Example #1
0
int main(void)
	{
	//*******************************************************************
	Init();
	TMRInit(2);			// Initialize Timer interface with Priority=2
	BLIInit();			// Initialize Signal interface
	I2CInit(5, 0);		// Initialize I2C1 module with IPL=5 and Fscl=400 KHz
	//--------------------------
	TMRDelay(1000);		// Wait for 1 sec so that the shake from turning on
						// power switch dissipates...
	//--------------------------
	if (MPUInit(3, 1))	// Initialize motion Sensor - 1 kHz/4 (250 Hz)
		BLIDeadStop("EA", 2);
	//--------------------------
	#ifdef __MAG_Use__
	if (HMCInit(6, 1, 0))	// Initialize magnetic Sensor
							// ODR  = 6 (max, 75 Hz),
							// Gain = 2 (1.3 Gs)
							// DLPF = 0 (no averaging)
		BLIDeadStop("EM", 2);
	#endif
	//--------------------------
	UARTInitTX(6, 48);	// Initialize UART1 for TX on IPL=6 at 115200 bps
	// This initialization routine accepts BaudRate in multiples
	// of 2400 bps; Thus:
	// BaudRate =   1	=>   2400 bps
	// BaudRate =   2	=>   4800 bps
	// ...
	// BaudRate =  48	=> 115200 bps
	//------------------------------------------------------------
	// High speed
	//------------------------------------------------------------
	// BaudRate =  100	=>   250,000 bps
	// BaudRate =  200	=>   500,000 bps
	// BaudRate =  250	=>   625,000 bps
	// BaudRate =  350	=>   833,333 bps
	// BaudRate =  500	=> 1,250,000 bps
	// BaudRate = 1000	=> 2,500,000 bps
	//*******************************************************************
	uint			RC			= 0;
	//--------------------------
	MPUSample		AGSample;
	#ifdef __MAG_Use__
	HMCSample		MSample;
	#endif
	//--------------------------
	if (MPUAsyncStart())
		BLIDeadStop("A", 1);
	//--------------------------
	#ifdef __MAG_Use__
	if (HMCAsyncStart())
		BLIDeadStop("M", 1);
	#endif
	//--------------------------
	struct 
		{
		ulong	TS;		// Timestamp of the cycle
		//-----------------------------------------------
		ulong	MPUCount;	// Sequential number of MPU sample
		#ifdef __MAG_Use__
		ulong	MAGCount;	// Sequential number of MAG sample
		#endif
		//-----------------------------------------------
		// Accelerometer (in units of G)
		//-----------------------------------------------
		Vector	A;
		//-----------------------------------------------
		// Gyroscopes	(in Rad/sec)
		//-----------------------------------------------
		Vector	G;
		#ifdef __MAG_Use__
		//-----------------------------------------------
		// Magnetometer (in mGs)
		//-----------------------------------------------
		Vector	M;
		#endif
		} UData;
	//*******************************************************************
	BLISignalON();
	while(1)
		{
		TMRDelay(100);
		//------------------------	
		#ifdef __MAG_Use__
		RC 	= HMCAsyncReadWhenReady(&MSample);
		if (RC) BLIDeadStop("M", 1);
		#endif
		//------------------------	
		RC 	= MPUAsyncReadWhenReady(&AGSample);
		if (RC) BLIDeadStop("A", 1);
		//---------------------------------------------	
		UData.MPUCount	= AGSample.Count;
		#ifdef __MAG_Use__
		UData.MAGCount	= MSample.Count;
		#endif
		//------------------------
		VectorCopy(&AGSample.A, &UData.A);
		VectorCopy(&AGSample.G, &UData.G);
		#ifdef __MAG_Use__
		VectorCopy(&MSample.M,  &UData.M);
		#endif
		//------------------------
		UData.TS	= AGSample.TS;
		//---------------------------------------------	
		UARTPostWhenReady((uchar*)&UData, sizeof(UData));
		//---------------------------------------------	
		BLISignalFlip();
		}
	return 1;
	}
Example #2
0
int main(void)
	{
	//*******************************************************************
	Init();
	TMRInit(2);			// Initialize Timer interface with Priority=2
	//--------------------------
	BLIInit();			// Initialize Signal interface
	I2CInit(5, 1);		// Initialize I2C1 module with IPL=5 and Fscl=400 KHz
	//--------------------------
	UARTInitTX(6, 350);	// Initialize UART1 for TX on IPL=6 at 
	// BaudRate =   48	=>   115,200 bps	- ZigBEE
	//--------------------------------------
	// BaudRate =  100	=>   250,000 bps
	// BaudRate =  200	=>   500,000 bps
	// BaudRate =  250	=>   625,000 bps
	// BaudRate =  350	=>   833,333 bps	- SD Logger, FTDI cable
	// BaudRate =  500	=> 1,250,000 bps
	// BaudRate = 1000	=> 2,500,000 bps
	//*******************************************************************
	if ( MPUInit(0, 3) )	// Initialize motion Sensor
							// 1 kHz/(0+1) = 1000 Hz (1ms)
							// DLPF=3 => Bandwidth 44 Hz (delay: 4.9 msec)
		BLIDeadStop("EG", 2);
	//--------------------------
	if (HMCInit(6, 1, 0))	// Initialize magnetic Sensor
							// ODR  = 6 (max, 75 Hz),
							// Gain = 1 (1.3 Gs)
							// DLPF = 0 (no averaging)
		BLIDeadStop("EM", 2);
	//--------------------------
	if ( MPLInit(5) )		// Average over 32 samples providing
							// update rate about 10 Hz
		BLIDeadStop("EA", 2);
	//*******************************************************************
	uint			RC			= 0;
	ulong			Alarm		= 0;
	ulong			TS			= 0;
	//-------------------------------
	struct
		{
		ulong			TS;
		MPUSample		IMUData;
		HMCSample		MagData;
		MPLSample		AltData;	
		}	UData;
	//*******************************************************************
	BLIAsyncStart(100, 50);
	RC = MPLSetGround();
	if (RC) BLIDeadStop("SOS", 3);	// Failure...
	BLIAsyncStop();
	//====================================================
	
	BLISignalOFF();
	//====================================================
	// Testing MPU, HMC, and MPL together in a real-life
	// scenario
	//====================================================
	if(MPUAsyncStart()) 	BLIDeadStop("SG", 2);
	//------------------------
	if(HMCAsyncStart())		BLIDeadStop("SM", 2);
	//------------------------
	if(MPLAsyncStart())		BLIDeadStop("SA", 2);
	RC = MPLAsyncReadWhenReady(&UData.AltData);
	if (RC) BLIDeadStop("SAS", 3);	// Failure...
	//====================================================
	while (TRUE)
		{
		Alarm = TMRSetAlarm(500);
		//------------------------------------
		RC 	= MPUAsyncReadIfReady(&UData.IMUData);
		if (MPU_OK != RC && MPU_NRDY != RC)
			BLIDeadStop("G", 1);
		//------------------------
		RC 	= HMCAsyncReadIfReady(&UData.MagData);
		if (HMC_OK != RC && HMC_NRDY != RC)
			BLIDeadStop("M", 1);
		//------------------------
		RC = MPLAsyncReadIfReady(&UData.AltData);
		if (MPL_OK != RC && MPL_NRDY != RC)
			BLIDeadStop("A", 3);	// Failure...
		//-------------------------
		UData.TS	= TMRGetTS();
		//-------------------------
		if (0 == TS)	TS = UData.TS;
		UData.TS -= TS;
		BLISignalFlip();
		//-------------------------
		UARTPostIfReady((byte*)&UData, sizeof(UData));
		//-------------------------
		TMRWaitAlarm(Alarm);
		}
	//====================================================
	
	

	return 1;
	}
Example #3
0
int main(void)
	{
	// <editor-fold defaultstate="collapsed" desc="Initialization of HW components/modules">
	//*******************************************************************
	// Initialization of HW components/modules
	//===================================================================
	Init();
	TMRInit(2);			// Initialize Timer interface with Priority=2
	BLIInit();			// Initialize Signal interface
	//--------------------------
	BLIAsyncMorse("S", 1);	// dit-dit-dit
	MCMInitT(2.5, 2500);	// Initialize Motor Control for PPM with setting
							// Throttle to HIGH for delay interval to let ESC
							// capture Throttle range
	BLIAsyncMorse("O", 1);	// dah-dah-dah
	//--------------------------
	ADCInit(3);			// Initialize ADC to control battery
	//--------------------------
	RCInit(4);			// Initialize Receiver interface with Priority=4
	//--------------------------
	I2CInit(5, 1);		// Initialize I2C1 module with IPL=5 and Fscl=400 KHz
	//--------------------------
	UARTInitTX(6, 350);	// Initialize UART1 for TX on IPL=6 at 
	// BaudRate =   48	=>   115,200 bps	- ZigBEE
	//--------------------------------------
	// BaudRate =  100	=>   250,000 bps
	// BaudRate =  200	=>   500,000 bps
	// BaudRate =  250	=>   625,000 bps
	// BaudRate =  350	=>   833,333 bps	- SD Logger
	// BaudRate =  500	=> 1,250,000 bps
	// BaudRate = 1000	=> 2,500,000 bps
	//*******************************************************************
	// <editor-fold defaultstate="collapsed" desc="Initializing IMU">
	//==================================================================
	#ifdef __MAG_Use__
	//--------------------------------------------------------------
	// Initialize Magnetometer
	//--------------------------------------------------------------
	if (HMCInit(6, 1, 0))	// Initialize magnetic Sensor
							// ODR  = 6 (max, 75 Hz),
							// Gain = 2 (1.3 Gs)
							// DLPF = 0 (no averaging)
		BLIDeadStop("EM", 2);
	#endif
	//*******************************************************************
	BLIAsyncMorse(	"I", 1);	// dit - dit
	//==================================================================
	#ifdef __MXB_Use__
	//--------------------------------------------------------------
	// Initialize MaxBotix range finder
	//--------------------------------------------------------------
	if ( 0 == MXBInit(3, &TM.MXB) )
		BLIDeadStop("ES", 2);
	#endif
	//==================================================================
	// Initialize motion sensor - rotation rate baseline established at
	// this time - QUAD should be motionless!!!
	//------------------------------------------------------------------
	if ( MPUInit(0, 3 ) )	// Initialize motion Sensor
		// 1 kHz/(0+1) = 1000 Hz (1ms)
		// DLPF=3 => Bandwidth 44 Hz (delay: 4.9 msec)
		BLIDeadStop("EA", 2);
	//------------------------------------------------------------------
	BLIAsyncStop();
	//==================================================================
	// </editor-fold>

	//==================================================================
	BLISignalON();
	TMRDelay(2000); 	// Wait for extra 2 sec - to let ESC arm...
	// (finish the song :) )
	BLISignalOFF();
	//===================================================================
	// </editor-fold>

	//*******************************************************************
	// Quadrocopter control variables
	//-------------------------------------------------------------------
	ulong		StartTS		= 0;
	ulong		StepTS;

	RCData		RCNative;		// Control input from Receiver
	RCData		RC;				// Smoothed control input used in all
								// control calculations
	
	DCMData		IMU;			// Orientation data from DCM
	
	MCMData		MC;				// Motor control Variables

	float		BatNomV		= ADCGetBatteryNomVoltage();

	ulong		Alarm		= 0;
	
	#ifdef __CB_To_Model_Front__
		// RC native input rotated to adjust CB orientation to model front
		RCData	RC_CB_To_Model_Front;
		// Control board front does not coincide with the model front
		Matrix	CB_To_Model;
		// Build rotation matrix to adjust for orientation discrepancy
		MatrixYawRotation(__CB_To_Model_Front__, &CB_To_Model);
	#else
		// If CB orientation coincides with the fron of the model
		// we will use Native RC input as base for RC input to
		// Quadrocopter control module
		#define RC_CB_To_Model_Front  RCNative
	#endif


Re_Start:
	//==================================================================
	// Wait for the Receiver ARMing: Control should go Down and then Up
	//------------------------------------------------------------------
	BLIAsyncMorse(	"O", 1);	// doh - doh - doh
	RCSymArm();

	//==================================================================
	BLIAsyncMorse("T", 1);			// doh
	MPUAsyncStop();
	if (MPUCalibrate() != MPU_OK)	
		// Gyro Calibration filed
		BLIDeadStop("EA", 2);
	BLIAsyncStop();
	//==================================================================
	// Start IMU and wait until orientation estimate stabilizes
	//------------------------------------------------------------------
	BLIAsyncMorse(	"E", 1);		// dit
	IMUInit();
	//------------------------------------------------------------------
	QCMReset();			// Initialize (reset) QCM variables
	//------------------------------------------------------------------
	BLIAsyncStop();
	//==================================================================

	//******************************************************************
	// Control variables used to smooth RC receiver data
	//------------------------------------------------------------------
	// Reset Smothed RC data 
	//-------------------------------------------------------------------
	RC.Roll		= 0.0;
	RC.Pitch	= 0.0;
	RC.Yaw		= 0.0;
	//------------------------
	RC.Throttle	= 0.0;
	//------------------------
	RC.Control	= 1;
	//-------------------------------------------------------------------
	
	//*******************************************************************
	// Quadrocopter Control Loop
	//-------------------------------------------------------------------
	BLISignalON();
	while (1)
		{
		// Sets the "frquency" of Control Loop
		Alarm = TMRSetAlarm(10);	// Set Alarm 10 msec in the future
		//============================================================
		// Read commands from receiver - non-blocking call!
		// (we will get out of this call even if connection to the
		// receiver is lost!)
		//============================================================
		// <editor-fold defaultstate="collapsed" desc="Process Receiver feed">
		if ( RCSymRead(&RCNative) )
			{
			//------------------------------------------------------------
			// Normalize Roll and Pitch control input from RC Receiver to
			// +/- 0.35 rad (~20 degrees) and Yaw control input to
			// +/- 3.00 rad (~172 degrees)
			//------------------------------------------------------------
			RCNative.Roll 	= 0.35 * RCNative.Roll;
			RCNative.Pitch	= 0.35 * RCNative.Pitch;
			RCNative.Yaw	= 3.00 * RCNative.Yaw;
			#ifdef __CB_To_Model_Front__
				{
				// Control board front does not coincide with the model front
				Vector	RCInput;
				Vector	RCRotated;
				VectorSet(RCNative.Roll, RCNative.Pitch, RCNative.Yaw, &RCInput);
				MatrixTimesVector(&CB_To_Model, &RCInput, &RCRotated);
				RC_CB_To_Model_Front.Roll		= RCRotated.X;
				RC_CB_To_Model_Front.Pitch		= RCRotated.Y;
				RC_CB_To_Model_Front.Yaw		= RCRotated.Z;
				}
			#endif
			}
		//============================================================
		// Smooth RC data 
		//------------------------------------------------------------
		// Roll, Pitch, and Yaw are smoothed with the IIR(8)
		//------------------------------------------------------------
		RC.Roll		= (RC.Roll	* 7.0	+ RC_CB_To_Model_Front.Roll	) * 0.125;	// 1/8 = 0.125
		RC.Pitch	= (RC.Pitch	* 7.0 	+ RC_CB_To_Model_Front.Pitch) * 0.125;
		RC.Yaw		= (RC.Yaw	* 7.0	+ RC_CB_To_Model_Front.Yaw	) * 0.125;
		//------------------------------------------------------------
		// Throttle is smoothed with the IIR(4) and adjusted to
		// account for actual battery voltage. This is done to
		// improve "hovering" when throttle stick is not moving.
		//------------------------------------------------------------
		// Adjust Native (from RC) throttle to a value corresponding
		float BatAdjTh	= RCNative.Throttle	* BatNomV / ADCGetBatteryVoltage();
		//-----------------------------------------
		RC.Throttle	= (RC.Throttle * 3	+ BatAdjTh) * 0.25;		// 1/4 = 0.25
		//-----------------------------------------
		RC.Control	= RCNative.Control;
		// </editor-fold>
		//============================================================

		//============================================================
		// Implement Motor Cut-Off if RC Control is LOW
		//============================================================
		// <editor-fold defaultstate="collapsed" desc="Process RC Control">
		if ( 0 == RC.Control )
			{
			// Yes, Control is reliably low!
			//--------------------------------------------
			// Override motor control
			//--------------------------------------------
			MC.F = MC.B = MC.L = MC.R = 0;
			MCMSet(&MC);
			//--------------------------------------------
			// Reset Timing series
			StartTS = 0;
			//--------------------------------------------
			// Flight terminated, post EOF to Data Logger
			//--------------------------------------------
			TMRDelay(10);	// Wait for pipe to clear
			UARTPostIfReady( NULL, 0);
			// ... and again - to be sure!
			TMRDelay(10);	// Wait for pipe to clear
			UARTPostIfReady( NULL, 0);
			//----------------------------------
			goto Re_Start;
			}
		// </editor-fold>
		//============================================================

		//============================================================
		// Obtain and process battery charge status
		//============================================================
		// <editor-fold defaultstate="collapsed" desc="Process Battery level">
		float BatteryCharge	= QCMBatteryMgmt();	
		if (BatteryCharge < 0.35)	// BC < 35%
			{
			float MaxLevel = 2.0 * BatteryCharge;
			if (RC.Throttle > MaxLevel)
				RC.Throttle = MaxLevel;
			}
		// </editor-fold>
		//============================================================

		//============================================================
		// Read current orientation and sensor data from the IMU
		// (non-blocking call)
		//============================================================
		if (IMU_OK == IMUGetUpdate(&IMU))
			{
			// Calculate motor control based
			// upon IMU data
			QCMPerformStep(&RC, &IMU, &MC);
			}
		else
			{
			// IMU Failed to provide update -
			// set Motor Control to native throttle
			MC.F = MC.B = MC.L = MC.R = RC.Throttle;
			}
		//============================================================

		//*****************************************
		// Implement Motor Cut-Off if model is
		// dangerously tilted (> 60 degrees) while
		// RC Throttle is low - to protect props 
		//----------------------------------------
		if (IMU.Incl <= 0.5 && RC.Throttle <= 0.40)
			{
			// Override motor control
			MC.F = MC.B = MC.L = MC.R = 0;
			}
		//----------------------------------------

		//*****************************************
		// Update motor control
		//*****************************************
		MCMSet(&MC);
		//-----------------------------------------
		
		//===========================================================
		// Load and post telemetry data (non-blocking call)
		//-----------------------------------------------------------
		// <editor-fold defaultstate="collapsed" desc="Populating Telemetry">
		StepTS =  TMRGetTS(); 
		//-----------------------------------------
		if ( 0 == StartTS )
			// Time stamp of cycle start!
			StartTS =  StepTS;
		//-----------------------------------------
		TM.TS			= StepTS - StartTS;
		//----------------------
		TM.Roll			= IMU.Roll;
		TM.Pitch		= IMU.Pitch;
		TM.Yaw			= IMU.Yaw;
		TM.Inclination	= IMU.Incl;
		TM.Azimuth		= IMU.Azimuth;
		//----------------------
		#ifdef  _TMReport_GYRO_
			#ifdef	_TMReport_GYRO_Rotated
			//------------------------------------------------------
			// We rotate Gyro vector using "partial" DCM built using
			// only Roll and Pitch angles as the actual Yaw does not
			// affect Angualr Velocity by axis
			//------------------------------------------------------
			Matrix		NoYawDCM;
			// Generate partial rotation matrix
			MatrixEulerRotation(IMU.Roll, IMU.Pitch, 0.0, &NoYawDCM);
			// Rotate Gyro vector
			MatrixTimesVector(&NoYawDCM, &IMU.GyroRate, &TM.Gyro);
			#else
			// Just report native Gyro data
			VectorCopy(&IMU.GyroRate, &TM.Gyro);
			#endif
		#endif
		//----------------------
		#ifdef  _TMReport_ACC_
		// Just report native Gyro data
		VectorCopy(&IMU.Gravity, &TM.Acc);
		#endif
		//----------------------
		TM.RollDer		= QSD.RollDer;
		TM.PitchDer		= QSD.PitchDer;
		TM.YawDer		= QSD.YawDer;
		//----------------------
		TM.RC_Throttle	= RC.Throttle;
		TM.RC_Roll		= RC.Roll;
		TM.RC_Pitch		= RC.Pitch;
		TM.RC_Yaw		= RC.Yaw;
		//----------------------
		#ifdef _TMReport_NativeRC_
		TM.RCN_Throttle	= RCNative.Throttle;
		TM.RCN_Roll		= RCNative.Roll;
		TM.RCN_Pitch	= RCNative.Pitch;
		TM.RCN_Yaw		= RCNative.Yaw;
		#endif
		//----------------------
		#ifdef __MXB_Use__
		MXBRead(&TM.MXB);
		#endif
		//----------------------
		#ifdef _TMReport_PID_
		#ifdef _TMReport_PID_Details
		TM.DRProp		= QSD.DeltaRollProp;
		TM.DRDiff		= QSD.DeltaRollDiff;
		TM.DRInt		= QSD.DeltaRollInt;
		#endif
		TM.DRTot		= QSD.DeltaRoll;
		//-------------
		#ifdef _TMReport_PID_Details
		TM.DPProp		= QSD.DeltaPitchProp;
		TM.DPDiff		= QSD.DeltaPitchDiff;
		TM.DPInt		= QSD.DeltaPitchInt;
		#endif
		TM.DPTot		= QSD.DeltaPitch;
		//-------------
		#ifdef _TMReport_PID_Details
		TM.DYProp		= QSD.DeltaYawProp;
		TM.DYDiff		= QSD.DeltaYawDiff;
		TM.DYInt		= QSD.DeltaYawInt;
		#endif
		TM.DYTot		= QSD.DeltaYaw;
		#endif
		//----------------------
		TM.Throttle		= QSD.Throttle;				// Real Throttle
		//----------------------
		TM.Voltage 		= QSD.Voltage;
		// </editor-fold>
		//===========================================================
		UARTPostIfReady( (unsigned char *) &TM, sizeof(TM)	);
		//===========================================================
		// Insert controlled "delay" to slow down the Control Loop
		TMRWaitAlarm(Alarm);
		}
	//*******************************************************************
	return 1;
	}
Example #4
0
int main(void)
	{
	// <editor-fold defaultstate="collapsed" desc="Initialization of HW components/modules">
	//*******************************************************************
	// Initialization of HW components/modules
	//===================================================================
	Init();
	TMRInit(2);			// Initialize Timer interface with Priority=2
	BLIInit();			// Initialize Signal interface
	//===================================================================
	BLIAsyncStart(50, 50);	// Fast blinking - initialization
	//===================================================================
	MCMInitT(2.5, 2500);	// Initialize Motor Control for PPM with setting
							// Throttle to HIGH for delay interval to let ESC
							// capture Throttle range
	//--------------------------
	ADCInit(3);			// Initialize ADC to control battery
	//--------------------------
	RCInit(4);			// Initialize Receiver interface with Priority=4
	//--------------------------
	I2CInit(5, 1);		// Initialize I2C1 module with IPL=5 and Fscl=400 KHz
	//--------------------------
	UARTInitTX(6, 350);	// Initialize UART1 for TX on IPL=6 at 
	// BaudRate =   48	=>   115,200 bps	- ZigBEE
	//--------------------------------------
	// BaudRate =  100	=>   250,000 bps
	// BaudRate =  200	=>   500,000 bps
	// BaudRate =  250	=>   625,000 bps
	// BaudRate =  350	=>   833,333 bps	- SD Logger, FTDI
	// BaudRate =  500	=> 1,250,000 bps
	// BaudRate = 1000	=> 2,500,000 bps
	//*******************************************************************
	// Initialize Magnetometer
	//--------------------------------------------------------------
	if (HMCInit(6, 1, 0))	// Initialize magnetic Sensor
							// ODR  = 6 (max, 75 Hz),
							// Gain = 1 (1.3 Gs)
							// DLPF = 0 (no averaging)
		BLIDeadStop("EM", 2);
	//==================================================================
	// Initialize motion sensor - No calibration at this time!!!
	//------------------------------------------------------------------
	if ( MPUInit(0, 3) )	// Initialize motion Sensor
		// 1 kHz/(0+1) = 1000 Hz (1ms)
		// DLPF=3 => Bandwidth 44 Hz (delay: 4.9 msec)
		BLIDeadStop("EA", 2);
	//------------------------------------------------------------------
	//==================================================================
	AltimeterInit(4);	// Initialize Altimeter with IPL=4 (if needed)
	// NOTE: All sensors areinitialized, so no more synchronous I2C
	//		 operations are needed. Thus we may start Altimeter to give
	//		 it more time to "warm-up"
	AltimeterReset();	// NOTE: will be reset again later
	//==================================================================
	BLIAsyncStop();		// Initialization complete
	//===================================================================
	// </editor-fold>

	//*******************************************************************
	// Quadrocopter control variables
	//-------------------------------------------------------------------
	// <editor-fold defaultstate="collapsed" desc="Timing control variables">
	ulong		StartTS		= 0;	// Flight start time
	ulong		StepTS;				// Control Loop step start time
	ulong		Alarm		= 0;	// "alarm" variable used to set
									// the duration of the Control Loop
	// </editor-fold>

	// <editor-fold defaultstate="collapsed" desc="Variable required to process RC Feed ">
	//-------------------------------------------------------------------
	RCData		RCFeed;			// Control input from Receiver adjusted
								// by control rates. It may also be
								// corrected (if necessary) to account
								// for "+" or "X" configuration as
								// specified by MODE_CB_to_MF flag
	//---------------------------------------
	RCData		RCSmthd;		// Smoothed control input used in all
								// subsequent control calculations
								//---------------------------------------
	RCData		RCFinal;		// Smoothed RC input adjusted for the
								// Yaw angle to provide "Course Lock" (if
								// required). Final RC input provided to
								// Quarocopter Control Module
	//-------------------------------------------------------------------
	// We need battery Nominal voltage to adjust RC Throttle as battery
	// charge depletes.
	float		BatNomV		= ADCGetBatteryNomVoltage ();
	//-------------------------------------------------------------------
	Matrix		Mtr_CB_To_MF;	// Rotation matrix used to adjust Control
								// Board orientation to Model front
								//---------------------------------------
	Matrix		Mtr_CrsLck;		// Rotation matrix used to adjust RC input
								// to account for current Yaw to implement
								// "Course Lock"
								//---------------------------------------
	if (MODE_CB_to_MF)
		// Initialize Rotation Matrix for pre-set angle
		MatrixYawRotation(__CB_To_MF_Angle__, &Mtr_CB_To_MF);
	else
		// Reset Rotation matrix to Identity
		MatrixSetIdentity(&Mtr_CB_To_MF);
	//-------------------------------------------------------------------
	// </editor-fold>
	
	DCMData		IMU;				// Orientation data from DCM
	MCMData		MC;					// Motor control Variables
	//-------------------------------------------------------------------


	// <editor-fold defaultstate="collapsed" desc="ARMing RC and initializing IMU">
	//==================================================================
	// Wait for the Receiver ARMing: Throttle should go up and then down
	//------------------------------------------------------------------
	BLIAsyncStart(200, 200);		// Really slow
	RCArm();
	BLIAsyncStop();
	//==================================================================
	// </editor-fold>

Re_Start:
	//==================================================================
	// <editor-fold defaultstate="collapsed" desc="Intialize Re-Start">
	//------------------------------------------------------------------
	StartTS		= 0;					// Reset timing of control Loop
	//------------------------------------------------------------------
	BLIAsyncMorse(	"I", 1);			// dit - dit
	RCReadWhenReady (&RCFeed);			// Get reading from receiver
	//------------------------------------------------------------------
	// Safety check:  CONTROL should be UP and THROTTLE - LOW
	//------------------------------------------------------------------
	while 	(
			0 == RCFeed.Control
			||
			RCFeed.Throttle > 0.1
			)
		{
		RCReadWhenReady (&RCFeed);		// Get next reading from receiver
		}
	//------------------------------------------------------------------
	BLIAsyncStop ();
	//==================================================================

	//==================================================================
	// Normalize last read RC values as they will represent the first
	// input into the control algorithm, so should be adjusted accordingly
	//------------------------------------------------------------------
	NormalizeRCFeed(&RCFeed);
	//------------------------------------------------------------------
	// Reset Smothed RC data (initialize filter)
	//------------------------------------------------------------------
	RCDataReset(&RCSmthd);
	//==================================================================
	// Initialize sensors... Performed after ARMing to ensure that model
	// is stable
	//--------------------------------------------------------------
	BLIAsyncStart(100, 50);
	//------------------------------------------------------------------
	// Start IMU and wait until orientation estimate stabilizes
	//------------------------------------------------------------------
	IMUReset();
	//--------------------------------------------------------------
	BLIAsyncStart(50, 100);
	//------------------------------------------------------------------
	// Reset Altimeter
	//------------------------------------------------------------------
	AltimeterReset();
	//------------------------------------------------------------------
	QCMReset ();			// Initialize (reset) QCM variables
	//------------------------------------------------------------------
	// Force update of DCMData as inside the control Loop this
	// call is non-blocking!
	//------------------------------------------------------------------
	if (IMU_OK != IMUGetUpdateWhenReady (&IMU))
		// Failure...
		BLIDeadStop ("A", 1);
	//--------------------------------------------------------------
	BLIAsyncStop();
	//--------------------------------------------------------------
	// </editor-fold>
	//==================================================================

	//*******************************************************************
	// Quadrocopter Control Loop
	//-------------------------------------------------------------------
	BLISignalON();
	while (1)
		{
		//============================================================
		// Timing of control Loop
		//============================================================
		// <editor-fold defaultstate="collapsed" desc="Control Loop timing management">
		// Sets the "frquency" of Control Loop
		Alarm = TMRSetAlarm (10);	// Set Alarm 10 msec in the future
		//------------------------------------------------------------
		StepTS =  TMRGetTS ();		// Capture TS of this step
		if ( 0 == StartTS )			// First iteration of Control?
		  StartTS =  StepTS;		// Yes, capture timestamp
		// </editor-fold>
		//============================================================

		//============================================================
		// Read commands from receiver - non-blocking call!
		// (we will get out of this call even if connection to the
		// receiver is lost!)
		// At the end processed Receiver data is stored in RCSmthd
		//============================================================
		// <editor-fold defaultstate="collapsed" desc="Process Receiver feed">
		if ( RCRead(&RCFeed) )
			{
			//------------------------------------------------------------
			// Every NEW sample need to be "normalized"
			//------------------------------------------------------------
			NormalizeRCFeed(&RCFeed);
			//------------------------------------------------------------
			// Adjust orientation from "+" to "X" if needed
			//------------------------------------------------------------
			if (MODE_CB_to_MF)
				{
				// Control board front does not coincide with the model front
				Vector	RCInput;
				Vector	RCRotated;
				VectorSet(RCFeed.Roll, RCFeed.Pitch, RCFeed.Yaw, &RCInput);
				MatrixTimesVector(&Mtr_CB_To_MF, &RCInput, &RCRotated);
				RCFeed.Roll		= RCRotated.X;
				RCFeed.Pitch	= RCRotated.Y;
				RCFeed.Yaw		= RCRotated.Z;	// NOTE: Yaw is not affected!
				}
			}
		//============================================================
		// Smooth RC data 
		//------------------------------------------------------------
		// Roll, Pitch, and Yaw are smoothed with the IIR(4)
		//------------------------------------------------------------
		RCSmthd.Roll	= (RCSmthd.Roll	* 3.0	+ RCFeed.Roll ) * 0.25;	// 1/4 = 0.25
		RCSmthd.Pitch	= (RCSmthd.Pitch* 3.0 	+ RCFeed.Pitch) * 0.25;
		if (MODE_Course_Lock)
			{
			// In this mode Yaw is integrated over the Control Loop
			// duration (0.01 sec) and normalized to +/-Pi range
			RCSmthd.Yaw = QCMRangeToPi(RCSmthd.Yaw + RCFeed.Yaw * 0.01);
			}
		else
			{
			// Without Course-Lock Yaw is treated as "direct input" and
			// just smothed similar to other control variables.
			RCSmthd.Yaw		= (RCSmthd.Yaw	* 3.0	+ RCFeed.Yaw  ) * 0.25;
			}
		//------------------------------------------------------------
		// Throttle is smoothed with the IIR(4) and adjusted to
		// account for actual battery voltage. This is done to
		// improve "hovering" when throttle stick is not moving.
		//------------------------------------------------------------
		// Adjust Native (from RC) throttle to a value corresponding
		float BatV		= ADCGetBatteryVoltage();
		float BatAdjTh	= RCFeed.Throttle;
		if (BatV > 2.0)		// Sanity check :)
			BatAdjTh	= BatAdjTh	* BatNomV / BatV;
		//-----------------------------------------
		RCSmthd.Throttle	= (RCSmthd.Throttle*3.0	+ BatAdjTh) * 0.25;	// 1/4 = 0.25
		//-----------------------------------------
		RCSmthd.Control		= RCFeed.Control;
		// </editor-fold>
		//============================================================

		//============================================================
		// Implement Motor Cut-Off if RC Control is LOW
		//============================================================
		// <editor-fold defaultstate="collapsed" desc="Process RC Control">
		if ( 0 == RCSmthd.Control )
			{
			// Yes, Control is reliably low!
			//--------------------------------------------
			// Override motor control
			//--------------------------------------------
			MC.F = MC.B = MC.L = MC.R = 0;
			MCMSet(&MC);
			//--------------------------------------------
			// Flight terminated, post EOF to Data Logger
			//--------------------------------------------
			TMRDelay(10);	// Wait for pipe to clear
			UARTPostIfReady( NULL, 0);
			// ... and again - to be sure!
			TMRDelay(10);	// Wait for pipe to clear
			UARTPostIfReady( NULL, 0);
			//----------------------------------
			goto Re_Start;
			}
		// </editor-fold>
		//============================================================

		//============================================================
		// Obtain and process battery charge status
		//============================================================
		// <editor-fold defaultstate="collapsed" desc="Process Battery level">
		float BatteryCharge	= QCMBatteryMgmt();	
		if (BatteryCharge < 0.35)	// BC < 35%
			{
			float MaxLevel = 2.0 * BatteryCharge;
			if (RCSmthd.Throttle > MaxLevel)
				RCSmthd.Throttle = MaxLevel;
			}
		// </editor-fold>
		//============================================================

		//============================================================
		// Read current orientation from the IMU  with sensors' raw
		// measurements (non-blocking call) and, if necessary, perform
		// adjustment to RCSmthd to obtain RCFinal
		//============================================================
		// <editor-fold defaultstate="collapsed" desc="Process IMU data and generate Motor Control">
		// First, unconditionally promote RCSmthd to RCFinal
		RCDataCopy(&RCSmthd, &RCFinal);
		//------------------------------------------------------------
		if (IMU_OK == IMUGetUpdate(&IMU))
			{
			if (MODE_Course_Lock)
				{
				// We need to rotate RC input to adjust for current Yaw
				// to implement "Course Lock" - RC Roll and Pitch commands
				// are interpreted as being applied to the original (pre-
				// takeoff) orientation of the model
				//-------------------------------------------------------
				Vector	RCInput;
				Vector	RCRotated;
				// Build rotation matrix to adjust for orientation discrepancy
				MatrixYawRotation(-IMU.Yaw, &Mtr_CrsLck);
				// Load RC input into RCInput vector
				VectorSet(RCSmthd.Roll, RCSmthd.Pitch, RCSmthd.Yaw, &RCInput);
				// Rotate RCInput vector
				MatrixTimesVector(&Mtr_CrsLck, &RCInput, &RCRotated);
				// Save rotated values
				RCFinal.Roll		= RCRotated.X;
				RCFinal.Pitch		= RCRotated.Y;
				RCFinal.Yaw			= RCRotated.Z;
				}
			// Calculate motor control based
			// upon IMU data
			QCMPerformStep(&RCFinal, &IMU, &MC);
			}
		else
			{
			// IMU Failed to provide update -
			// set Motor Control to RC throttle
			MC.F = MC.B = MC.L = MC.R = RCFinal.Throttle;
			}
		// </editor-fold>
		//============================================================

		//************************************************************
		// Implement Motor Cut-Off to protect props if model is
		// dangerously tilted (> 60 degrees) while RC Throttle is low
		//------------------------------------------------------------
		if (IMU.Incl <= 0.5 && RCFinal.Throttle <= 0.40)
			{
			// Override motor control
			MC.F = MC.B = MC.L = MC.R = 0.0;
			}
		//------------------------------------------------------------

		//************************************************************
		// Update motor control
		//************************************************************
		MCMSet(&MC);
		//------------------------------------------------------------
		
		//===========================================================
		// Load and post telemetry data (non-blocking call)
		//-----------------------------------------------------------
		// <editor-fold defaultstate="collapsed" desc="Populating Telemetry">
		//-----------------------------------------
		TM.TS			= StepTS - StartTS;
		//----------------------
		TM.Roll			= IMU.Roll;
		TM.Pitch		= IMU.Pitch;
		TM.Yaw			= IMU.Yaw;
		TM.Inclination	= IMU.Incl;
		TM.Azimuth		= IMU.Azimuth;
		//----------------------
		#ifdef  _TMReport_GYRO_
			#ifdef	_TMReport_GYRO_Rotated
			//------------------------------------------------------
			// We rotate Gyro vector using "partial" DCM built using
			// only Roll and Pitch angles as the actual Yaw does not
			// affect Angualr Velocity by axis
			//------------------------------------------------------
			Vector		Earth;	// One of the Earth axis in Body frame
			Vector		Cross;	// Temporary vector to hold the cross
								// product
			//------------------------------------------------------
			// Calculate Roll and Pitch rates
			//------------------------------------------------------
			// Retrieve Earth Z-axis and calculate cross-product of
			// Z-axis with Gyro vector
			VectorCrossProduct(DCMEarthZ(&Earth), &IMU.GyroRate, &Cross);
			TM.Gyro.X = Cross.X;
			TM.Gyro.Y = Cross.Y;
			//------------------------------------------------------
			// Calculate Yaw rate
			//------------------------------------------------------
			// Retrieve Earth X-axis and calculate cross-product of
			// X-axis with Gyro vector
			VectorCrossProduct(DCMEarthX(&Earth), &IMU.GyroRate, &Cross);
			TM.Gyro.Z = Cross.Z;
			#else
			// Just report native Gyro data
			VectorCopy(&IMU.GyroRate, &TM.Gyro);
			#endif
		#endif
		//----------------------
		#ifdef  _TMReport_ACC_
		// Just report native Gyro data
		VectorCopy(&IMU.Gravity, &TM.Acc);
		#endif
		//----------------------
		TM.RollDer		= QSD.RollDer;
		TM.PitchDer		= QSD.PitchDer;
		TM.YawDer		= QSD.YawDer;
		//----------------------
		TM.RC_Throttle	= RCFinal.Throttle;
		TM.RC_Roll		= RCFinal.Roll;
		TM.RC_Pitch		= RCFinal.Pitch;
		TM.RC_Yaw		= RCFinal.Yaw;
		//----------------------
		#ifdef _TMReport_RCSmthd_
		TM.RCS_Throttle	= RCSmthd.Throttle;
		TM.RCS_Roll		= RCSmthd.Roll;
		TM.RCS_Pitch	= RCSmthd.Pitch;
		TM.RCS_Yaw		= RCSmthd.Yaw;
		#endif
		//----------------------
		#ifdef _TMReport_RCFeed_
		TM.RCN_Throttle	= RCFeed.Throttle;
		TM.RCN_Roll		= RCFeed.Roll;
		TM.RCN_Pitch	= RCFeed.Pitch;
		TM.RCN_Yaw		= RCFeed.Yaw;
		#endif
		//----------------------
		#ifdef _TMReport_Altimetry_
		if ( 0 == AltimeterGetAltData(	IMU.TS,
								&IMU.Gravity,
								&TM.AltResult) )
			goto EndOfCycle;	// Skip reporting on this step
		#endif
		//----------------------
		#ifdef _TMReport_PID_
		#ifdef _TMReport_PID_Details
		TM.DRProp		= QSD.DeltaRollProp;
		TM.DRDiff		= QSD.DeltaRollDiff;
		TM.DRInt		= QSD.DeltaRollInt;
		#endif
		TM.DRTot		= QSD.DeltaRoll;
		//-------------
		#ifdef _TMReport_PID_Details
		TM.DPProp		= QSD.DeltaPitchProp;
		TM.DPDiff		= QSD.DeltaPitchDiff;
		TM.DPInt		= QSD.DeltaPitchInt;
		#endif
		TM.DPTot		= QSD.DeltaPitch;
		//-------------
		#ifdef _TMReport_PID_Details
		TM.DYProp		= QSD.DeltaYawProp;
		TM.DYDiff		= QSD.DeltaYawDiff;
		TM.DYInt		= QSD.DeltaYawInt;
		#endif
		TM.DYTot		= QSD.DeltaYaw;
		#endif
		//----------------------
		TM.Throttle		= QSD.Throttle;				// Real Throttle
		//----------------------
		TM.Voltage 		= ADCGetBatteryVoltage();
		// </editor-fold>
		//===========================================================
		UARTPostIfReady( (unsigned char *) &TM, sizeof(TM)	);
		//===========================================================
		// Insert controlled "delay" to slow down the Control Loop
		// to pre-set frequency
	EndOfCycle:
		TMRWaitAlarm(Alarm);
		//===========================================================
		}
	//*******************************************************************
	return 1;
	}