static PyObject *soomfunc_valuepos(PyObject *module, PyObject *args) { ArrayInfo *array_info, info_ret; PyArrayObject *ret; int shape[1]; int alloc_size; int type_num, num_arrays; array_info = check_array_args(args, 2, 2, 0); if (array_info == NULL) return NULL; type_num = array_info->array->descr->type_num; num_arrays = PyTuple_Size(args); alloc_size = array_info->len; INSTRUMENT(("ssii", "valuepos", "enter", array_info[0].len, array_info[1].len)); /* Build the array to capture the result */ shape[0] = alloc_size; ret = (PyArrayObject *)PyArray_FromDims(1, shape, PyArray_LONG); if (ret == NULL) { free_array_info(array_info, num_arrays); return NULL; } set_array_info(&info_ret, ret); /* Generate the valuepos. */ switch (type_num) { case PyArray_CHAR: case PyArray_SBYTE: valuepos_schar(&array_info[0], &array_info[1], &info_ret); break; case PyArray_UBYTE: valuepos_uchar(&array_info[0], &array_info[1], &info_ret); break; case PyArray_SHORT: valuepos_short(&array_info[0], &array_info[1], &info_ret); break; case PyArray_INT: valuepos_int(&array_info[0], &array_info[1], &info_ret); break; case PyArray_LONG: valuepos_long(&array_info[0], &array_info[1], &info_ret); break; case PyArray_FLOAT: valuepos_float(&array_info[0], &array_info[1], &info_ret); break; case PyArray_DOUBLE: valuepos_double(&array_info[0], &array_info[1], &info_ret); break; } free_array_info(array_info, num_arrays); ret->dimensions[0] = info_ret.len; INSTRUMENT(("ssi", "valuepos", "exit", info_ret.len)); return (PyObject *)ret; }
// // Z_Init // void (Z_Init)(__string file, int line) { register size_t size; // Allocate the memory // davidph 06/17/12: For DS, memory is a static allocation. zonebase = (memblock_t __near *)heap; zonebase_size = HEAPSIZE; // Align on cache boundary // davidph 08/03/12 FIXME: This causes invalid codegen. //zone = (memblock_t *)(((uintptr_t)zonebase + (CACHE_ALIGN - 1)) & ~(CACHE_ALIGN - 1)); zone = zonebase; size = zonebase_size - ((char __near *)zone - (char __near *)zonebase); rover = zone; // Rover points to base of zone mem zone->next = zone->prev = zone; // Single node zone->size = size - HEADER_SIZE; // All memory in one block zone->tag = PU_FREE; // A free block #ifdef ZONEIDCHECK zone->id = 0; #endif INSTRUMENT(free_memory = zone->size); INSTRUMENT(inactive_memory = zonebase_size - zone->size); INSTRUMENT(active_memory = purgable_memory = 0); Z_OpenLogFile(); Z_LogPrintf("Initialized zone heap with size of %u bytes (zonebase = %p)\n", zonebase_size, (void *)zonebase); }
// // Z_Malloc // // You can pass a NULL user if the tag is < PU_PURGELEVEL. // void *(Z_Malloc)(size_t size, int tag, void **user, const char *file, int line) { memblock_t *block; byte *ret; DEBUG_CHECKHEAP(); Z_IDCheckNB(IDBOOL(tag >= PU_PURGELEVEL && !user), "Z_Malloc: an owner is required for purgable blocks", file, line); if(!size) return user ? *user = NULL : NULL; // malloc(0) returns NULL if(!(block = (memblock_t *)(malloc(size + header_size)))) { if(blockbytag[PU_CACHE]) { Z_FreeTags(PU_CACHE, PU_CACHE); block = (memblock_t *)(malloc(size + header_size)); } } if(!block) { I_FatalError(I_ERR_KILL, "Z_Malloc: Failure trying to allocate %u bytes\n" "Source: %s:%d\n", (unsigned int)size, file, line); } block->size = size; if((block->next = blockbytag[tag])) block->next->prev = &block->next; blockbytag[tag] = block; block->prev = &blockbytag[tag]; INSTRUMENT(memorybytag[tag] += block->size); INSTRUMENT(block->file = file); INSTRUMENT(block->line = line); IDCHECK(block->id = ZONEID); // signature required in block header block->tag = tag; // tag block->user = user; // user ret = ((byte *) block + header_size); if(user) // if there is a user *user = ret; // set user to point to new block // scramble memory -- weed out any bugs SCRAMBLER(ret, size); Z_LogPrintf("* %p = Z_Malloc(size=%lu, tag=%d, user=%p, source=%s:%d)\n", ret, size, tag, user, file, line); return ret; }
static PyObject *soomfunc_preload(PyObject *module, PyObject *args) { PyObject *obj; PyArrayObject *array; int preload = -1; if (!PyArg_ParseTuple(args, "O|i", &obj, &preload)) return NULL; array = (PyArrayObject *)PyArray_FromObject(obj, PyArray_NOTYPE, 0, 0); if (array == NULL) return NULL; if (array->nd != 1) { PyErr_SetString(PyExc_ValueError, "arrays must be rank-1"); Py_DECREF(array); return NULL; } if (preload < 0 || preload > array->dimensions[0]) preload = array->dimensions[0] - 1; INSTRUMENT(("ssi", "preload", "enter", preload)); switch (array->descr->type_num) { case PyArray_CHAR: case PyArray_SBYTE: preload_schar(array, preload); break; case PyArray_UBYTE: preload_uchar(array, preload); break; case PyArray_SHORT: preload_short(array, preload); break; case PyArray_INT: preload_int(array, preload); break; case PyArray_LONG: preload_long(array, preload); break; case PyArray_FLOAT: preload_float(array, preload); break; case PyArray_DOUBLE: preload_double(array, preload); break; } Py_DECREF(array); Py_INCREF(Py_None); INSTRUMENT(("ss", "preload", "exit")); return Py_None; }
static PyObject *soomfunc_union(PyObject *module, PyObject *args) { ArrayInfo *array_info; PyArrayObject *ret; int type_num, num_arrays; array_info = check_array_args(args, 2, -1, 0); if (array_info == NULL) return NULL; type_num = array_info->array->descr->type_num; num_arrays = PyTuple_Size(args); INSTRUMENT(("ssi", "union", "enter", num_arrays)); /* Accumulate the difference cumulatively by comparing the first * two arrays then comparing the result with the third and so on. */ ret = NULL; switch (type_num) { case PyArray_CHAR: case PyArray_SBYTE: ret = (PyArrayObject *)dense_union_schar(array_info, num_arrays); break; case PyArray_UBYTE: ret = (PyArrayObject *)dense_union_uchar(array_info, num_arrays); break; case PyArray_SHORT: ret = (PyArrayObject *)dense_union_short(array_info, num_arrays); break; case PyArray_INT: ret = (PyArrayObject *)dense_union_int(array_info, num_arrays); break; case PyArray_LONG: ret = (PyArrayObject *)dense_union_long(array_info, num_arrays); break; case PyArray_FLOAT: ret = (PyArrayObject *)sparse_union_float(array_info, num_arrays); break; case PyArray_DOUBLE: ret = (PyArrayObject *)sparse_union_double(array_info, num_arrays); break; default: PyErr_SetString(PyExc_ValueError, "bogus - unhandled array type"); } free_array_info(array_info, num_arrays); INSTRUMENT(("ssi", "union", "exit", ret->dimensions[0])); return (PyObject *)ret; }
// // Z_ChangeTag // void (Z_ChangeTag)(void *ptr, int tag, const char *file, int line) { memblock_t *block; DEBUG_CHECKHEAP(); if(!ptr) { I_FatalError(I_ERR_KILL, "Z_ChangeTag: can't change a NULL pointer at %s:%d\n", file, line); } block = (memblock_t *)((byte *) ptr - header_size); Z_IDCheck(IDBOOL(block->id != ZONEID), "Z_ChangeTag: Changed a tag without ZONEID", block, file, line); // haleyjd: permanent blocks are not re-tagged even if the code tries. if(block->tag == PU_PERMANENT) return; Z_IDCheck(IDBOOL(tag >= PU_PURGELEVEL && !block->user), "Z_ChangeTag: an owner is required for purgable blocks", block, file, line); if((*block->prev = block->next)) block->next->prev = block->prev; if((block->next = blockbytag[tag])) block->next->prev = &block->next; block->prev = &blockbytag[tag]; blockbytag[tag] = block; INSTRUMENT(memorybytag[block->tag] -= block->size); INSTRUMENT(memorybytag[tag] += block->size); block->tag = tag; Z_LogPrintf("* Z_ChangeTag(p=%p, tag=%d, file=%s:%d)\n", ptr, tag, file, line); }
// // Z_Free // void (Z_Free)(void *p, const char *file, int line) { DEBUG_CHECKHEAP(); if(p) { memblock_t *block = (memblock_t *)((byte *) p - header_size); Z_IDCheck(IDBOOL(block->id != ZONEID), "Z_Free: freed a pointer without ZONEID", block, file, line); // haleyjd: permanent blocks are never freed even if the code tries. if(block->tag == PU_PERMANENT) return; IDCHECK(block->id = 0); // Nullify id so another free fails // haleyjd 01/20/09: check invalid tags // catches double frees and possible selective heap corruption if(block->tag == PU_FREE || block->tag >= PU_MAX) { I_FatalError(I_ERR_KILL, "Z_Free: freed a pointer with invalid tag %d\n" "Source: %s:%d\n" #if defined(ZONEVERBOSE) && defined(INSTRUMENTED) "Source of malloc: %s:%d\n" , block->tag, file, line, block->file, block->line #else , block->tag, file, line #endif ); } INSTRUMENT(memorybytag[block->tag] -= block->size); block->tag = PU_FREE; // Mark block freed // scramble memory -- weed out any bugs SCRAMBLER(p, block->size); if(block->user) // Nullify user if one exists *block->user = NULL; if((*block->prev = block->next)) block->next->prev = block->prev; free(block); Z_LogPrintf("* Z_Free(p=%p, file=%s:%d)\n", p, file, line); } }
// // Z_Realloc // // For the native heap, this can easily behave as a real realloc, and not // just an ignorant copy-and-free. // void *(Z_Realloc)(void *ptr, size_t n, int tag, void **user, const char *file, int line) { void *p; memblock_t *block, *newblock, *origblock; // if not allocated at all, defer to Z_Malloc if(!ptr) return (Z_Malloc)(n, tag, user, file, line); // size == 0 is a special case that cannot be handled below if(n == 0) { (Z_Free)(ptr, file, line); return NULL; } DEBUG_CHECKHEAP(); block = origblock = (memblock_t *)((byte *)ptr - header_size); Z_IDCheck(IDBOOL(block->id != ZONEID), "Z_Realloc: Reallocated a block without ZONEID\n", block, file, line); // haleyjd: realloc cannot change the tag of a permanent block if(block->tag == PU_PERMANENT) tag = PU_PERMANENT; // nullify current user, if any if(block->user) *(block->user) = NULL; // detach from list before reallocation if((*block->prev = block->next)) block->next->prev = block->prev; block->next = NULL; block->prev = NULL; INSTRUMENT(memorybytag[block->tag] -= block->size); if(!(newblock = (memblock_t *)(realloc(block, n + header_size)))) { // haleyjd 07/09/10: Note that unlinking the block above makes this safe // even if the current block is PU_CACHE; Z_FreeTags won't find it. if(blockbytag[PU_CACHE]) { Z_FreeTags(PU_CACHE, PU_CACHE); newblock = (memblock_t *)(realloc(block, n + header_size)); } } if(!(block = newblock)) { if(origblock->size >= n) { block = origblock; // restore original block if size was equal or smaller n = block->size; // keep same size in this event } else { I_FatalError(I_ERR_KILL, "Z_Realloc: Failure trying to allocate %u bytes\n" "Source: %s:%d\n", (unsigned int)n, file, line); } } block->size = n; block->tag = tag; p = (byte *)block + header_size; // set new user, if any block->user = user; if(user) *user = p; // reattach to list at possibly new address, new tag if((block->next = blockbytag[tag])) block->next->prev = &block->next; blockbytag[tag] = block; block->prev = &blockbytag[tag]; INSTRUMENT(memorybytag[tag] += block->size); INSTRUMENT(block->file = file); INSTRUMENT(block->line = line); Z_LogPrintf("* %p = Z_Realloc(ptr=%p, n=%lu, tag=%d, user=%p, source=%s:%d)\n", p, ptr, n, tag, user, file, line); return p; }
static PyObject *soomfunc_unique(PyObject *module, PyObject *args) { ArrayInfo *array_info, *info, info_ret; int type_num, num_arrays; PyArrayObject *ret; array_info = check_array_args(args, 1, 2, 0); if (array_info == NULL) return NULL; type_num = array_info->array->descr->type_num; num_arrays = PyTuple_Size(args); INSTRUMENT(("ssi", "unique", "enter", array_info[0].len)); if (num_arrays != 2) { int shape[1]; /* Build the array to capture the unique values. */ shape[0] = array_info->len; ret = (PyArrayObject *)PyArray_FromDims(1, shape, type_num); if (ret == NULL) { free_array_info(array_info, num_arrays); return NULL; } set_array_info(&info_ret, ret); info = &info_ret; } else { info = &array_info[1]; ret = info->array; } /* Generate the unique array. */ switch (type_num) { case PyArray_CHAR: case PyArray_SBYTE: unique_schar(array_info, info); break; case PyArray_UBYTE: unique_uchar(array_info, info); break; case PyArray_SHORT: unique_short(array_info, info); break; case PyArray_INT: unique_int(array_info, info); break; case PyArray_LONG: unique_long(array_info, info); break; case PyArray_FLOAT: unique_float(array_info, info); break; case PyArray_DOUBLE: unique_double(array_info, info); break; } ret->dimensions[0] = info->len; free_array_info(array_info, num_arrays); INSTRUMENT(("ssi", "unique", "exit", ret->dimensions[0])); return (PyObject *)ret; }
// // Z_Realloc // // haleyjd 09/18/06: Rewritten to be an actual realloc routine. The // various cases are as follows: // // 1. If the block is NULL, is in virtual memory, or we're trying to set it to // zero-byte size, we use Z_ReallocOld above. // 2. If the block is smaller than the new size, we need to expand it. If the // next block on the zone heap is free, check to see if it together with the // current block is large enough. If so, merge the blocks. Now test to make // sure the internal fragmentation does not exceed the split limit. If it // does, resplit the blocks at the new boundary. If the next block wasn't // free, we have to call Z_ReallocOld to move the entire block elsewhere. // 3. If the block is larger than the new size, we can shrink it, but we only // need to shrink it if the wasted space is larger than the split limit. // If so, the block is split at its new boundary. If the next block on the // zone heap is free, it is then necessary to merge the new free block with // the next block on the heap. In the event the block is not shrunk, only the // INSTRUMENTED data needs to be updated to reflect the new internal fragmen- // tation. // 4. If the block is already the same size as "n", we don't need to do anything // aside from adjusting the INSTRUMENTED block data for debugging purposes. // void *(Z_Realloc)(void *ptr, size_t n, int tag, void **user, __string file, int line) { register memblock_t __near *block, *other; register size_t curr_size = 0; // davidph 12/09/12: Handle null and size 0 right here instead of in Z_ReallocOld. if(n == 0) { (Z_Free)(ptr, file, line); return NULL; } if(!ptr) return (Z_Malloc)(n, tag, user, file, line); // get current size of block block = VoidToBlock(ptr); Z_IDCheck(IDBOOL(block->id != ZONEID), "Z_Realloc: Reallocated a block without ZONEID\n", block, file, line); other = block->next; // save pointer to next block curr_size = block->size; // round new size to CHUNK_SIZE n = (n + CHUNK_SIZE - 1) & ~(CHUNK_SIZE - 1); if(n > curr_size) // is new allocation size larger than current? { register size_t extra; // haleyjd 10/03/06: free adjacent purgable blocks while(other != zone && other != block && (other->tag == PU_FREE || other->tag >= PU_PURGELEVEL)) { if(other->tag >= PU_PURGELEVEL) { (Z_Free)(BlockToVoid(other), file, line); // reset pointer to next block other = block->next; } // use current size of block; note it may have increased if it was // merged with an adjacent free block // if we've freed enough, stop if(curr_size + other->size + HEADER_SIZE >= n) break; // move to next block other = other->next; } // reset pointer other = block->next; // check to see if it can fit if we merge with the next block if(other != zone && other->tag == PU_FREE && curr_size + other->size + HEADER_SIZE >= n) { // merge the blocks if(rover == other) rover = block; (block->next = other->next)->prev = block; block->size += other->size + HEADER_SIZE; #ifdef INSTRUMENTED // lost a block... inactive_memory -= HEADER_SIZE; // lost a free block... free_memory -= other->size; // increased active or purgable if(block->tag >= PU_PURGELEVEL) purgable_memory += other->size + HEADER_SIZE; else active_memory += other->size + HEADER_SIZE; #endif // check to see if there's enough extra to warrant splitting off // a new free block extra = block->size - n; if(extra >= MIN_BLOCK_SPLIT + HEADER_SIZE) { register memblock_t __near *newb = (memblock_t __near *)((char __near *)block + HEADER_SIZE + n); (newb->next = block->next)->prev = newb; (newb->prev = block)->next = newb; block->size = n; newb->size = extra - HEADER_SIZE; newb->tag = PU_FREE; if(rover == block) rover = newb; #ifdef INSTRUMENTED // added a block... inactive_memory += HEADER_SIZE; // added a free block... free_memory += newb->size; // decreased active or purgable if(block->tag >= PU_PURGELEVEL) purgable_memory -= newb->size + HEADER_SIZE; else active_memory -= newb->size + HEADER_SIZE; #endif } // subtract old internal fragmentation and add new INSTRUMENT(inactive_memory -= block->extra); INSTRUMENT(inactive_memory += (block->extra = block->size - n)); } else // else, do old realloc (make new, copy old, free old) { // davidph 12/10/12: This was the only place Z_ReallocOld was called. // And we know that ptr != NULL and n != 0 and n > curr_size. register void *p = (Z_Malloc)(n, tag, user, file, line); memcpy_near((void __near *)p, (void __near *)ptr, curr_size); (Z_Free)(ptr, file, line); if(user) // in case Z_Free nullified same user *user = p; return p; } } else if(n < curr_size) // is new allocation size smaller than current? { // check to see if there's enough extra to warrant splitting off // a new free block size_t extra = curr_size - n; if(extra >= MIN_BLOCK_SPLIT + HEADER_SIZE) { register memblock_t __near *newb = (memblock_t __near *)((char __near *)block + HEADER_SIZE + n); (newb->next = block->next)->prev = newb; (newb->prev = block)->next = newb; block->size = n; newb->size = extra - HEADER_SIZE; newb->tag = PU_FREE; #ifdef INSTRUMENTED // added a block... inactive_memory += HEADER_SIZE; // added a free block... free_memory += newb->size; // decreased purgable or active if(block->tag >= PU_PURGELEVEL) purgable_memory -= newb->size + HEADER_SIZE; else active_memory -= newb->size + HEADER_SIZE; #endif // may need to merge new block with next block if(other && other->tag == PU_FREE && other != zone) { if(rover == other) // Move back rover if it points at next block rover = newb; (newb->next = other->next)->prev = newb; newb->size += other->size + HEADER_SIZE; // deleted a block... INSTRUMENT(inactive_memory -= HEADER_SIZE); // space between blocks is now free INSTRUMENT(free_memory += HEADER_SIZE); } } // else, leave block the same size // subtract old internal fragmentation and add new INSTRUMENT(inactive_memory -= block->extra); INSTRUMENT(inactive_memory += (block->extra = block->size - n)); } // else new allocation size is same as current, don't change it // modify the block INSTRUMENT(block->file = file); INSTRUMENT(block->line = line); // reset ptr for consistency ptr = BlockToVoid(block); if(block->user != user) { if(block->user) // nullify old user if any *(block->user) = NULL; block->user = user; // set block's new user if(user) // if non-null, set user to allocation *user = ptr; } // let Z_ChangeTag handle changing the tag if(block->tag != tag) (Z_ChangeTag)(ptr, tag, file, line); Z_PrintStats(); // print memory allocation stats Z_LogPrintf("* Z_Realloc(ptr=%p, n=%u, tag=%d, user=%p, source=%s:%d)\n", ptr, n, tag, user, file, line); return ptr; }
// // Z_Free // void (Z_Free)(void *p, __string file, int line) { register memblock_t __near *other, *block; if(!p) return; DEBUG_CHECKHEAP(); block = VoidToBlock(p); Z_IDCheck(IDBOOL(block->id != ZONEID), "Z_Free: freed a pointer without ZONEID", block, file, line); IDCHECK(block->id = 0); // Nullify id so another free fails // haleyjd 01/20/09: check invalid tags // catches double frees and possible selective heap corruption if(block->tag == PU_FREE || block->tag >= PU_MAX) { zonef("Z_Free: freed a pointer with invalid tag %d\nSource: %s:%d\n" #ifdef INSTRUMENTED "Source of malloc: %s:%d\n" , block->tag, file, line, block->file, block->line #else , block->tag, file, line #endif ); abort(); } SCRAMBLER(p, block->size); if(block->user) // Nullify user if one exists *block->user = NULL; #ifdef INSTRUMENTED free_memory += block->size; inactive_memory -= block->extra; if(block->tag >= PU_PURGELEVEL) purgable_memory -= block->size - block->extra; else active_memory -= block->size - block->extra; #endif block->tag = PU_FREE; // Mark block freed if(block != zone) { other = block->prev; // Possibly merge with previous block if(other->tag == PU_FREE) { if(rover == block) // Move back rover if it points at block rover = other; (other->next = block->next)->prev = other; other->size += block->size + HEADER_SIZE; block = other; INSTRUMENT(inactive_memory -= HEADER_SIZE); INSTRUMENT(free_memory += HEADER_SIZE); } } other = block->next; // Possibly merge with next block if(other->tag == PU_FREE && other != zone) { if(rover == other) // Move back rover if it points at next block rover = block; (block->next = other->next)->prev = block; block->size += other->size + HEADER_SIZE; INSTRUMENT(inactive_memory -= HEADER_SIZE); INSTRUMENT(free_memory += HEADER_SIZE); } Z_PrintStats(); // print memory allocation stats Z_LogPrintf("* Z_Free(p=%p, file=%s:%d)\n", p, file, line); }
// // Z_Malloc // // You can pass a NULL user if the tag is < PU_PURGELEVEL. // void *(Z_Malloc)(size_t size, int tag, void **user, __string file, int line) { register memblock_t __near *block, *start; INSTRUMENT(register size_t size_orig = size); // davidph 12/10/12: If zone not initialized, do so now. if(!zone) (Z_Init)(file, line); DEBUG_CHECKHEAP(); Z_IDCheckNB(IDBOOL(tag >= PU_PURGELEVEL && !user), "Z_Malloc: an owner is required for purgable blocks", file, line); if(!size) return user ? *user = NULL : NULL; // malloc(0) returns NULL size = (size+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1); // round to chunk size block = rover; if(block->prev->tag == PU_FREE) block = block->prev; start = block; // haleyjd 01/01/01 (happy new year!): // the first if() inside the loop below contains cph's memory // purging efficiency fix do { // Free purgable blocks; replacement is roughly FIFO if(block->tag >= PU_PURGELEVEL) { start = block->prev; Z_Free((char __near *)block + HEADER_SIZE); // cph - If start->next == block, we did not merge with the previous // If !=, we did, so we continue from start. // Important: we've reset start! if(start->next == block) start = start->next; else block = start; } if(block->tag == PU_FREE && block->size >= size) // First-fit { size_t extra = block->size - size; if(extra >= MIN_BLOCK_SPLIT + HEADER_SIZE) { memblock_t __near *newb = (memblock_t __near *)((char __near *)block + HEADER_SIZE + size); (newb->next = block->next)->prev = newb; (newb->prev = block)->next = newb; // Split up block block->size = size; newb->size = extra - HEADER_SIZE; newb->tag = PU_FREE; INSTRUMENT(inactive_memory += HEADER_SIZE); INSTRUMENT(free_memory -= HEADER_SIZE); } rover = block->next; // set roving pointer for next search #ifdef INSTRUMENTED inactive_memory += block->extra = block->size - size_orig; if(tag >= PU_PURGELEVEL) purgable_memory += size_orig; else active_memory += size_orig; free_memory -= block->size; #endif INSTRUMENT(block->file = file); INSTRUMENT(block->line = line); IDCHECK(block->id = ZONEID);// signature required in block header block->tag = tag; // tag block->user = user; // user block = BlockToVoid(block); if(user) // if there is a user *user = block; // set user to point to new block Z_PrintStats(); // print memory allocation stats // scramble memory -- weed out any bugs SCRAMBLER(block, size); Z_LogPrintf("* %p = Z_Malloc(size=%u, tag=%d, user=%p, source=%s:%d)\n", block, size, tag, user, file, line); return block; } } while((block = block->next) != start); // detect cycles as failure zonef("Z_Malloc: Failure trying to allocate %u bytes\nSource: %s:%d\n", size, file, line); abort(); }