Example #1
0
/*****************************************************
 * 	Function: init_Hibernation
 *	Description: Initialize hibernation module
 *	Input: NONE
 *	Output: NONE
 *****************************************************/
void init_Hibernation(void)
{
	SysCtlPeripheralEnable(SYSCTL_PERIPH_HIBERNATE);				// Enable hibernation module
	HibernateEnableExpClk(SysCtlClockGet());						// Enable clocking to the hibernation module
	HibernateClockConfig(HIBERNATE_OSC_LOWDRIVE);					// Configure the clock source for hibernation module
	HibernateGPIORetentionEnable();									// Retain GPIO state during hibernation
//	HibernateRTCEnable();											// Enable the RTC
//	HibernateRTCSet(0);												// Clear the RTC time
	//HibernateRTCMatchSet(0, HibernateRTCGet() + 5);				// Set the match 0 register for 5 seconds from now
	HibernateWakeSet(HIBERNATE_WAKE_PIN);							// Configure to wake on button press or RTC match
								//  HIBERNATE_WAKE_PIN | HIBERNATE_WAKE_RTC

	// Clear any pending status.
	//
	int status = HibernateIntStatus(0);								// Clear any pending status
	HibernateIntClear(status);
}
Example #2
0
//*****************************************************************************
//
//! This is the hibernate module handler.
//! When the RTC timer expires, an interrupt is generated and the the GPS
//!	data is parsed and logged.
//!
//! If the Wake button is pressed, low power mode is disabled.
//! A reset/power cycle is required to re-enable low power mode after Wake has
//! been pressed.
//
//*****************************************************************************
void lowPowerMode(int delaySeconds) {
    uint32_t ui32Status;

    //
    // Set the RTC to 0 or an initial value. The RTC can be set once when the
    // system is initialized after the cold startup and then left to run. Or
    // it can be initialized before every hibernate.
    //
    HibernateRTCSet(0);

    //
    // Set the match 0 register for 30 seconds from now.
    //
    HibernateRTCMatchSet(0, HibernateRTCGet() + delaySeconds);

    //
    // Clear any pending status.
    //
    ui32Status = HibernateIntStatus(0);
    HibernateIntClear(ui32Status);

    //
    // Save the program state information. The state information is stored in
    // the pui32NVData[] array. It is not necessary to save the full 16 words
    // of data, only as much as is actually needed by the program.
    //
    HibernateDataSet(&lowPowerOn, 1);

    //
    // Configure to wake on RTC match or when wake button is pressed.
    //
    HibernateWakeSet(HIBERNATE_WAKE_RTC | HIBERNATE_WAKE_PIN);

    //
    // Request hibernation. The following call may return because it takes a
    // finite amount of time for power to be removed.
    //
    HibernateRequest();

    //
    // Spin here to wait for the power to be removed.
    //
    for(;;)
    {
    }
} // End function lowPowerMode
Example #3
0
//*****************************************************************************
//
// Initialize and operate the data logger.
//
//*****************************************************************************
int
main(void)
{
    tContext sDisplayContext, sBufferContext;
    uint32_t ui32HibIntStatus, ui32SysClock, ui32LastTickCount;
    bool bSkipSplash;
    uint8_t ui8ButtonState, ui8ButtonChanged;
    uint_fast8_t ui8X, ui8Y;


    //
    // Enable lazy stacking for interrupt handlers.  This allows floating-point
    // instructions to be used within interrupt handlers, but at the expense of
    // extra stack usage.
    //
    MAP_FPULazyStackingEnable();

    //
    // Set the clocking to run at 50 MHz.
    //
    MAP_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_XTAL_16MHZ |
                       SYSCTL_OSC_MAIN);
    ui32SysClock = MAP_SysCtlClockGet();

    //
    // Initialize locals.
    //
    bSkipSplash = false;
    ui32LastTickCount = 0;

    //
    // Initialize the data acquisition module.  This initializes the ADC
    // hardware.
    //
    AcquireInit();

    //
    // Enable access to  the hibernate peripheral.  If the hibernate peripheral
    // was already running then this will have no effect.
    //
    MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_HIBERNATE);

    //
    // Check to see if the hiberate module is already active and if so then
    // read the saved configuration state.  If both are okay, then proceed
    // to check and see if we are logging data using sleep mode.
    //
    if(HibernateIsActive() && !GetSavedState(&g_sConfigState))
    {
        //
        // Read the status of the hibernate module.
        //
        ui32HibIntStatus = HibernateIntStatus(1);

        //
        // If this is a pin wake, that means the user pressed the select
        // button and we should terminate the sleep logging.  In this case
        // we will fall out of this conditional section, and go through the
        // normal startup below, but skipping the splash screen so the user
        // gets immediate response.
        //
        if(ui32HibIntStatus & HIBERNATE_INT_PIN_WAKE)
        {
            //
            // Clear the interrupt flag so it is not seen again until another
            // wake.
            //
            HibernateIntClear(HIBERNATE_INT_PIN_WAKE);
            bSkipSplash = true;
        }

        //
        // Otherwise if we are waking from hibernate and it was not a pin
        // wake, then it must be from RTC match.  Check to see if we are
        // sleep logging and if so then go through an abbreviated startup
        // in order to collect the data and go back to sleep.
        //
        else if(g_sConfigState.ui32SleepLogging &&
                (ui32HibIntStatus & HIBERNATE_INT_RTC_MATCH_0))
        {
            //
            // Start logger and pass the configuration.  The logger should
            // configure itself to take one sample.
            //
            AcquireStart(&g_sConfigState);
            g_iLoggerState = eSTATE_LOGGING;

            //
            // Enter a forever loop to run the acquisition.  This will run
            // until a new sample has been taken and stored.
            //
            while(!AcquireRun())
            {
            }

            //
            // Getting here means that a data acquisition was performed and we
            // can now go back to sleep.  Save the configuration and then
            // activate the hibernate.
            //
            SetSavedState(&g_sConfigState);

            //
            // Set wake condition on pin-wake or RTC match.  Then put the
            // processor in hibernation.
            //
            HibernateWakeSet(HIBERNATE_WAKE_PIN | HIBERNATE_WAKE_RTC);
            HibernateRequest();

            //
            // Hibernating takes a finite amount of time to occur, so wait
            // here forever until hibernate activates and the processor
            // power is removed.
            //
            for(;;)
            {
            }
        }

        //
        // Otherwise, this was not a pin wake, and we were not sleep logging,
        // so just fall out of this conditional and go through the normal
        // startup below.
        //
    }
    else
    {
        //
        // In this case, either the hibernate module was not already active, or
        // the saved configuration was not valid.  Initialize the configuration
        // to the default state and then go through the normal startup below.
        //
        GetDefaultState(&g_sConfigState);
    }

    //
    // Enable the Hibernate module to run.
    //
    HibernateEnableExpClk(SysCtlClockGet());

    //
    // The hibernate peripheral trim register must be set per silicon
    // erratum 2.1
    //
    HibernateRTCTrimSet(0x7FFF);

    //
    // Start the RTC running.  If it was already running then this will have
    // no effect.
    //
    HibernateRTCEnable();

    //
    // In case we were sleep logging and are now finished (due to user
    // pressing select button), then disable sleep logging so it doesnt
    // try to start up again.
    //
    g_sConfigState.ui32SleepLogging = 0;
    SetSavedState(&g_sConfigState);

    //
    // Initialize the display driver.
    //
    CFAL96x64x16Init();

    //
    // Initialize the buttons driver.
    //
    ButtonsInit();

    //
    // Pass the restored state to the menu system.
    //
    MenuSetState(&g_sConfigState);

    //
    // Enable the USB peripheral
    //
    MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_USB0);

    //
    // Configure the required pins for USB operation.
    //
    MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);
    MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOG);
    MAP_GPIOPinConfigure(GPIO_PG4_USB0EPEN);
    MAP_GPIOPinTypeUSBDigital(GPIO_PORTG_BASE, GPIO_PIN_4);
    MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOL);
    MAP_GPIOPinTypeUSBAnalog(GPIO_PORTL_BASE, GPIO_PIN_6 | GPIO_PIN_7);
    MAP_GPIOPinTypeUSBAnalog(GPIO_PORTB_BASE, GPIO_PIN_0 | GPIO_PIN_1);

    //
    // Erratum workaround for silicon revision A1.  VBUS must have pull-down.
    //
    if(CLASS_IS_BLIZZARD && REVISION_IS_A1)
    {
        HWREG(GPIO_PORTB_BASE + GPIO_O_PDR) |= GPIO_PIN_1;
    }

    //
    // Initialize the USB stack mode and pass in a mode callback.
    //
    USBStackModeSet(0, eUSBModeOTG, ModeCallback);

    //
    // Initialize the stack to be used with USB stick.
    //
    USBStickInit();

    //
    // Initialize the stack to be used as a serial device.
    //
    USBSerialInit();

    //
    // Initialize the USB controller for dual mode operation with a 2ms polling
    // rate.
    //
    USBOTGModeInit(0, 2000, g_pui8HCDPool, HCD_MEMORY_SIZE);

    //
    // Initialize the menus module.  This module will control the user
    // interface menuing system.
    //
    MenuInit(WidgetActivated);

    //
    // Configure SysTick to periodically interrupt.
    //
    g_ui32TickCount = 0;
    MAP_SysTickPeriodSet(ui32SysClock / CLOCK_RATE);
    MAP_SysTickIntEnable();
    MAP_SysTickEnable();

    //
    // Initialize the display context and another context that is used
    // as an offscreen drawing buffer for display animation effect
    //
    GrContextInit(&sDisplayContext, &g_sCFAL96x64x16);
    GrContextInit(&sBufferContext, &g_sOffscreenDisplayA);

    //
    // Show the splash screen if we are not skipping it.  The only reason to
    // skip it is if the application was in sleep-logging mode and the user
    // just waked it up with the select button.
    //
    if(!bSkipSplash)
    {
        const uint8_t *pui8SplashLogo = g_pui8Image_TI_Black;

        //
        // Draw the TI logo on the display.  Use an animation effect where the
        // logo will "slide" onto the screen.  Allow select button to break
        // out of animation.
        //
        for(ui8X = 0; ui8X < 96; ui8X++)
        {
            if(ButtonsPoll(0, 0) & SELECT_BUTTON)
            {
                break;
            }
            GrImageDraw(&sDisplayContext, pui8SplashLogo, 95 - ui8X, 0);
        }

        //
        // Leave the logo on the screen for a long duration.  Monitor the
        // buttons so that if the user presses the select button, the logo
        // display is terminated and the application starts immediately.
        //
        while(g_ui32TickCount < 400)
        {
            if(ButtonsPoll(0, 0) & SELECT_BUTTON)
            {
                break;
            }
        }

        //
        // Extended splash sequence
        //
        if(ButtonsPoll(0, 0) & UP_BUTTON)
        {
            for(ui8X = 0; ui8X < 96; ui8X += 4)
            {
                GrImageDraw(&sDisplayContext,
                            g_ppui8Image_Splash[(ui8X / 4) & 3],
                            (int32_t)ui8X - 96L, 0);
                GrImageDraw(&sDisplayContext, pui8SplashLogo, ui8X, 0);
                MAP_SysCtlDelay(ui32SysClock / 12);
            }
            MAP_SysCtlDelay(ui32SysClock / 3);
            pui8SplashLogo = g_ppui8Image_Splash[4];
            GrImageDraw(&sDisplayContext, pui8SplashLogo, 0, 0);
            MAP_SysCtlDelay(ui32SysClock / 12);
        }

        //
        // Draw the initial menu into the offscreen buffer.
        //
        SlideMenuDraw(&g_sMenuWidget, &sBufferContext, 0);

        //
        // Now, draw both the TI logo splash screen (from above) and the initial
        // menu on the screen at the same time, moving the coordinates so that
        // the logo "slides" off the display and the menu "slides" onto the
        // display.
        //
        for(ui8Y = 0; ui8Y < 64; ui8Y++)
        {
            GrImageDraw(&sDisplayContext, pui8SplashLogo, 0, -ui8Y);
            GrImageDraw(&sDisplayContext, g_pui8OffscreenBufA, 0, 63 - ui8Y);
        }
    }

    //
    // Add the menu widget to the widget tree and send an initial paint
    // request.
    //
    WidgetAdd(WIDGET_ROOT, (tWidget *)&g_sMenuWidget);
    WidgetPaint(WIDGET_ROOT);

    //
    // Set the focus handle to the menu widget.  Any button events will be
    // sent to this widget
    //
    g_ui32KeyFocusWidgetHandle = (uint32_t)&g_sMenuWidget;

    //
    // Forever loop to run the application
    //
    while(1)
    {

        //
        // Each time the timer tick occurs, process any button events.
        //
        if(g_ui32TickCount != ui32LastTickCount)
        {
            //
            // Remember last tick count
            //
            ui32LastTickCount = g_ui32TickCount;

            //
            // Read the debounced state of the buttons.
            //
            ui8ButtonState = ButtonsPoll(&ui8ButtonChanged, 0);

            //
            // Pass any button presses through to the widget message
            // processing mechanism.  The widget that has the button event
            // focus (probably the menu widget) will catch these button events.
            //
            if(BUTTON_PRESSED(SELECT_BUTTON, ui8ButtonState, ui8ButtonChanged))
            {
                SendWidgetKeyMessage(WIDGET_MSG_KEY_SELECT);
            }
            if(BUTTON_PRESSED(UP_BUTTON, ui8ButtonState, ui8ButtonChanged))
            {
                SendWidgetKeyMessage(WIDGET_MSG_KEY_UP);
            }
            if(BUTTON_PRESSED(DOWN_BUTTON, ui8ButtonState, ui8ButtonChanged))
            {
                SendWidgetKeyMessage(WIDGET_MSG_KEY_DOWN);
            }
            if(BUTTON_PRESSED(LEFT_BUTTON, ui8ButtonState, ui8ButtonChanged))
            {
                SendWidgetKeyMessage(WIDGET_MSG_KEY_LEFT);
            }
            if(BUTTON_PRESSED(RIGHT_BUTTON, ui8ButtonState, ui8ButtonChanged))
            {
                SendWidgetKeyMessage(WIDGET_MSG_KEY_RIGHT);
            }
        }

        //
        // Tell the OTG library code how much time has passed in milliseconds
        // since the last call.
        //
        USBOTGMain(GetTickms());

        //
        // Call functions as needed to keep the host or device mode running.
        //
        if(g_iCurrentUSBMode == eUSBModeDevice)
        {
            USBSerialRun();
        }
        else if(g_iCurrentUSBMode == eUSBModeHost)
        {
            USBStickRun();
        }

        //
        // If in the logging state, then call the logger run function.  This
        // keeps the data acquisition running.
        //
        if((g_iLoggerState == eSTATE_LOGGING) ||
           (g_iLoggerState == eSTATE_VIEWING))
        {
            if(AcquireRun() && g_sConfigState.ui32SleepLogging)
            {
                //
                // If sleep logging is enabled, then at this point we have
                // stored the first data item, now save the state and start
                // hibernation.  Wait for the power to be cut.
                //
                SetSavedState(&g_sConfigState);
                HibernateWakeSet(HIBERNATE_WAKE_PIN | HIBERNATE_WAKE_RTC);
                HibernateRequest();
                for(;;)
                {
                }
            }

            //
            // If viewing instead of logging then request a repaint to keep
            // the viewing window updated.
            //
            if(g_iLoggerState == eSTATE_VIEWING)
            {
                WidgetPaint(WIDGET_ROOT);
            }
        }

        //
        // If in the saving state, then save data from flash storage to
        // USB stick.
        //
        if(g_iLoggerState == eSTATE_SAVING)
        {
            //
            // Save data from flash to USB
            //
            FlashStoreSave();

            //
            // Return to idle state
            //
            g_iLoggerState = eSTATE_IDLE;
        }

        //
        // If in the erasing state, then erase the data stored in flash.
        //
        if(g_iLoggerState == eSTATE_ERASING)
        {
            //
            // Save data from flash to USB
            //
            FlashStoreErase();

            //
            // Return to idle state
            //
            g_iLoggerState = eSTATE_IDLE;
        }

        //
        // If in the flash reporting state, then show the report of the amount
        // of used and free flash memory.
        //
        if(g_iLoggerState == eSTATE_FREEFLASH)
        {
            //
            // Report free flash space
            //
            FlashStoreReport();

            //
            // Return to idle state
            //
            g_iLoggerState = eSTATE_IDLE;
        }

        //
        // If we are exiting the clock setting widget, that means that control
        // needs to be given back to the menu system.
        //
        if(g_iLoggerState == eSTATE_CLOCKEXIT)
        {
            //
            // Give the button event focus back to the menu system
            //
            g_ui32KeyFocusWidgetHandle = (uint32_t)&g_sMenuWidget;

            //
            // Send a button event to the menu widget that means the left
            // key was pressed.  This signals the menu widget to deactivate
            // the current child widget (which was the clock setting wigdet).
            // This will cause the menu widget to slide the clock set widget
            // off the screen and resume control of the display.
            //
            SendWidgetKeyMessage(WIDGET_MSG_KEY_LEFT);
            g_iLoggerState = eSTATE_IDLE;
        }

        //
        // Process any new messages that are in the widget queue.  This keeps
        // the user interface running.
        //
        WidgetMessageQueueProcess();
    }
}
Example #4
0
//*****************************************************************************
//
// Run the hibernate example.  Use a loop to put the microcontroller into
// hibernate mode, and to wake up based on time. Also allow the user to cause
// it to hibernate and/or wake up based on button presses.
//
//*****************************************************************************
int
main(void)
{
    uint32_t ui32Idx;
    uint32_t ui32Status = 0;
    uint32_t ui32HibernateCount = 0;
    tContext sContext;
    tRectangle sRect;

    //
    // Enable lazy stacking for interrupt handlers.  This allows floating-point
    // instructions to be used within interrupt handlers, but at the expense of
    // extra stack usage.
    //
    ROM_FPULazyStackingEnable();

    //
    // Set the clocking to run directly from the crystal.
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_16MHZ);

    //
    // Initialize the UART.
    //
    ConfigureUART();

    //
    // Initialize the OLED display
    //
    CFAL96x64x16Init();

    //
    // Initialize the graphics context.
    //
    GrContextInit(&sContext, &g_sCFAL96x64x16);

    //
    // Fill the top 24 rows of the screen with blue to create the banner.
    //
    sRect.i16XMin = 0;
    sRect.i16YMin = 0;
    sRect.i16XMax = GrContextDpyWidthGet(&sContext) - 1;
    sRect.i16YMax = 9;
    GrContextForegroundSet(&sContext, ClrDarkBlue);
    GrRectFill(&sContext, &sRect);

    //
    // Change foreground for white text.
    //
    GrContextForegroundSet(&sContext, ClrWhite);

    //
    // Put the application name in the middle of the banner.
    //
    GrContextFontSet(&sContext, g_psFontFixed6x8);
    GrStringDrawCentered(&sContext, "hibernate", -1,
                         GrContextDpyWidthGet(&sContext) / 2, 4, 0);

    //
    // Initialize the buttons driver
    //
    ButtonsInit();

    //
    // Set up systick to generate interrupts at 100 Hz.
    //
    ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / 100);
    ROM_SysTickIntEnable();
    ROM_SysTickEnable();

    //
    // Enable the Hibernation module.
    //
    ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_HIBERNATE);

    //
    // Print wake cause message on display.
    //
    GrStringDrawCentered(&sContext, "Wake due to:", -1,
                         GrContextDpyWidthGet(&sContext) / 2, Row(2) + 4,
                         true);

    //
    // Check to see if Hibernation module is already active, which could mean
    // that the processor is waking from a hibernation.
    //
    if(HibernateIsActive())
    {
        //
        // Read the status bits to see what caused the wake.
        //
        ui32Status = HibernateIntStatus(0);
        HibernateIntClear(ui32Status);

        //
        // Wake was due to the push button.
        //
        if(ui32Status & HIBERNATE_INT_PIN_WAKE)
        {
            GrStringDrawCentered(&sContext, "BUTTON", -1,
                                 GrContextDpyWidthGet(&sContext) / 2,
                                 Row(3) + 4, true);
        }

        //
        // Wake was due to RTC match
        //
        else if(ui32Status & HIBERNATE_INT_RTC_MATCH_0)
        {
            GrStringDrawCentered(&sContext, "TIMEOUT", -1,
                                 GrContextDpyWidthGet(&sContext) / 2,
                                 Row(3) + 4, true);
        }

        //
        // Wake is due to neither button nor RTC, so it must have been a hard
        // reset.
        //
        else
        {
            GrStringDrawCentered(&sContext, "RESET", -1,
                                 GrContextDpyWidthGet(&sContext) / 2,
                                 Row(3) + 4, true);
        }

        //
        // If the wake is due to button or RTC, then read the first location
        // from the battery backed memory, as the hibernation count.
        //
        if(ui32Status & (HIBERNATE_INT_PIN_WAKE | HIBERNATE_INT_RTC_MATCH_0))
        {
            HibernateDataGet(&ui32HibernateCount, 1);
        }
    }

    //
    // Enable the Hibernation module.  This should always be called, even if
    // the module was already enabled, because this function also initializes
    // some timing parameters.
    //
    HibernateEnableExpClk(ROM_SysCtlClockGet());

    //
    // If the wake was not due to button or RTC match, then it was a reset.
    //
    if(!(ui32Status & (HIBERNATE_INT_PIN_WAKE | HIBERNATE_INT_RTC_MATCH_0)))
    {
        //
        // Configure the module clock source.
        //
        HibernateClockConfig(HIBERNATE_OSC_LOWDRIVE);

        //
        // Finish the wake cause message.
        //
        GrStringDrawCentered(&sContext, "RESET", -1,
                             GrContextDpyWidthGet(&sContext) / 2,
                             Row(3) + 4, true);

        //
        // Wait a couple of seconds in case we need to break in with the
        // debugger.
        //
        SysTickWait(3 * 100);

        //
        // Allow time for the crystal to power up.  This line is separated from
        // the above to make it clear this is still needed, even if the above
        // delay is removed.
        //
        SysTickWait(15);
    }

    //
    // Print the count of times that hibernate has occurred.
    //
    usnprintf(g_pcBuf, sizeof(g_pcBuf), "Hib count=%4u", ui32HibernateCount);
    GrStringDrawCentered(&sContext, g_pcBuf, -1,
                         GrContextDpyWidthGet(&sContext) / 2,
                         Row(1) + 4, true);

    //
    // Print messages on the screen about hibernation.
    //
    GrStringDrawCentered(&sContext, "Select to Hib", -1,
                         GrContextDpyWidthGet(&sContext) / 2,
                         Row(4) + 4, true);
    GrStringDrawCentered(&sContext, "Wake in 5 s,", -1,
                         GrContextDpyWidthGet(&sContext) / 2,
                         Row(5) + 4, true);
    GrStringDrawCentered(&sContext, "or press Select", -1,
                         GrContextDpyWidthGet(&sContext) / 2,
                         Row(6) + 4, true);
    GrStringDrawCentered(&sContext, "for immed. wake.", -1,
                         GrContextDpyWidthGet(&sContext) / 2,
                         Row(7) + 4, true);

    //
    // Clear the button pressed flag, in case it was held down at the
    // beginning.
    //
    bSelectPressed = 0;

    //
    // Wait for user to press the button.
    //
    while(!bSelectPressed)
    {
        //
        // Wait a bit before looping again.
        //
        SysTickWait(10);
    }

    //
    // Tell user to release the button.
    //
    GrStringDrawCentered(&sContext, "                ", -1,
                         GrContextDpyWidthGet(&sContext) / 2,
                         Row(4) + 4, true);
    GrStringDrawCentered(&sContext, "                ", -1,
                         GrContextDpyWidthGet(&sContext) / 2,
                         Row(5) + 4, true);
    GrStringDrawCentered(&sContext, "                ", -1,
                         GrContextDpyWidthGet(&sContext) / 2,
                         Row(6) + 4, true);
    GrStringDrawCentered(&sContext, "                ", -1,
                         GrContextDpyWidthGet(&sContext) / 2,
                         Row(7) + 4, true);
    GrStringDrawCentered(&sContext, "Release the", -1,
                         GrContextDpyWidthGet(&sContext) / 2,
                         Row(5) + 4, true);
    GrStringDrawCentered(&sContext, "button.", -1,
                         GrContextDpyWidthGet(&sContext) / 2,
                         Row(6) + 4, true);
    GrStringDrawCentered(&sContext, "                ", -1,
                         GrContextDpyWidthGet(&sContext) / 2,
                         Row(7) + 4, true);

    //
    // Wait for user to release the button.
    //
    while(bSelectPressed)
    {
    }

    //
    // If hibernation count is very large, it may be that there was already
    // a value in the hibernate memory, so reset the count.
    //
    ui32HibernateCount = (ui32HibernateCount > 10000) ? 0 : ui32HibernateCount;

    //
    // Increment the hibernation count, and store it in the battery backed
    // memory.
    //
    ui32HibernateCount++;
    HibernateDataSet(&ui32HibernateCount, 1);

    //
    // Clear and enable the RTC and set the match registers to 5 seconds in the
    // future. Set both to same, though they could be set differently, the
    // first to match will cause a wake.
    //
    HibernateRTCSet(0);
    HibernateRTCEnable();
    HibernateRTCMatchSet(0, 5);

    //
    // Set wake condition on pin or RTC match.  Board will wake when 5 seconds
    // elapses, or when the button is pressed.
    //
    HibernateWakeSet(HIBERNATE_WAKE_PIN | HIBERNATE_WAKE_RTC);

    //
    // Request hibernation.
    //
    HibernateRequest();

    //
    // Give it time to activate, it should never get past this wait.
    //
    SysTickWait(100);

    //
    // Should not have got here, something is wrong.  Print an error message to
    // the user.
    //
    sRect.i16XMin = 0;
    sRect.i16XMax = 95;
    sRect.i16YMin = 0;
    sRect.i16YMax = 63;
    GrContextForegroundSet(&sContext, ClrBlack);
    GrRectFill(&sContext, &sRect);
    GrContextForegroundSet(&sContext, ClrWhite);
    ui32Idx = 0;
    while(g_pcErrorText[ui32Idx])
    {
        GrStringDraw(&sContext, g_pcErrorText[ui32Idx], -1, Col(0),
                     Row(ui32Idx), true);
        ui32Idx++;
    }

    //
    // Wait for the user to press the button, then restart the app.
    //
    bSelectPressed = 0;
    while(!bSelectPressed)
    {
    }

    //
    // Reset the processor.
    //
    ROM_SysCtlReset();

    //
    // Finished.
    //
    while(1)
    {
    }
}
//*****************************************************************************
//
// This function is called to start an acquisition running.  It determines
// which channels are to be logged, enables the ADC sequencers, and computes
// the first RTC match value.  This will start the acquisition running.
//
//*****************************************************************************
void
AcquireStart(tConfigState *psConfig)
{
    uint32_t ui32Idx, pui32RTC[2], ui32SelectedMask;

    //
    // Check the parameters
    //
    ASSERT(psConfig);
    if(!psConfig)
    {
        return;
    }

    //
    // Update the config state pointer, save the selected item mask
    //
    g_psConfigState = psConfig;
    ui32SelectedMask = psConfig->ui16SelectedMask;

    //
    // Get the logging period from the logger configuration.  Split the
    // period into seconds and subseconds pieces and save for later use in
    // generating RTC match values.
    //
    g_pui32MatchPeriod[0] = psConfig->ui32Period >> 8;
    g_pui32MatchPeriod[1] = (psConfig->ui32Period & 0xFF) << 8;

    //
    // Determine how many channels are to be logged
    //
    ui32Idx = ui32SelectedMask;
    g_ui32NumItems = 0;
    while(ui32Idx)
    {
        if(ui32Idx & 1)
        {
            g_ui32NumItems++;
        }
        ui32Idx >>= 1;
    }

    //
    // Initialize the strip chart manager for a new run.  Don't bother with
    // the strip chart if we are using viewer mode, or sleep-logging.
    //
    if((psConfig->ui8Storage != CONFIG_STORAGE_VIEWER) &&
       !psConfig->ui32SleepLogging)
    {
        StripChartMgrInit();
        StripChartMgrConfigure(ui32SelectedMask);
    }

    //
    // Configure USB for memory stick if USB storage is chosen
    //
    if(psConfig->ui8Storage == CONFIG_STORAGE_USB)
    {
        USBStickOpenLogFile(0);
    }
    else if(psConfig->ui8Storage == CONFIG_STORAGE_FLASH)
    {

        //
        // Flash storage is to be used, prepare the flash storage module.
        // If already sleep-logging, then pass in the saved flash address
        // so it does not need to be searched.
        //
        if(psConfig->ui32SleepLogging)
        {
            FlashStoreOpenLogFile(psConfig->ui32FlashStore);
        }
        else
        {
            //
            // Otherwise not sleep logging, so just initialize the flash store,
            // this will cause it to search for the starting storage address.
            //
            FlashStoreOpenLogFile(0);
        }
    }

    //
    // Enable the ADC sequencers
    //
    MAP_ADCSequenceEnable(ADC0_BASE, 0);
    MAP_ADCSequenceEnable(ADC1_BASE, 0);

    //
    // Flush the ADC sequencers to be sure there is no lingering data.
    //
    MAP_ADCSequenceDataGet(ADC0_BASE, 0, g_pui32ADCData);
    MAP_ADCSequenceDataGet(ADC1_BASE, 0, g_pui32ADCData);

    //
    // Enable ADC interrupts
    //
    MAP_ADCIntClear(ADC0_BASE, 0);
    MAP_ADCIntClear(ADC1_BASE, 0);
    MAP_ADCIntEnable(ADC0_BASE, 0);
    MAP_IntEnable(INT_ADC0SS0);

    //
    // If we are not already sleep-logging, then initialize the RTC match.
    // If we are sleep logging then this does not need to be set up.
    //
    if(!psConfig->ui32SleepLogging)
    {
        //
        // Get the current RTC value
        //
        do
        {
            pui32RTC[0] = HibernateRTCGet();
            pui32RTC[1] = HibernateRTCSSGet();
        }
        while(pui32RTC[0] != HibernateRTCGet());

        //
        // Set an initial next match value.  Start with the subseconds always
        // 0 so the first match value will always be an even multiple of the
        // subsecond match.  Add 2 seconds to the current RTC just to be clear
        // of an imminent rollover.  This means that the first match will occur
        // between 1 and 2 seconds from now.
        //
        g_pui32NextMatch[0] = pui32RTC[0] + 2;
        g_pui32NextMatch[1] = 0;

        //
        // Now set the match value
        //
        HibernateRTCMatchSet(0, g_pui32NextMatch[0]);
        HibernateRTCSSMatchSet(0, g_pui32NextMatch[1]);
    }

    //
    // If we are configured to sleep, but not sleeping yet, then enter sleep
    // logging mode if allowed.
    //
    if(psConfig->bSleep && !psConfig->ui32SleepLogging)
    {
        //
        // Allow sleep logging if storing to flash at a period of 1 second
        // or greater.
        //
        if((psConfig->ui8Storage == CONFIG_STORAGE_FLASH) &&
           (psConfig->ui32Period >= 0x100))
        {
            psConfig->ui32SleepLogging = 1;
        }
    }

    //
    // Enable the RTC interrupts from the hibernate module
    //
    HibernateIntClear(HibernateIntStatus(0));
    HibernateIntEnable(HIBERNATE_INT_RTC_MATCH_0 | HIBERNATE_INT_PIN_WAKE);
    MAP_IntEnable(INT_HIBERNATE);

    //
    // Logging data should now start running
    //
}
//*****************************************************************************
//
// This is the handler for the RTC interrupt from the hibernate peripheral.
// It occurs on RTC match.  This handler will initiate an ADC acquisition,
// which will run all of the ADC sequencers.  Then it computes the next
// match value and sets it in the RTC.
//
//*****************************************************************************
void
RTCHandler(void)
{
    uint32_t ui32Status, ui32Seconds;

    //
    // Increment RTC interrupt counter
    //
    g_pui32RTCInts++;

    //
    // Clear the RTC interrupts (this can be slow for hib module)
    //
    ui32Status = HibernateIntStatus(1);
    HibernateIntClear(ui32Status);

    //
    // Read and save the current value of the seconds counter.
    //
    ui32Seconds = HibernateRTCGet();

    //
    // If we are sleep logging, then there will be no remembered value for
    // the next match value, which is also used as the time stamp when
    // data is collected.  In this case we will just use the current
    // RTC seconds.  This is safe because if sleep-logging is used, it
    // is only with periods of whole seconds, 1 second or longer.
    //
    if(g_psConfigState->ui32SleepLogging)
    {
        g_pui32NextMatch[0] = ui32Seconds;
        g_pui32NextMatch[1] = 0;
    }

    //
    // If we are logging data to PC and using a period greater than one
    // second, then use special handling.  For PC logging, if no data is
    // collected, then we must send a keep-alive packet once per second.
    //
    if((g_psConfigState->ui8Storage == CONFIG_STORAGE_HOSTPC) &&
       (g_pui32MatchPeriod[0] > 1))
    {
        //
        // If the current seconds count is less than the match value, that
        // means we got the interrupt due to one-second keep alive for the
        // host PC.
        //
        if(ui32Seconds < g_pui32NextMatch[0])
        {
            //
            // Set the next match for one second ahead (next keep-alive)
            //
            HibernateRTCMatchSet(0, ui32Seconds + 1);

            //
            // Set flag to indicate that a keep alive packet is needed
            //
            g_bNeedKeepAlive = true;

            //
            // Nothing else to do except wait for next keep alive or match
            //
            return;
        }

        //
        // Else, this is a real match so proceed to below to do a normal
        // acquisition.
        //
    }

    //
    // Kick off the next ADC acquisition.  When these are done they will
    // cause an ADC interrupt.
    //
    MAP_ADCProcessorTrigger(ADC1_BASE, 0);
    MAP_ADCProcessorTrigger(ADC0_BASE, 0);

    //
    // Set the next RTC match.  Add the match period to the previous match
    // value.  We are making an assumption here that there is enough time from
    // when the match interrupt occurred, to this point in the code, that we
    // are still setting the match time in the future.  If the period is too
    // long, then we could miss a match and never get another RTC interrupt.
    //
    g_pui32NextMatch[0] += g_pui32MatchPeriod[0];
    g_pui32NextMatch[1] += g_pui32MatchPeriod[1];
    if(g_pui32NextMatch[1] > 32767)
    {
        //
        // Handle subseconds rollover
        //
        g_pui32NextMatch[1] &= 32767;
        g_pui32NextMatch[0]++;
    }

    //
    // If logging to host PC at greater than 1 second period, then set the
    // next RTC wakeup for 1 second from now.  This will cause a keep alive
    // packet to be sent to the PC
    //
    if((g_psConfigState->ui8Storage == CONFIG_STORAGE_HOSTPC) &&
       (g_pui32MatchPeriod[0] > 1))
    {
        HibernateRTCMatchSet(0, ui32Seconds + 1);
    }
    else
    {
        //
        // Otherwise this is a normal match and the next match should also be a
        // normal match, so set the next wakeup to the calculated match time.
        //
        HibernateRTCMatchSet(0, g_pui32NextMatch[0]);
        HibernateRTCSSMatchSet(0, g_pui32NextMatch[1]);
    }

    //
    // Toggle the LED on the board so the user can see that the acquisition
    // is running.
    //
    MAP_GPIOPinWrite(GPIO_PORTG_BASE, GPIO_PIN_2,
                     ~MAP_GPIOPinRead(GPIO_PORTG_BASE, GPIO_PIN_2));

    //
    // Now exit the int handler.  The ADC will trigger an interrupt when
    // it is finished, and the RTC is set up for the next match.
    //
}
Example #7
0
//*****************************************************************************
//
// Main function performs init and manages system.
//
// Called automatically after the system and compiler pre-init sequences.
// Performs system init calls, restores state from hibernate if needed and
// then manages the application context duties of the system.
//
//*****************************************************************************
int
main(void)
{
    uint32_t ui32Status;
    uint32_t ui32ResetCause;
    int32_t i32CommandStatus;

    //
    // Enable stacking for interrupt handlers.  This allows floating-point
    // instructions to be used within interrupt handlers, but at the expense of
    // extra stack usage.
    //
    ROM_FPUEnable();
    ROM_FPUStackingEnable();

    //
    // Set the system clock to run at 40Mhz off PLL with external crystal as
    // reference.
    //
    ROM_SysCtlClockSet(SYSCTL_SYSDIV_5 | SYSCTL_USE_PLL | SYSCTL_XTAL_16MHZ |
                       SYSCTL_OSC_MAIN);

    //
    // Enable the hibernate module
    //
    SysCtlPeripheralEnable(SYSCTL_PERIPH_HIBERNATE);

    //
    // Enable and Initialize the UART.
    //
    ConfigureUART();

    UARTprintf("Welcome to the Tiva C Series TM4C123G LaunchPad!\n");
    UARTprintf("Type 'help' for a list of commands\n");
    UARTprintf("> ");

    //
    // Determine why system reset occurred and respond accordingly.
    //
    ui32ResetCause = SysCtlResetCauseGet();
    SysCtlResetCauseClear(ui32ResetCause);
    if(ui32ResetCause == SYSCTL_CAUSE_POR)
    {
        if(HibernateIsActive())
        {
            //
            // Read the status bits to see what caused the wake.
            //
            ui32Status = HibernateIntStatus(0);
            HibernateIntClear(ui32Status);

            //
            // Wake was due to the push button.
            //
            if(ui32Status & HIBERNATE_INT_PIN_WAKE)
            {
                UARTprintf("Hibernate Wake Pin Wake Event\n");
                UARTprintf("> ");

                //
                // Recover the application state variables from battery backed
                // hibernate memory.  Set ui32Mode to normal.
                //
                HibernateDataGet((uint32_t*) &g_sAppState,
                                 sizeof(tAppState) / 4 + 1);
                g_sAppState.ui32Mode = APP_MODE_NORMAL;
            }

            //
            // Wake was due to RTC match
            //
            else if(ui32Status & HIBERNATE_INT_RTC_MATCH_0)
            {
                UARTprintf("Hibernate RTC Wake Event\n");
                UARTprintf("> ");
                //
                // Recover the application state variables from battery backed
                // hibernate memory. Set ui32Mode to briefly flash the RGB.
                //
                HibernateDataGet((uint32_t*) &g_sAppState,
                                sizeof(tAppState) / 4 + 1);
                g_sAppState.ui32Mode = APP_MODE_HIB_FLASH;
            }
        }

        else
        {
            //
            // Reset was do to a cold first time power up.
            //
            UARTprintf("Power on reset. Hibernate not active.\n");
            UARTprintf("> ");

            g_sAppState.ui32Mode = APP_MODE_NORMAL;
            g_sAppState.fColorWheelPos = 0;
            g_sAppState.fIntensity = APP_INTENSITY_DEFAULT;
            g_sAppState.ui32Buttons = 0;
        }
    }
    else
    {
        //
        // External Pin reset or other reset event occured.
        //
        UARTprintf("External or other reset\n");
        UARTprintf("> ");

        //
        // Treat this as a cold power up reset without restore from hibernate.
        //
        g_sAppState.ui32Mode = APP_MODE_NORMAL;
        g_sAppState.fColorWheelPos = APP_PI;
        g_sAppState.fIntensity = APP_INTENSITY_DEFAULT;
        g_sAppState.ui32Buttons = 0;

    //
        // colors get a default initialization later when we call AppRainbow.
        //
    }

    //
    // Initialize clocking for the Hibernate module
    //
    HibernateEnableExpClk(SysCtlClockGet());

    //
    // Initialize the RGB LED. AppRainbow typically only called from interrupt
    // context. Safe to call here to force initial color update because
    // interrupts are not yet enabled.
    //
    RGBInit(0);
    RGBIntensitySet(g_sAppState.fIntensity);
    AppRainbow(1);
    RGBEnable();

    //
    // Initialize the buttons
    //
    ButtonsInit();

    //
    // Initialize the SysTick interrupt to process colors and buttons.
    //
    SysTickPeriodSet(SysCtlClockGet() / APP_SYSTICKS_PER_SEC);
    SysTickEnable();
    SysTickIntEnable();
    IntMasterEnable();

    //
    // spin forever and wait for carriage returns or state changes.
    //
    while(1)
    {

        UARTprintf("\n>");


        //
        // Peek to see if a full command is ready for processing
        //
        while(UARTPeek('\r') == -1)
        {
            //
            // millisecond delay.  A SysCtlSleep() here would also be OK.
            //
            SysCtlDelay(SysCtlClockGet() / (1000 / 3));

            //
            // Check for change of mode and enter hibernate if requested.
            // all other mode changes handled in interrupt context.
            //
            if(g_sAppState.ui32Mode == APP_MODE_HIB)
            {
                AppHibernateEnter();
            }
        }

        //
        // a '\r' was detected get the line of text from the user.
        //
        UARTgets(g_cInput,sizeof(g_cInput));

        //
        // Pass the line from the user to the command processor.
        // It will be parsed and valid commands executed.
        //
        i32CommandStatus = CmdLineProcess(g_cInput);

        //
        // Handle the case of bad command.
        //
        if(i32CommandStatus == CMDLINE_BAD_CMD)
        {
            UARTprintf("Bad command!\n");
        }

        //
        // Handle the case of too many arguments.
        //
        else if(i32CommandStatus == CMDLINE_TOO_MANY_ARGS)
        {
            UARTprintf("Too many arguments for command processor!\n");
        }
    }
}
Example #8
0
void HibernateInterrupt()
{
	HibernateIntClear(HibernateIntStatus(1)); //Always need to clear the interrupts.
}
Example #9
0
int main(void) {
    // Status of Hibernation module
    uint32_t ui32Status = 0;
    // Length of time to hibernate
    uint32_t hibernationTime = 600;

    g_ui32SysClock = SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
            SYSCTL_OSC_MAIN | SYSCTL_USE_PLL |
            SYSCTL_CFG_VCO_480), 120000000);


    //*************************************************************************
    //! I/O config and setup
    //*************************************************************************

    SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);	// UART
    SysCtlPeripheralEnable(SYSCTL_PERIPH_UART7);	// UART
    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);	// UART0
    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOC);	// UART7
    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD);	// SSI
    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPION);	// GPIO
    SysCtlPeripheralEnable(SYSCTL_PERIPH_SSI2);		// SSI
    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOK);	// GPIO
    SysCtlPeripheralEnable(SYSCTL_PERIPH_HIBERNATE);// Hibernation

    // UART0 and UART7
    GPIOPinConfigure(GPIO_PA0_U0RX);
    GPIOPinConfigure(GPIO_PC4_U7RX);
    GPIOPinConfigure(GPIO_PA1_U0TX);
    GPIOPinConfigure(GPIO_PC5_U7TX);

    GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);
    GPIOPinTypeUART(GPIO_PORTC_BASE, GPIO_PIN_4 | GPIO_PIN_5);

    // LED indicators
    GPIOPinTypeGPIOOutput(GPIO_PORTN_BASE, GPIO_PIN_0 | GPIO_PIN_1);

    //
    // SD Card Detect (PK3) and GPS Pulse Per Second (PK2)
    //
    GPIOPinTypeGPIOInput(GPIO_PORTK_BASE, GPIO_PIN_2|GPIO_PIN_3);
    // Pulse Per Second input pin config as weak pull-down
    GPIOPadConfigSet(GPIO_PORTK_BASE,GPIO_PIN_2,GPIO_STRENGTH_2MA,GPIO_PIN_TYPE_STD_WPD);
    // Pulse Per Second input pin config as rising edge triggered interrupt
    GPIOIntTypeSet(GPIO_PORTK_BASE,GPIO_PIN_2,GPIO_RISING_EDGE);
    // Register Port K as interrupt
    GPIOIntRegister(GPIO_PORTK_BASE, PortKIntHandler);
    // Enable Port K pin 2 interrupt
    GPIOIntEnable(GPIO_PORTK_BASE, GPIO_INT_PIN_2);
    //
    // Disable PPS pin interrupt by default
    //
    if(IntIsEnabled(INT_GPIOK)) {
            IntDisable(INT_GPIOK);
    }

    GPIOPinConfigure(GPIO_PD0_SSI2XDAT1);
    GPIOPinConfigure(GPIO_PD1_SSI2XDAT0);
    GPIOPinConfigure(GPIO_PD2_SSI2FSS);
    GPIOPinConfigure(GPIO_PD3_SSI2CLK);

    // SD Card Detect (CD) - weak pull-up input
    GPIOPadConfigSet(GPIO_PORTK_BASE, GPIO_PIN_3, GPIO_STRENGTH_2MA, GPIO_PIN_TYPE_STD_WPU);

    // Debug UART output config
    UARTConfigSetExpClk(UART0_BASE, g_ui32SysClock, 115200,
            (UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE | UART_CONFIG_PAR_NONE));

    // GPS UART input config
    UARTConfigSetExpClk(UART7_BASE, g_ui32SysClock, 9600,
            (UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE | UART_CONFIG_PAR_NONE));

    //
    // Configure SysTick for a 100Hz interrupt.
    //
    SysTickPeriodSet(g_ui32SysClock / 100);
    SysTickIntEnable();
    SysTickEnable();

    //
    // Floating point enable
    //
    FPUEnable();
    FPULazyStackingEnable();

    //
    // Clear user LEDs
    //
    GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_0 | GPIO_PIN_1, 0x00);

    //*************************************************************************
    //! Hibernation mode checks and setup
    //*************************************************************************

    //
    // Check to see if Hibernation module is already active, which could mean
    // that the processor is waking from a hibernation.
    //
    if(HibernateIsActive()) {
        //
        // Read the status bits to see what caused the wake.  Clear the wake
        // source so that the device can be put into hibernation again.
        //
        ui32Status = HibernateIntStatus(0);
        HibernateIntClear(ui32Status);

        //
        // Wake was due to RTC match.
        //
        if(ui32Status & HIBERNATE_INT_RTC_MATCH_0) {
            //
            // TODO: add IMU check
            //
        }
        //
        // Wake was due to the External Wake pin.
        //
        else if(ui32Status & HIBERNATE_INT_PIN_WAKE) {
            //
            // Switch off low power mode
            //
            lowPowerOn = 0;
        }
    }

    //
    // Configure Hibernate module clock.
    //
    HibernateEnableExpClk(g_ui32SysClock);

    //
    // If the wake was not due to the above sources, then it was a system
    // reset.
    //
    if(!(ui32Status & (HIBERNATE_INT_PIN_WAKE | HIBERNATE_INT_RTC_MATCH_0))) {
        //
        // Configure the module clock source.
        //
        HibernateClockConfig(HIBERNATE_OSC_LOWDRIVE);
    }

    //
    // Enable PPS for a single data log. Interrupt on next PPS logic high.
    //
    ppsDataLog();

    //
    // Enable RTC mode.
    //
    HibernateRTCEnable();

    //
    // Loop forever
    //
    while(1) {
        //
        // If low power mode is set (default), hibernate again
        // If not, spin in nested while(1) for faster updates from PPS pin ints.
        //
        if(lowPowerOn) {
            lowPowerMode(hibernationTime);
        }
        else {
            if(!IntIsEnabled(INT_GPIOK)) {
                    IntEnable(INT_GPIOK);
            }
            while(1) {
            }
        }
    }
} // End function main