PyMODINIT_FUNC initins(void) { (void) Py_InitModule("ins", InsMethods); import_array(); init(NULL, NULL); INSGPSInit(); }
static PyObject* init(PyObject* self, PyObject* args) { INSGPSInit(); const float Be[] = {400, 0, 1600}; INSSetMagNorth(Be); return pack_state(self); }
/** * @brief Quickly initialize INS assuming stationary and gravity is down * * Currently this is done iteratively but I'm sure it can be directly computed * when I sit down and work it out */ void converge_insgps() { AHRSCalibrationData calibration; AHRSCalibrationGet( &calibration ); float pos[3] = { 0, 0, 0 }, vel[3] = { 0, 0, 0 }, BaroAlt = 0, mag[3], accel[3], temp_gyro[3] = { 0, 0, 0 }; INSGPSInit(); INSSetAccelVar( calibration.accel_var ); INSSetGyroBias( temp_gyro ); // set this to zero - crude bias corrected from downsample_data INSSetGyroVar( calibration.gyro_var ); INSSetMagVar( calibration.mag_var ); float temp_var[3] = { 10, 10, 10 }; INSSetGyroVar( temp_var ); // ignore gyro's accel[0] = accel_data.filtered.x; accel[1] = accel_data.filtered.y; accel[2] = accel_data.filtered.z; // Iteratively constrain pitch and roll while updating yaw to align magnetic axis. for( int i = 0; i < 50; i++ ) { // This should be done directly but I'm too dumb. float rpy[3]; Quaternion2RPY( Nav.q, rpy ); rpy[1] = -atan2( accel_data.filtered.x, accel_data.filtered.z ) * 180 / M_PI; rpy[0] = -atan2( accel_data.filtered.y, accel_data.filtered.z ) * 180 / M_PI; // Get magnetic readings #if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C) PIOS_HMC5843_ReadMag( mag_data.raw.axis ); #endif mag[0] = -mag_data.raw.axis[1]; mag[1] = -mag_data.raw.axis[0]; mag[2] = -mag_data.raw.axis[2]; RPY2Quaternion( rpy, Nav.q ); INSStatePrediction( temp_gyro, accel, 1 / ( float )EKF_RATE ); INSCovariancePrediction( 1 / ( float )EKF_RATE ); FullCorrection( mag, pos, vel, BaroAlt ); } INSSetGyroVar( calibration.gyro_var ); }
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) { char * function_name; float accel_data[3]; float gyro_data[3]; float mag_data[3]; float pos_data[3]; float vel_data[3]; float baro_data; float dT; //All code and internal function calls go in here! if(!mxIsChar(prhs[0])) { mexErrMsgTxt("First parameter must be name of a function\n"); return; } if(mlStringCompare(prhs[0], "INSGPSInit")) { INSGPSInit(); } else if(mlStringCompare(prhs[0], "INSStatePrediction")) { if(nrhs != 4) { mexErrMsgTxt("Incorrect number of inputs for state prediction\n"); return; } if(!mlGetFloatArray(prhs[1], gyro_data, 3) || !mlGetFloatArray(prhs[2], accel_data, 3) || !mlGetFloatArray(prhs[3], &dT, 1)) return; INSStatePrediction(gyro_data, accel_data, dT); INSCovariancePrediction(dT); } else if(mlStringCompare(prhs[0], "INSFullCorrection")) { if(nrhs != 5) { mexErrMsgTxt("Incorrect number of inputs for correction\n"); return; } if(!mlGetFloatArray(prhs[1], mag_data, 3) || !mlGetFloatArray(prhs[2], pos_data, 3) || !mlGetFloatArray(prhs[3], vel_data ,3) || !mlGetFloatArray(prhs[4], &baro_data, 1)) { mexErrMsgTxt("Error with the input parameters\n"); return; } FullCorrection(mag_data, pos_data, vel_data, baro_data); } else if(mlStringCompare(prhs[0], "INSMagCorrection")) { if(nrhs != 2) { mexErrMsgTxt("Incorrect number of inputs for correction\n"); return; } if(!mlGetFloatArray(prhs[1], mag_data, 3)) { mexErrMsgTxt("Error with the input parameters\n"); return; } MagCorrection(mag_data); } else if(mlStringCompare(prhs[0], "INSBaroCorrection")) { if(nrhs != 2) { mexErrMsgTxt("Incorrect number of inputs for correction\n"); return; } if(!mlGetFloatArray(prhs[1], &baro_data, 1)) { mexErrMsgTxt("Error with the input parameters\n"); return; } BaroCorrection(baro_data); } else if(mlStringCompare(prhs[0], "INSMagVelBaroCorrection")) { if(nrhs != 4) { mexErrMsgTxt("Incorrect number of inputs for correction\n"); return; } if(!mlGetFloatArray(prhs[1], mag_data, 3) || !mlGetFloatArray(prhs[2], vel_data ,3) || !mlGetFloatArray(prhs[3], &baro_data, 1)) { mexErrMsgTxt("Error with the input parameters\n"); return; } MagVelBaroCorrection(mag_data, vel_data, baro_data); } else if(mlStringCompare(prhs[0], "INSGpsCorrection")) { if(nrhs != 3) { mexErrMsgTxt("Incorrect number of inputs for correction\n"); return; } if(!mlGetFloatArray(prhs[1], pos_data, 3) || !mlGetFloatArray(prhs[2], vel_data ,3)) { mexErrMsgTxt("Error with the input parameters\n"); return; } GpsCorrection(pos_data, vel_data); } else if(mlStringCompare(prhs[0], "INSVelBaroCorrection")) { if(nrhs != 3) { mexErrMsgTxt("Incorrect number of inputs for correction\n"); return; } if(!mlGetFloatArray(prhs[1], vel_data, 3) || !mlGetFloatArray(prhs[2], &baro_data, 1)) { mexErrMsgTxt("Error with the input parameters\n"); return; } VelBaroCorrection(vel_data, baro_data); } else if (mlStringCompare(prhs[0], "INSSetPosVelVar")) { float pos_var; float vel_var; if((nrhs != 3) || !mlGetFloatArray(prhs[1], &pos_var, 1) || !mlGetFloatArray(prhs[2], &vel_var, 1)) { mexErrMsgTxt("Error with input parameters\n"); return; } INSSetPosVelVar(pos_var, vel_var); } else if (mlStringCompare(prhs[0], "INSSetGyroBias")) { float gyro_bias[3]; if((nrhs != 2) || !mlGetFloatArray(prhs[1], gyro_bias, 3)) { mexErrMsgTxt("Error with input parameters\n"); return; } INSSetGyroBias(gyro_bias); } else if (mlStringCompare(prhs[0], "INSSetAccelVar")) { float accel_var[3]; if((nrhs != 2) || !mlGetFloatArray(prhs[1], accel_var, 3)) { mexErrMsgTxt("Error with input parameters\n"); return; } INSSetAccelVar(accel_var); } else if (mlStringCompare(prhs[0], "INSSetGyroVar")) { float gyro_var[3]; if((nrhs != 2) || !mlGetFloatArray(prhs[1], gyro_var, 3)) { mexErrMsgTxt("Error with input parameters\n"); return; } INSSetGyroVar(gyro_var); } else if (mlStringCompare(prhs[0], "INSSetMagNorth")) { float mag_north[3]; float Bmag; if((nrhs != 2) || !mlGetFloatArray(prhs[1], mag_north, 3)) { mexErrMsgTxt("Error with input parameters\n"); return; } Bmag = sqrt(mag_north[0] * mag_north[0] + mag_north[1] * mag_north[1] + mag_north[2] * mag_north[2]); mag_north[0] = mag_north[0] / Bmag; mag_north[1] = mag_north[1] / Bmag; mag_north[2] = mag_north[2] / Bmag; INSSetMagNorth(mag_north); } else if (mlStringCompare(prhs[0], "INSSetMagVar")) { float mag_var[3]; if((nrhs != 2) || !mlGetFloatArray(prhs[1], mag_var, 3)) { mexErrMsgTxt("Error with input parameters\n"); return; } INSSetMagVar(mag_var); } else if (mlStringCompare(prhs[0], "INSSetState")) { int i; float new_state[NUMX]; if((nrhs != 2) || !mlGetFloatArray(prhs[1], new_state, NUMX)) { mexErrMsgTxt("Error with input parameters\n"); return; } for(i = 0; i < NUMX; i++) X[i] = new_state[i]; } else { mexErrMsgTxt("Unknown function"); } if(nlhs > 0) { // return current state vector double * data_out; int i; plhs[0] = mxCreateDoubleMatrix(1,13,0); data_out = mxGetData(plhs[0]); for(i = 0; i < NUMX; i++) data_out[i] = X[i]; } if(nlhs > 1) { //return covariance estimate double * data_copy = mxCalloc(NUMX*NUMX, sizeof(double)); int i, j, k; plhs[1] = mxCreateDoubleMatrix(13,13,0); for(i = 0; i < NUMX; i++) for(j = 0; j < NUMX; j++) { data_copy[j + i * NUMX] = P[j][i]; } mxSetData(plhs[1], data_copy); } if(nlhs > 2) { //return covariance estimate double * data_copy = mxCalloc(NUMX*NUMV, sizeof(double)); int i, j, k; plhs[2] = mxCreateDoubleMatrix(NUMX,NUMV,0); for(i = 0; i < NUMX; i++) for(j = 0; j < NUMV; j++) { data_copy[j + i * NUMX] = K[i][j]; } mxSetData(plhs[2], data_copy); } return; }
/** * @brief Use the INSGPS fusion algorithm in either indoor or outdoor mode (use GPS) * @params[in] first_run This is the first run so trigger reinitialization * @params[in] outdoor_mode If true use the GPS for position, if false weakly pull to (0,0) * @return 0 for success, -1 for failure */ static int32_t updateAttitudeINSGPS(bool first_run, bool outdoor_mode) { UAVObjEvent ev; GyrosData gyrosData; AccelsData accelsData; MagnetometerData magData; BaroAltitudeData baroData; GPSPositionData gpsData; GPSVelocityData gpsVelData; GyrosBiasData gyrosBias; static bool mag_updated = false; static bool baro_updated; static bool gps_updated; static bool gps_vel_updated; static float baroOffset = 0; static uint32_t ins_last_time = 0; static bool inited; float NED[3] = {0.0f, 0.0f, 0.0f}; float vel[3] = {0.0f, 0.0f, 0.0f}; float zeros[3] = {0.0f, 0.0f, 0.0f}; // Perform the update uint16_t sensors = 0; float dT; // Wait until the gyro and accel object is updated, if a timeout then go to failsafe if ( (xQueueReceive(gyroQueue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS) != pdTRUE) || (xQueueReceive(accelQueue, &ev, 1 / portTICK_RATE_MS) != pdTRUE) ) { // Do not set attitude timeout warnings in simulation mode if (!AttitudeActualReadOnly()){ AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE,SYSTEMALARMS_ALARM_WARNING); return -1; } } if (inited) { mag_updated = 0; baro_updated = 0; gps_updated = 0; gps_vel_updated = 0; } if (first_run) { inited = false; init_stage = 0; mag_updated = 0; baro_updated = 0; gps_updated = 0; gps_vel_updated = 0; ins_last_time = PIOS_DELAY_GetRaw(); return 0; } mag_updated |= (xQueueReceive(magQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE); baro_updated |= xQueueReceive(baroQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE; gps_updated |= (xQueueReceive(gpsQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE) && outdoor_mode; gps_vel_updated |= (xQueueReceive(gpsVelQueue, &ev, 0 / portTICK_RATE_MS) == pdTRUE) && outdoor_mode; // Get most recent data GyrosGet(&gyrosData); AccelsGet(&accelsData); MagnetometerGet(&magData); BaroAltitudeGet(&baroData); GPSPositionGet(&gpsData); GPSVelocityGet(&gpsVelData); GyrosBiasGet(&gyrosBias); // Discard mag if it has NAN (normally from bad calibration) mag_updated &= (magData.x == magData.x && magData.y == magData.y && magData.z == magData.z); // Don't require HomeLocation.Set to be true but at least require a mag configuration (allows easily // switching between indoor and outdoor mode with Set = false) mag_updated &= (homeLocation.Be[0] != 0 || homeLocation.Be[1] != 0 || homeLocation.Be[2]); // Have a minimum requirement for gps usage gps_updated &= (gpsData.Satellites >= 7) && (gpsData.PDOP <= 4.0f) && (homeLocation.Set == HOMELOCATION_SET_TRUE); if (!inited) AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE,SYSTEMALARMS_ALARM_ERROR); else if (outdoor_mode && gpsData.Satellites < 7) AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE,SYSTEMALARMS_ALARM_ERROR); else AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE); if (!inited && mag_updated && baro_updated && (gps_updated || !outdoor_mode)) { // Don't initialize until all sensors are read if (init_stage == 0 && !outdoor_mode) { float Pdiag[16]={25.0f,25.0f,25.0f,5.0f,5.0f,5.0f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-4f,1e-4f,1e-4f}; float q[4]; float pos[3] = {0.0f, 0.0f, 0.0f}; // Initialize barometric offset to homelocation altitude baroOffset = -baroData.Altitude; pos[2] = -(baroData.Altitude + baroOffset); // Reset the INS algorithm INSGPSInit(); INSSetMagVar(revoCalibration.mag_var); INSSetAccelVar(revoCalibration.accel_var); INSSetGyroVar(revoCalibration.gyro_var); INSSetBaroVar(revoCalibration.baro_var); // Initialize the gyro bias from the settings float gyro_bias[3] = {gyrosBias.x * F_PI / 180.0f, gyrosBias.y * F_PI / 180.0f, gyrosBias.z * F_PI / 180.0f}; INSSetGyroBias(gyro_bias); xQueueReceive(magQueue, &ev, 100 / portTICK_RATE_MS); MagnetometerGet(&magData); // Set initial attitude AttitudeActualData attitudeActual; attitudeActual.Roll = atan2f(-accelsData.y, -accelsData.z) * 180.0f / F_PI; attitudeActual.Pitch = atan2f(accelsData.x, -accelsData.z) * 180.0f / F_PI; attitudeActual.Yaw = atan2f(-magData.y, magData.x) * 180.0f / F_PI; RPY2Quaternion(&attitudeActual.Roll,&attitudeActual.q1); AttitudeActualSet(&attitudeActual); q[0] = attitudeActual.q1; q[1] = attitudeActual.q2; q[2] = attitudeActual.q3; q[3] = attitudeActual.q4; INSSetState(pos, zeros, q, zeros, zeros); INSResetP(Pdiag); } else if (init_stage == 0 && outdoor_mode) { float Pdiag[16]={25.0f,25.0f,25.0f,5.0f,5.0f,5.0f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-5f,1e-4f,1e-4f,1e-4f}; float q[4]; float NED[3]; // Reset the INS algorithm INSGPSInit(); INSSetMagVar(revoCalibration.mag_var); INSSetAccelVar(revoCalibration.accel_var); INSSetGyroVar(revoCalibration.gyro_var); INSSetBaroVar(revoCalibration.baro_var); INSSetMagNorth(homeLocation.Be); // Initialize the gyro bias from the settings float gyro_bias[3] = {gyrosBias.x * F_PI / 180.0f, gyrosBias.y * F_PI / 180.0f, gyrosBias.z * F_PI / 180.0f}; INSSetGyroBias(gyro_bias); GPSPositionData gpsPosition; GPSPositionGet(&gpsPosition); // Transform the GPS position into NED coordinates getNED(&gpsPosition, NED); // Initialize barometric offset to cirrent GPS NED coordinate baroOffset = -NED[2] - baroData.Altitude; xQueueReceive(magQueue, &ev, 100 / portTICK_RATE_MS); MagnetometerGet(&magData); // Set initial attitude AttitudeActualData attitudeActual; attitudeActual.Roll = atan2f(-accelsData.y, -accelsData.z) * 180.0f / F_PI; attitudeActual.Pitch = atan2f(accelsData.x, -accelsData.z) * 180.0f / F_PI; attitudeActual.Yaw = atan2f(-magData.y, magData.x) * 180.0f / F_PI; RPY2Quaternion(&attitudeActual.Roll,&attitudeActual.q1); AttitudeActualSet(&attitudeActual); q[0] = attitudeActual.q1; q[1] = attitudeActual.q2; q[2] = attitudeActual.q3; q[3] = attitudeActual.q4; INSSetState(NED, zeros, q, zeros, zeros); INSResetP(Pdiag); } else if (init_stage > 0) { // Run prediction a bit before any corrections dT = PIOS_DELAY_DiffuS(ins_last_time) / 1.0e6f; GyrosBiasGet(&gyrosBias); float gyros[3] = {(gyrosData.x + gyrosBias.x) * F_PI / 180.0f, (gyrosData.y + gyrosBias.y) * F_PI / 180.0f, (gyrosData.z + gyrosBias.z) * F_PI / 180.0f}; INSStatePrediction(gyros, &accelsData.x, dT); AttitudeActualData attitude; AttitudeActualGet(&attitude); attitude.q1 = Nav.q[0]; attitude.q2 = Nav.q[1]; attitude.q3 = Nav.q[2]; attitude.q4 = Nav.q[3]; Quaternion2RPY(&attitude.q1,&attitude.Roll); AttitudeActualSet(&attitude); } init_stage++; if(init_stage > 10) inited = true; ins_last_time = PIOS_DELAY_GetRaw(); return 0; } if (!inited) return 0; dT = PIOS_DELAY_DiffuS(ins_last_time) / 1.0e6f; ins_last_time = PIOS_DELAY_GetRaw(); // This should only happen at start up or at mode switches if(dT > 0.01f) dT = 0.01f; else if(dT <= 0.001f) dT = 0.001f; // If the gyro bias setting was updated we should reset // the state estimate of the EKF if(gyroBiasSettingsUpdated) { float gyro_bias[3] = {gyrosBias.x * F_PI / 180.0f, gyrosBias.y * F_PI / 180.0f, gyrosBias.z * F_PI / 180.0f}; INSSetGyroBias(gyro_bias); gyroBiasSettingsUpdated = false; } // Because the sensor module remove the bias we need to add it // back in here so that the INS algorithm can track it correctly float gyros[3] = {gyrosData.x * F_PI / 180.0f, gyrosData.y * F_PI / 180.0f, gyrosData.z * F_PI / 180.0f}; if (revoCalibration.BiasCorrectedRaw == REVOCALIBRATION_BIASCORRECTEDRAW_TRUE) { gyros[0] += gyrosBias.x * F_PI / 180.0f; gyros[1] += gyrosBias.y * F_PI / 180.0f; gyros[2] += gyrosBias.z * F_PI / 180.0f; } // Advance the state estimate INSStatePrediction(gyros, &accelsData.x, dT); // Copy the attitude into the UAVO AttitudeActualData attitude; AttitudeActualGet(&attitude); attitude.q1 = Nav.q[0]; attitude.q2 = Nav.q[1]; attitude.q3 = Nav.q[2]; attitude.q4 = Nav.q[3]; Quaternion2RPY(&attitude.q1,&attitude.Roll); AttitudeActualSet(&attitude); // Advance the covariance estimate INSCovariancePrediction(dT); if(mag_updated) sensors |= MAG_SENSORS; if(baro_updated) sensors |= BARO_SENSOR; INSSetMagNorth(homeLocation.Be); if (gps_updated && outdoor_mode) { INSSetPosVelVar(revoCalibration.gps_var[REVOCALIBRATION_GPS_VAR_POS], revoCalibration.gps_var[REVOCALIBRATION_GPS_VAR_VEL]); sensors |= POS_SENSORS; if (0) { // Old code to take horizontal velocity from GPS Position update sensors |= HORIZ_SENSORS; vel[0] = gpsData.Groundspeed * cosf(gpsData.Heading * F_PI / 180.0f); vel[1] = gpsData.Groundspeed * sinf(gpsData.Heading * F_PI / 180.0f); vel[2] = 0; } // Transform the GPS position into NED coordinates getNED(&gpsData, NED); // Track barometric altitude offset with a low pass filter baroOffset = BARO_OFFSET_LOWPASS_ALPHA * baroOffset + (1.0f - BARO_OFFSET_LOWPASS_ALPHA ) * ( -NED[2] - baroData.Altitude ); } else if (!outdoor_mode) { INSSetPosVelVar(1e2f, 1e2f); vel[0] = vel[1] = vel[2] = 0; NED[0] = NED[1] = 0; NED[2] = -(baroData.Altitude + baroOffset); sensors |= HORIZ_SENSORS | HORIZ_POS_SENSORS; sensors |= POS_SENSORS |VERT_SENSORS; } if (gps_vel_updated && outdoor_mode) { sensors |= HORIZ_SENSORS | VERT_SENSORS; vel[0] = gpsVelData.North; vel[1] = gpsVelData.East; vel[2] = gpsVelData.Down; } /* * TODO: Need to add a general sanity check for all the inputs to make sure their kosher * although probably should occur within INS itself */ if (sensors) INSCorrection(&magData.x, NED, vel, ( baroData.Altitude + baroOffset ), sensors); // Copy the position and velocity into the UAVO PositionActualData positionActual; PositionActualGet(&positionActual); positionActual.North = Nav.Pos[0]; positionActual.East = Nav.Pos[1]; positionActual.Down = Nav.Pos[2]; PositionActualSet(&positionActual); VelocityActualData velocityActual; VelocityActualGet(&velocityActual); velocityActual.North = Nav.Vel[0]; velocityActual.East = Nav.Vel[1]; velocityActual.Down = Nav.Vel[2]; VelocityActualSet(&velocityActual); if (revoCalibration.BiasCorrectedRaw == REVOCALIBRATION_BIASCORRECTEDRAW_TRUE && !gyroBiasSettingsUpdated) { // Copy the gyro bias into the UAVO except when it was updated // from the settings during the calculation, then consume it // next cycle gyrosBias.x = Nav.gyro_bias[0] * 180.0f / F_PI; gyrosBias.y = Nav.gyro_bias[1] * 180.0f / F_PI; gyrosBias.z = Nav.gyro_bias[2] * 180.0f / F_PI; GyrosBiasSet(&gyrosBias); } return 0; }