(m_tid1) )
        vl_data = TRUE;

    /*------------------------------------------------------------------------
    * only attempt to compare if possible
    *-------------------------------------------------------------------------
    */
    if(can_compare) /* it is possible to compare */
    {

        /*-----------------------------------------------------------------
        * get number of elements
        *------------------------------------------------------------------
        */
        nelmts1 = 1;
        for(i = 0; i < rank1; i++)
            nelmts1 *= dims1[i];

        nelmts2 = 1;
        for(i = 0; i < rank2; i++)
            nelmts2 *= dims2[i];

        HDassert(nelmts1 == nelmts2);

        /*-----------------------------------------------------------------
        * "upgrade" the smaller memory size
        *------------------------------------------------------------------
        */

        if (FAIL == match_up_memsize (f_tid1, f_tid2,
                                      &m_tid1, &m_tid2, 
                                      &m_size1, &m_size2))
            goto error;

        /* print names */
        if(obj1_name)
            name1 = diff_basename(obj1_name);
        if(obj2_name)
            name2 = diff_basename(obj2_name);


        /*----------------------------------------------------------------
        * read/compare
        *-----------------------------------------------------------------
        */
        need = (size_t)(nelmts1 * m_size1);  /* bytes needed */
        if(need < H5TOOLS_MALLOCSIZE) {
            buf1 = HDmalloc(need);
            buf2 = HDmalloc(need);
        } /* end if */

        if(buf1 != NULL && buf2 != NULL) {
            if(H5Dread(did1, m_tid1, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf1) < 0)
                goto error;
            if(H5Dread(did2, m_tid2, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf2) < 0)
                goto error;

            /* array diff */
            nfound = diff_array(buf1, buf2, nelmts1, (hsize_t)0, rank1, dims1,
                options, name1, name2, m_tid1, did1, did2);

            /* reclaim any VL memory, if necessary */
            if(vl_data) {
                H5Dvlen_reclaim(m_tid1, sid1, H5P_DEFAULT, buf1);
                H5Dvlen_reclaim(m_tid2, sid2, H5P_DEFAULT, buf2);
            } /* end if */
        } /* end if */
        else /* possibly not enough memory, read/compare by hyperslabs */
        {
            size_t        p_type_nbytes = m_size1; /*size of memory type */
            hsize_t       p_nelmts = nelmts1;      /*total selected elmts */
            hsize_t       elmtno;                  /*counter  */
            int           carry;                   /*counter carry value */

            /* stripmine info */
            hsize_t       sm_size[H5S_MAX_RANK];   /*stripmine size */
            hsize_t       sm_nbytes;               /*bytes per stripmine */
            hsize_t       sm_nelmts;               /*elements per stripmine*/

            /* hyperslab info */
            hsize_t       hs_offset[H5S_MAX_RANK]; /*starting offset */
            hsize_t       hs_size[H5S_MAX_RANK];   /*size this pass */
            hsize_t       hs_nelmts;               /*elements in request */
            hsize_t       zero[8];                 /*vector of zeros */

            /*
             * determine the strip mine size and allocate a buffer. The strip mine is
             * a hyperslab whose size is manageable.
             */
            sm_nbytes = p_type_nbytes;

            for(i = rank1; i > 0; --i) {
                hsize_t size = H5TOOLS_BUFSIZE / sm_nbytes;

                if(size == 0) /* datum size > H5TOOLS_BUFSIZE */
                    size = 1;
                sm_size[i - 1] = MIN(dims1[i - 1], size);
                sm_nbytes *= sm_size[i - 1];
                HDassert(sm_nbytes > 0);
            } /* end for */

            /* malloc return code should be verified.
             * If fail, need to handle the error.
             * This else branch should be recoded as a separate function.
             * Note that there are many "goto error" within this branch
             * that fails to address freeing other objects created here.
             * E.g., sm_space.
             */
            sm_buf1 = HDmalloc((size_t)sm_nbytes);
            HDassert(sm_buf1);
            sm_buf2 = HDmalloc((size_t)sm_nbytes);
            HDassert(sm_buf2);

            sm_nelmts = sm_nbytes / p_type_nbytes;
            sm_space = H5Screate_simple(1, &sm_nelmts, NULL);

            /* the stripmine loop */
            HDmemset(hs_offset, 0, sizeof hs_offset);
            HDmemset(zero, 0, sizeof zero);

            for(elmtno = 0; elmtno < p_nelmts; elmtno += hs_nelmts) {
                /* calculate the hyperslab size */
                if(rank1 > 0) {
                    for(i = 0, hs_nelmts = 1; i < rank1; i++) {
                        hs_size[i] = MIN(dims1[i] - hs_offset[i], sm_size[i]);
                        hs_nelmts *= hs_size[i];
                    } /* end for */
                    if(H5Sselect_hyperslab(sid1, H5S_SELECT_SET, hs_offset, NULL, hs_size, NULL) < 0)
                        goto error;
                    if(H5Sselect_hyperslab(sid2, H5S_SELECT_SET, hs_offset, NULL, hs_size, NULL) < 0)
                        goto error;
                    if(H5Sselect_hyperslab(sm_space, H5S_SELECT_SET, zero, NULL, &hs_nelmts, NULL) < 0)
                        goto error;
                } /* end if */
                else
                    hs_nelmts = 1;

                if(H5Dread(did1,m_tid1,sm_space,sid1,H5P_DEFAULT,sm_buf1) < 0)
                    goto error;
                if(H5Dread(did2,m_tid2,sm_space,sid2,H5P_DEFAULT,sm_buf2) < 0)
                    goto error;

                /* get array differences. in the case of hyperslab read, increment the number of differences
                found in each hyperslab and pass the position at the beggining for printing */
                nfound += diff_array(sm_buf1, sm_buf2, hs_nelmts, elmtno, rank1,
                    dims1, options, name1, name2, m_tid1, did1, did2);

                /* reclaim any VL memory, if necessary */
                if(vl_data) {
                    H5Dvlen_reclaim(m_tid1, sm_space, H5P_DEFAULT, sm_buf1);
                    H5Dvlen_reclaim(m_tid1, sm_space, H5P_DEFAULT, sm_buf2);
                } /* end if */

                /* calculate the next hyperslab offset */
                for(i = rank1, carry = 1; i > 0 && carry; --i) {
                    hs_offset[i - 1] += hs_size[i - 1];
                    if(hs_offset[i - 1] == dims1[i - 1])
                        hs_offset[i - 1] = 0;
                    else
                        carry = 0;
                } /* i */
            } /* elmtno */

            H5Sclose(sm_space);
        } /* hyperslab read */
    } /*can_compare*/


    /*-------------------------------------------------------------------------
     * close
     *-------------------------------------------------------------------------
     */

    /* free */
    if(buf1 != NULL) {
        HDfree(buf1);
        buf1 = NULL;
    } /* end if */
    if(buf2 != NULL) {
        HDfree(buf2);
        buf2 = NULL;
    } /* end if */
    if(sm_buf1 != NULL) {
        HDfree(sm_buf1);
        sm_buf1 = NULL;
    } /* end if */
    if(sm_buf2 != NULL) {
        HDfree(sm_buf2);
        sm_buf2 = NULL;
    } /* end if */

    H5E_BEGIN_TRY {
        H5Sclose(sid1);
        H5Sclose(sid2);
        H5Tclose(f_tid1);
        H5Tclose(f_tid2);
        H5Tclose(m_tid1);
        H5Tclose(m_tid2);
    } H5E_END_TRY;

    return nfound;

error:
    options->err_stat=1;

    /* free */
    if (buf1!=NULL)
    {
        /* reclaim any VL memory, if necessary */
        if(vl_data)
            H5Dvlen_reclaim(m_tid1, sid1, H5P_DEFAULT, buf1);
        HDfree(buf1);
        buf1=NULL;
    }
    if (buf2!=NULL)
    {
        /* reclaim any VL memory, if necessary */
        if(vl_data)
            H5Dvlen_reclaim(m_tid2, sid2, H5P_DEFAULT, buf2);
        HDfree(buf2);
        buf2=NULL;
    }
    if (sm_buf1!=NULL)
    {
        /* reclaim any VL memory, if necessary */
        if(vl_data)
            H5Dvlen_reclaim(m_tid1, sm_space, H5P_DEFAULT, sm_buf1);
        HDfree(sm_buf1);
        sm_buf1=NULL;
    }
    if (sm_buf2!=NULL)
    {
        /* reclaim any VL memory, if necessary */
        if(vl_data)
            H5Dvlen_reclaim(m_tid1, sm_space, H5P_DEFAULT, sm_buf2);
        HDfree(sm_buf2);
        sm_buf2=NULL;
    }

    /* disable error reporting */
    H5E_BEGIN_TRY {
        H5Sclose(sid1);
        H5Sclose(sid2);
        H5Tclose(f_tid1);
        H5Tclose(f_tid2);
        H5Tclose(m_tid1);
        H5Tclose(m_tid2);
        /* enable error reporting */
    } H5E_END_TRY;

    return nfound;
}
Example #5
0
size_t Dataset::getStorageSize() const { // {{{
    return assertSuccess(
        "getting dataset storage size",
        H5Dget_storage_size(getId())
    );
} // }}}
Example #6
0
/*-------------------------------------------------------------------------
 * Function: dataset_stats
 *
 * Purpose: Gather statistics about the dataset
 *
 * Return:  Success: 0
 *
 *          Failure: -1
 *
 * Programmer:    Quincey Koziol
 *                Tuesday, August 16, 2005
 *
 *-------------------------------------------------------------------------
 */
static herr_t
dataset_stats(iter_t *iter, const char *name, const H5O_info_t *oi)
{
    unsigned     bin;               /* "bin" the number of objects falls in */
    hid_t     did;               /* Dataset ID */
    hid_t     sid;               /* Dataspace ID */
    hid_t     tid;               /* Datatype ID */
    hid_t     dcpl;              /* Dataset creation property list ID */
    hsize_t     dims[H5S_MAX_RANK];/* Dimensions of dataset */
    H5D_layout_t   lout;              /* Layout of dataset */
    unsigned     type_found;        /* Whether the dataset's datatype was */
                                         /* already found */
    int     ndims;             /* Number of dimensions of dataset */
    hsize_t     storage;           /* Size of dataset storage */
    unsigned     u;                 /* Local index variable */
    int     num_ext;           /* Number of external files for a dataset */
    int     nfltr;             /* Number of filters for a dataset */
    H5Z_filter_t  fltr;              /* Filter identifier */
    herr_t     ret;

    /* Gather statistics about this type of object */
    iter->uniq_dsets++;

    /* Get object header information */
    iter->dset_ohdr_info.total_size += oi->hdr.space.total;
    iter->dset_ohdr_info.free_size += oi->hdr.space.free;

    did = H5Dopen2(iter->fid, name, H5P_DEFAULT);
    HDassert(did > 0);

    /* Update dataset metadata info */
    iter->datasets_index_storage_size += oi->meta_size.obj.index_size;
    iter->datasets_heap_storage_size += oi->meta_size.obj.heap_size;

    /* Update attribute metadata info */
    ret = attribute_stats(iter, oi);
    HDassert(ret >= 0);

    /* Get storage info */
    storage = H5Dget_storage_size(did);

    /* Gather layout statistics */
    dcpl = H5Dget_create_plist(did);
    HDassert(dcpl > 0);

    lout = H5Pget_layout(dcpl);
    HDassert(lout >= 0);

    /* Object header's total size for H5D_COMPACT layout includes raw data size */
    /* "storage" also includes H5D_COMPACT raw data size */
    if(lout == H5D_COMPACT)
        iter->dset_ohdr_info.total_size -= storage;

    /* Track the layout type for dataset */
    (iter->dset_layouts[lout])++;

    /* Get the number of external files for the dataset */
    num_ext = H5Pget_external_count(dcpl);
    assert (num_ext >= 0);

    /* Accumulate raw data size accordingly */
    if(num_ext) {
        iter->nexternal += (unsigned long)num_ext;
        iter->dset_external_storage_size += (unsigned long)storage;
    } else
        iter->dset_storage_size += storage;

    /* Gather dataspace statistics */
    sid = H5Dget_space(did);
    HDassert(sid > 0);

    ndims = H5Sget_simple_extent_dims(sid, dims, NULL);
    HDassert(ndims >= 0);

    /* Check for larger rank of dataset */
    if((unsigned)ndims > iter->max_dset_rank)
        iter->max_dset_rank = (unsigned)ndims;

    /* Track the number of datasets with each rank */
    (iter->dset_rank_count[ndims])++;

    /* Only gather dim size statistics on 1-D datasets */
    if(ndims == 1) {
       iter->max_dset_dims = dims[0];
       if(dims[0] < SIZE_SMALL_DSETS)
           (iter->small_dset_dims[(size_t)dims[0]])++;

       /* Add dim count to proper bin */
       bin = ceil_log10((unsigned long)dims[0]);
       if((bin + 1) > iter->dset_dim_nbins) {
          /* Allocate more storage for info about dataset's datatype */
          iter->dset_dim_bins = (unsigned long *)HDrealloc(iter->dset_dim_bins, (bin + 1) * sizeof(unsigned long));
          HDassert(iter->dset_dim_bins);

          /* Initialize counts for intermediate bins */
          while(iter->dset_dim_nbins < bin)
              iter->dset_dim_bins[iter->dset_dim_nbins++] = 0;
          iter->dset_dim_nbins++;

          /* Initialize count for this bin */
          iter->dset_dim_bins[bin] = 1;
        } /* end if */
        else
            (iter->dset_dim_bins[bin])++;
    } /* end if */

    ret = H5Sclose(sid);
    HDassert(ret >= 0);

    /* Gather datatype statistics */
    tid = H5Dget_type(did);
    HDassert(tid > 0);

    type_found = FALSE;
    for(u = 0; u < iter->dset_ntypes; u++)
        if(H5Tequal(iter->dset_type_info[u].tid, tid) > 0) {
            type_found = TRUE;
            break;
        } /* end for */
    if(type_found)
         (iter->dset_type_info[u].count)++;
    else {
        unsigned curr_ntype = iter->dset_ntypes;

        /* Increment # of datatypes seen for datasets */
        iter->dset_ntypes++;

        /* Allocate more storage for info about dataset's datatype */
        iter->dset_type_info = (dtype_info_t *)HDrealloc(iter->dset_type_info, iter->dset_ntypes * sizeof(dtype_info_t));
        HDassert(iter->dset_type_info);

        /* Initialize information about datatype */
        iter->dset_type_info[curr_ntype].tid = H5Tcopy(tid);
        HDassert(iter->dset_type_info[curr_ntype].tid > 0);
        iter->dset_type_info[curr_ntype].count = 1;
        iter->dset_type_info[curr_ntype].named = 0;

        /* Set index for later */
        u = curr_ntype;
    } /* end else */

    /* Check if the datatype is a named datatype */
    if(H5Tcommitted(tid) > 0)
        (iter->dset_type_info[u].named)++;

    ret = H5Tclose(tid);
    HDassert(ret >= 0);

    /* Track different filters */
    if((nfltr = H5Pget_nfilters(dcpl)) >= 0) {
       if(nfltr == 0)
           iter->dset_comptype[0]++;
        for(u = 0; u < (unsigned)nfltr; u++) {
            fltr = H5Pget_filter2(dcpl, u, 0, 0, 0, 0, 0, NULL);
            if(fltr >= 0) {
                if(fltr < (H5_NFILTERS_IMPL - 1))
                    iter->dset_comptype[fltr]++;
                else
                    iter->dset_comptype[H5_NFILTERS_IMPL - 1]++; /*other filters*/
            } /* end if */
        } /* end for */
    } /* endif nfltr */

     ret = H5Pclose(dcpl);
     HDassert(ret >= 0);

     ret = H5Dclose(did);
     HDassert(ret >= 0);

     return 0;
}  /* end dataset_stats() */
Example #7
0
void UPCdata::readHDFfile(char* filename, int count){ // count: 11040 for segmentation and 14640 for classification
#if HDF5_AVAILABLE==2
    // based on http://www.hdfgroup.org/HDF5/doc/cpplus_RM/readdata_8cpp-example.html

	// maybe first deleting all data? does it do that automatically or is there some possible memory leak? 
	// I need to know first the data set sizes... so I create one dummy sample... this is only a hack 
	samples.resize(0); 
	/*
	Sample dummy; 
	dummy.data.resize(1020,0); 
	dummy.concentrations[0]=1;dummy.concentrations[1]=1;dummy.concentrations[2]=1; 
	dummy.samplenr=1; 
	dummy.set=Sample::Training; 
	dummy.compoundnr=1; 
	*/

	const int NFIELDS = 5;
	hsize_t    chunk_size = 10;  // ??	
	
	typedef struct _samplestruct{
		int concentrations[3];
		int samplenr;
		int set;
		int compoundnr;
		float data[1020];  // having difficulties here; dynamic allocation? 
	}samplestruct;
		
	samplestruct *sampledata;
	void *sampleptr = malloc(NRECORDS*sizeof(samplestruct));
	sampledata = (samplestruct*)sampleptr;
	if (sampleptr == NULL) {
       // Memory could not be allocated, the program should handle the error here as appropriate. 
	   cout << "memory could not be allocated!";
	   return;
	} 

	// ... 
	// free(samplestruct);
	
/*	size_t dst_size =  sizeof(Sample);
	size_t dst_offset[NFIELDS] = { 
		HOFFSET(Sample, concentrations), 
		HOFFSET(Sample, samplenr), 
		HOFFSET(Sample, set), 
		HOFFSET(Sample, compoundnr), 
		HOFFSET(Sample, data)
		};
	size_t dst_sizes[NFIELDS] = { sizeof( samples[0].data),
		sizeof(samples[0].concentrations),
		sizeof(samples[0].samplenr),
		sizeof(samples[0].set),
		sizeof(samples[0].compoundnr)};
		*/

	size_t dst_size =  sizeof(samplestruct);
	size_t dst_offset[NFIELDS] = {HOFFSET(samplestruct, concentrations), 
		HOFFSET(samplestruct, samplenr), 
		HOFFSET(samplestruct, set), 
		HOFFSET(samplestruct, compoundnr),
		HOFFSET(samplestruct, data), 
	};
	size_t dst_sizes[NFIELDS] = { sizeof( sampledata[0].data),
		sizeof(sampledata[0].concentrations),
		sizeof(sampledata[0].samplenr),
		sizeof(sampledata[0].set),
		sizeof(sampledata[0].compoundnr)
	};

	hid_t      file_id;  
	int        *fill_data = NULL;
	int        compress  = 1;
	herr_t     status;
	
	//const hsize_t datadim[] = {samples[0].data.size()}; 
	const hsize_t datadim[] = {1020*sizeof(float)}; 
	const hsize_t concdim[] = {3};    

	hid_t floatarray = H5Tarray_create(H5T_NATIVE_FLOAT, 1, datadim);
	hid_t concarray = H5Tarray_create(H5T_NATIVE_FLOAT, 1, concdim);    

	// Initialize field_type 
	hid_t      field_type[NFIELDS]; 
	field_type[0] = floatarray;
	field_type[1] = concarray;
	field_type[2] = H5T_NATIVE_INT;
	field_type[3] = H5T_NATIVE_INT;
	field_type[4] = H5T_NATIVE_INT;
	
	// opening file
	file_id=H5Fopen(filename, H5F_ACC_RDONLY, H5P_DEFAULT);
	if ( file_id < 0 ){
		std::cout << "UPCdata::readHDFfile(): Error opening " << filename <<": " << file_id << std::endl;
		return;
	}
	
	//const int NRECORDS=samples.size(); // how to get the data set size? 
	// is this the way? 
	hid_t dataset_id=H5Dopen1(file_id, "Dataset");
	hsize_t size = H5Dget_storage_size(dataset_id);
	
	//vector<Sample> buf(NRECORDS+1);
	//vector<Sample> buf(static_cast<int>(size+1), 0x00);

	status=H5TBread_table(file_id, "Dataset", dst_size, dst_offset, dst_sizes, sampledata);

	cout << "converting data format" << endl;
	for(int i=0;i<NRECORDS;i++){
		Sample dummysample;
		dummysample.concentrations[0]=sampledata[i].concentrations[0];
		dummysample.concentrations[1]=sampledata[i].concentrations[1];
		dummysample.concentrations[2]=sampledata[i].concentrations[2];
		dummysample.samplenr=sampledata[i].samplenr;
		dummysample.set=(Sample::SetType)sampledata[i].set;
		dummysample.compoundnr=sampledata[i].compoundnr;
		dummysample.data.resize(1020);
		for(int j=0;j<1020;j++)
			dummysample.data[j]=sampledata[i].data[j];
		samples.push_back(dummysample);
	}

	// close type(s)??
	// close the file /
	H5Fclose( file_id );	
#endif
}
/*-------------------------------------------------------------------------
 * Function: diff_datasetid
 *
 * Purpose: check for comparable datasets and read into a compatible
 *  memory type
 *
 * Return: Number of differences found
 *
 * Programmer: Pedro Vicente, [email protected]
 *
 * Date: May 9, 2003
 *
 * Modifications: 
 *
 * October 2006:  Read by hyperslabs for big datasets.
 *
 *  A threshold of H5TOOLS_MALLOCSIZE (128 MB) is the limit upon which I/O hyperslab is done
 *  i.e., if the memory needed to read a dataset is greater than this limit, 
 *  then hyperslab I/O is done instead of one operation I/O 
 *  For each dataset, the memory needed is calculated according to
 *
 *  memory needed = number of elements * size of each element
 *
 *  if the memory needed is lower than H5TOOLS_MALLOCSIZE, then the following operations 
 *  are done
 *
 *  H5Dread( input_dataset1 )
 *  H5Dread( input_dataset2 )
 *
 *  with all elements in the datasets selected. If the memory needed is greater than 
 *  H5TOOLS_MALLOCSIZE, then the following operations are done instead:
 *
 *  a strip mine is defined for each dimension k (a strip mine is defined as a 
 *  hyperslab whose size is memory manageable) according to the formula
 *
 *  (1) strip_mine_size[k ] = MIN(dimension[k ], H5TOOLS_BUFSIZE / size of memory type)
 *
 *  where H5TOOLS_BUFSIZE is a constant currently defined as 1MB. This formula assures 
 *  that for small datasets (small relative to the H5TOOLS_BUFSIZE constant), the strip 
 *  mine size k is simply defined as its dimension k, but for larger datasets the 
 *  hyperslab size is still memory manageable.
 *  a cycle is done until the number of elements in the dataset is reached. In each 
 *  iteration, two parameters are defined for the function H5Sselect_hyperslab, 
 *  the start and size of each hyperslab, according to
 *
 *  (2) hyperslab_size [k] = MIN(dimension[k] - hyperslab_offset[k], strip_mine_size [k])
 *
 *  where hyperslab_offset [k] is initially set to zero, and later incremented in 
 *  hyperslab_size[k] offsets. The reason for the operation 
 *
 *  dimension[k] - hyperslab_offset[k]
 *
 *  in (2) is that, when using the strip mine size, it assures that the "remaining" part 
 *  of the dataset that does not fill an entire strip mine is processed.
 *
 *-------------------------------------------------------------------------
 */
hsize_t diff_datasetid( hid_t did1,
                        hid_t did2,
                        const char *obj1_name,
                        const char *obj2_name,
                        diff_opt_t *options)
{
 hid_t      sid1=-1;
 hid_t      sid2=-1;
 hid_t      f_tid1=-1;
 hid_t      f_tid2=-1;                
 hid_t      m_tid1=-1;
 hid_t      m_tid2=-1;                
 size_t     m_size1;
 size_t     m_size2;               
 H5T_sign_t sign1;
 H5T_sign_t sign2;                 
 int        rank1;
 int        rank2;
 hsize_t    nelmts1;
 hsize_t    nelmts2;
 hsize_t    dims1[H5S_MAX_RANK];
 hsize_t    dims2[H5S_MAX_RANK];
 hsize_t    maxdim1[H5S_MAX_RANK];
 hsize_t    maxdim2[H5S_MAX_RANK];
 const char *name1=NULL;            /* relative names */
 const char *name2=NULL;
 hsize_t    storage_size1;
 hsize_t    storage_size2;
 hsize_t    nfound=0;               /* number of differences found */
 int        cmp=1;                  /* do diff or not */
 void       *buf1=NULL;                  
 void       *buf2=NULL; 
 void       *sm_buf1=NULL;                
 void       *sm_buf2=NULL;
 size_t     need;                   /* bytes needed for malloc */
 int        i;

  /* Get the dataspace handle */
 if ( (sid1 = H5Dget_space(did1)) < 0 )
  goto error;

 /* Get rank */
 if ( (rank1 = H5Sget_simple_extent_ndims(sid1)) < 0 )
  goto error;

 /* Get the dataspace handle */
 if ( (sid2 = H5Dget_space(did2)) < 0 )
  goto error;

 /* Get rank */
 if ( (rank2 = H5Sget_simple_extent_ndims(sid2)) < 0 )
  goto error;

 /* Get dimensions */
 if ( H5Sget_simple_extent_dims(sid1,dims1,maxdim1) < 0 )
  goto error;

 /* Get dimensions */
 if ( H5Sget_simple_extent_dims(sid2,dims2,maxdim2) < 0 )
  goto error;

/*-------------------------------------------------------------------------
 * Get the file data type
 *-------------------------------------------------------------------------
 */

 /* Get the data type */
 if ( (f_tid1 = H5Dget_type(did1)) < 0 )
  goto error;

 /* Get the data type */
 if ( (f_tid2 = H5Dget_type(did2)) < 0 )
  goto error;

/*-------------------------------------------------------------------------
 * check for empty datasets
 *-------------------------------------------------------------------------
 */

 storage_size1=H5Dget_storage_size(did1);
 storage_size2=H5Dget_storage_size(did2);
 if (storage_size1<0 || storage_size2<0)
  goto error;

 if (storage_size1==0 || storage_size2==0)
 {
  if (options->m_verbose && obj1_name && obj2_name)
   printf("<%s> or <%s> are empty datasets\n", obj1_name, obj2_name);
  cmp=0;
  options->not_cmp=1;
 }

/*-------------------------------------------------------------------------
 * check for comparable TYPE and SPACE
 *-------------------------------------------------------------------------
 */

 if (diff_can_type(f_tid1,
                   f_tid2,
                   rank1,
                   rank2,
                   dims1,
                   dims2,
                   maxdim1,
                   maxdim2,
                   obj1_name,
                   obj2_name,
                   options)!=1)
 {
  cmp=0;
  options->not_cmp=1;
 }

/*-------------------------------------------------------------------------
 * memory type and sizes
 *-------------------------------------------------------------------------
 */
 if ((m_tid1=h5tools_get_native_type(f_tid1))<0)
  goto error;

 if ((m_tid2=h5tools_get_native_type(f_tid2))<0)
  goto error;

 m_size1 = H5Tget_size( m_tid1 );
 m_size2 = H5Tget_size( m_tid2 );

/*-------------------------------------------------------------------------
 * check for different signed/unsigned types
 *-------------------------------------------------------------------------
 */

 sign1=H5Tget_sign(m_tid1);
 sign2=H5Tget_sign(m_tid2);
 if ( sign1 != sign2 )
 {
  if (options->m_verbose && obj1_name) {
   printf("Comparison not supported: <%s> has sign %s ", obj1_name, get_sign(sign1));
   printf("and <%s> has sign %s\n", obj2_name, get_sign(sign2));
  }

  cmp=0;
  options->not_cmp=1;
 }

/*-------------------------------------------------------------------------
 * only attempt to compare if possible
 *-------------------------------------------------------------------------
 */
 if (cmp)
 {

/*-------------------------------------------------------------------------
 * get number of elements
 *-------------------------------------------------------------------------
 */
 nelmts1 = 1;
 for (i = 0; i < rank1; i++)
 {
  nelmts1 *= dims1[i];
 }

 nelmts2 = 1;
 for (i = 0; i < rank2; i++)
 {
  nelmts2 *= dims2[i];
 }

 assert(nelmts1==nelmts2);

/*-------------------------------------------------------------------------
 * "upgrade" the smaller memory size
 *-------------------------------------------------------------------------
 */

 if ( m_size1 != m_size2 )
 {
  if ( m_size1 < m_size2 )
  {
   H5Tclose(m_tid1);

   if ((m_tid1=h5tools_get_native_type(f_tid2))<0)
    goto error;

   m_size1 = H5Tget_size( m_tid1 );
  }
  else
  {
   H5Tclose(m_tid2);

   if ((m_tid2=h5tools_get_native_type(f_tid1))<0)
    goto error;

   m_size2 = H5Tget_size( m_tid2 );
  }
 }
 assert(m_size1==m_size2);

 /* print names */
 if (obj1_name) {
  name1=diff_basename(obj1_name);
 }
 if (obj2_name) {
  name2=diff_basename(obj2_name);
 }

 
/*-------------------------------------------------------------------------
 * read/compare
 *-------------------------------------------------------------------------
 */

 need = (size_t)(nelmts1*m_size1);  /* bytes needed */
 if ( need < H5TOOLS_MALLOCSIZE)
 {
  buf1 = HDmalloc(need);
  buf2 = HDmalloc(need);
 }

 if ( buf1!=NULL && buf2!=NULL)
 {
  if ( H5Dread(did1,m_tid1,H5S_ALL,H5S_ALL,H5P_DEFAULT,buf1) < 0 )
   goto error;
  if ( H5Dread(did2,m_tid2,H5S_ALL,H5S_ALL,H5P_DEFAULT,buf2) < 0 )
   goto error;

  /* array diff */
  nfound = diff_array(buf1,
                      buf2,
                      nelmts1,
                      (hsize_t)0,
                      rank1,
                      dims1,
                      options,
                      name1,
                      name2,
                      m_tid1,
                      did1,
                      did2);
 }
 
 else /* possibly not enough memory, read/compare by hyperslabs */
  
 {
  size_t        p_type_nbytes = m_size1; /*size of memory type */
  hsize_t       p_nelmts = nelmts1;      /*total selected elmts */
  hsize_t       elmtno;                  /*counter  */
  int           carry;                   /*counter carry value */
  unsigned int  vl_data = 0;             /*contains VL datatypes */
  
  /* stripmine info */
  hsize_t       sm_size[H5S_MAX_RANK];   /*stripmine size */
  hsize_t       sm_nbytes;               /*bytes per stripmine */
  hsize_t       sm_nelmts;               /*elements per stripmine*/
  hid_t         sm_space;                /*stripmine data space */
  
  /* hyperslab info */
  hsize_t       hs_offset[H5S_MAX_RANK]; /*starting offset */
  hsize_t       hs_size[H5S_MAX_RANK];   /*size this pass */
  hsize_t       hs_nelmts;               /*elements in request */
  hsize_t       zero[8];                 /*vector of zeros */
  
  /* check if we have VL data in the dataset's datatype */
  if (H5Tdetect_class(m_tid1, H5T_VLEN) == TRUE)
   vl_data = TRUE;
  
  /*
   * determine the strip mine size and allocate a buffer. The strip mine is
   * a hyperslab whose size is manageable.
   */
  sm_nbytes = p_type_nbytes;
  
  for (i = rank1; i > 0; --i) {
   sm_size[i - 1] = MIN(dims1[i - 1], H5TOOLS_BUFSIZE / sm_nbytes);
   sm_nbytes *= sm_size[i - 1];
   assert(sm_nbytes > 0);
  }
  
  sm_buf1 = malloc((size_t)sm_nbytes);
  sm_buf2 = malloc((size_t)sm_nbytes);
  
  sm_nelmts = sm_nbytes / p_type_nbytes;
  sm_space = H5Screate_simple(1, &sm_nelmts, NULL);
  
  /* the stripmine loop */
  memset(hs_offset, 0, sizeof hs_offset);
  memset(zero, 0, sizeof zero);

  for (elmtno = 0; elmtno < p_nelmts; elmtno += hs_nelmts) 
  {
   /* calculate the hyperslab size */
   if (rank1 > 0) 
   {
    for (i = 0, hs_nelmts = 1; i < rank1; i++) 
    {
     hs_size[i] = MIN(dims1[i] - hs_offset[i], sm_size[i]);
     hs_nelmts *= hs_size[i];
    }
    if (H5Sselect_hyperslab(sid1, H5S_SELECT_SET, hs_offset, NULL, hs_size, NULL)<0)
     goto error;
    if (H5Sselect_hyperslab(sid2, H5S_SELECT_SET, hs_offset, NULL, hs_size, NULL)<0)
     goto error;
    if (H5Sselect_hyperslab(sm_space, H5S_SELECT_SET, zero, NULL, &hs_nelmts, NULL)<0)
     goto error;
   } 
   else 
   {
    H5Sselect_all(sid1);
    H5Sselect_all(sid2);
    H5Sselect_all(sm_space);
    hs_nelmts = 1;
   } /* rank */

   if ( H5Dread(did1,m_tid1,sm_space,sid1,H5P_DEFAULT,sm_buf1) < 0 )
    goto error;
   if ( H5Dread(did2,m_tid2,sm_space,sid2,H5P_DEFAULT,sm_buf2) < 0 )
    goto error;
   
   /* get array differences. in the case of hyperslab read, increment the number of differences 
      found in each hyperslab and pass the position at the beggining for printing */
   nfound += diff_array(sm_buf1,
                        sm_buf2,
                        hs_nelmts,
                        elmtno,
                        rank1,
                        dims1,
                        options,
                        name1,
                        name2,
                        m_tid1,
                        did1,
                        did2);

   /* reclaim any VL memory, if necessary */
   if(vl_data)
   {
    H5Dvlen_reclaim(m_tid1, sm_space, H5P_DEFAULT, sm_buf1);
    H5Dvlen_reclaim(m_tid1, sm_space, H5P_DEFAULT, sm_buf2);
   }
   
   /* calculate the next hyperslab offset */
   for (i = rank1, carry = 1; i > 0 && carry; --i) 
   {
    hs_offset[i - 1] += hs_size[i - 1];
    if (hs_offset[i - 1] == dims1[i - 1])
     hs_offset[i - 1] = 0;
    else
     carry = 0;
   } /* i */
  } /* elmtno */
  
  H5Sclose(sm_space);
  /* free */
  if (sm_buf1!=NULL)
  {
   free(sm_buf1);
   sm_buf1=NULL;
  }
  if (sm_buf2!=NULL)
  {
   free(sm_buf2);
   sm_buf2=NULL;
  }
  
 } /* hyperslab read */

 }/*cmp*/

/*-------------------------------------------------------------------------
 * compare attributes
 * the if condition refers to cases when the dataset is a referenced object
 *-------------------------------------------------------------------------
 */

 if (obj1_name)
  nfound += diff_attr(did1,did2,obj1_name,obj2_name,options);

/*-------------------------------------------------------------------------
 * close
 *-------------------------------------------------------------------------
 */
 
 /* free */
 if (buf1!=NULL)
 {
  free(buf1);
  buf1=NULL;
 }
 if (buf2!=NULL)
 {
  free(buf2);
  buf2=NULL;
 }
 if (sm_buf1!=NULL)
 {
  free(sm_buf1);
  sm_buf1=NULL;
 }
 if (sm_buf2!=NULL)
 {
  free(sm_buf2);
  sm_buf2=NULL;
 }

 H5E_BEGIN_TRY {
  H5Sclose(sid1);
  H5Sclose(sid2);
  H5Tclose(f_tid1);
  H5Tclose(f_tid2);
  H5Tclose(m_tid1);
  H5Tclose(m_tid2);
 } H5E_END_TRY;

 return nfound;

error:
 options->err_stat=1;
 
 /* free */
 if (buf1!=NULL)
 {
  free(buf1);
  buf1=NULL;
 }
 if (buf2!=NULL)
 {
  free(buf2);
  buf2=NULL;
 }
 if (sm_buf1!=NULL)
 {
  free(sm_buf1);
  sm_buf1=NULL;
 }
 if (sm_buf2!=NULL)
 {
  free(sm_buf2);
  sm_buf2=NULL;
 }

 /* disable error reporting */
 H5E_BEGIN_TRY {
  H5Sclose(sid1);
  H5Sclose(sid2);
  H5Tclose(f_tid1);
  H5Tclose(f_tid2);
  H5Tclose(m_tid1);
  H5Tclose(m_tid2);
   /* enable error reporting */
 } H5E_END_TRY;

 return nfound;
}