Example #1
0
/* Record N-ary bit.band, bit.bor, bit.bxor. */
static void LJ_FASTCALL recff_bit_nary(jit_State *J, RecordFFData *rd)
{
  TRef tr = lj_opt_narrow_tobit(J, J->base[0]);
  uint32_t op = rd->data;
  BCReg i;
  for (i = 1; J->base[i] != 0; i++)
    tr = emitir(IRTI(op), tr, lj_opt_narrow_tobit(J, J->base[i]));
  J->base[0] = tr;
}
Example #2
0
static void LJ_FASTCALL recff_rawlen(jit_State *J, RecordFFData *rd)
{
  TRef tr = J->base[0];
  if (tref_isstr(tr))
    J->base[0] = emitir(IRTI(IR_FLOAD), tr, IRFL_STR_LEN);
  else if (tref_istab(tr))
    J->base[0] = lj_ir_call(J, IRCALL_lj_tab_len, tr);
  /* else: Interpreter will throw. */
  UNUSED(rd);
}
Example #3
0
/* Get a pointer to the other 32 bit word (LE: hiword, BE: loword). */
static IRRef split_ptr(jit_State *J, IRRef ref)
{
  IRIns *ir = IR(ref);
  int32_t ofs = 4;
  if (ir->o == IR_ADD && irref_isk(ir->op2)) {  /* Reassociate address. */
    ofs += IR(ir->op2)->i;
    ref = ir->op1;
    if (ofs == 0) return ref;
  }
  return split_emit(J, IRTI(IR_ADD), ref, lj_ir_kint(J, ofs));
}
Example #4
0
/* Get a pointer to the other 32 bit word (LE: hiword, BE: loword). */
static IRRef split_ptr(jit_State *J, IRIns *oir, IRRef ref)
{
  IRRef nref = oir[ref].prev;
  IRIns *ir = IR(nref);
  int32_t ofs = 4;
  if (ir->o == IR_ADD && irref_isk(ir->op2) && !irt_isphi(oir[ref].t)) {
    /* Reassociate address. */
    ofs += IR(ir->op2)->i;
    nref = ir->op1;
    if (ofs == 0) return nref;
  }
  return split_emit(J, IRTI(IR_ADD), nref, lj_ir_kint(J, ofs));
}
/* Emit a CALLN with one split 64 bit argument. */
static IRRef split_call_l(jit_State *J, IRRef1 *hisubst, IRIns *oir,
			  IRIns *ir, IRCallID id)
{
  IRRef tmp, op1 = ir->op1;
  J->cur.nins--;
#if LJ_LE
  tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), oir[op1].prev, hisubst[op1]);
#else
  tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), hisubst[op1], oir[op1].prev);
#endif
  ir->prev = tmp = split_emit(J, IRTI(IR_CALLN), tmp, id);
  return split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), tmp, tmp);
}
static void LJ_FASTCALL recff_ipairs_aux(jit_State *J, RecordFFData *rd)
{
  RecordIndex ix;
  ix.tab = J->base[0];
  if (tref_istab(ix.tab)) {
    if (!tvisnumber(&rd->argv[1]))  /* No support for string coercion. */
      lj_trace_err(J, LJ_TRERR_BADTYPE);
    setintV(&ix.keyv, numberVint(&rd->argv[1])+1);
    settabV(J->L, &ix.tabv, tabV(&rd->argv[0]));
    ix.val = 0; ix.idxchain = 0;
    ix.key = lj_opt_narrow_toint(J, J->base[1]);
    J->base[0] = ix.key = emitir(IRTI(IR_ADD), ix.key, lj_ir_kint(J, 1));
    J->base[1] = lj_record_idx(J, &ix);
    rd->nres = tref_isnil(J->base[1]) ? 0 : 2;
  }  /* else: Interpreter will throw. */
}
Example #7
0
/* Narrowing of modulo operator. */
TRef lj_opt_narrow_mod(jit_State *J, TRef rb, TRef rc)
{
  TRef tmp;
  if ((J->flags & JIT_F_OPT_NARROW) &&
      tref_isk(rc) && tref_isint(rc)) {  /* Optimize x % k. */
    int32_t k = IR(tref_ref(rc))->i;
    if (k > 0 && (k & (k-1)) == 0) {  /* i % 2^k ==> band(i, 2^k-1) */
      if (tref_isinteger(rb))
	return emitir(IRTI(IR_BAND), rb, lj_ir_kint(J, k-1));
    }
  }
  /* b % c ==> b - floor(b/c)*c */
  rb = lj_ir_tonum(J, rb);
  rc = lj_ir_tonum(J, rc);
  tmp = emitir(IRTN(IR_DIV), rb, rc);
  tmp = emitir(IRTN(IR_FPMATH), tmp, IRFPM_FLOOR);
  tmp = emitir(IRTN(IR_MUL), tmp, rc);
  return emitir(IRTN(IR_SUB), rb, tmp);
}
/* Emit a CALLN with two split 64 bit arguments. */
static IRRef split_call_ll(jit_State *J, IRRef1 *hisubst, IRIns *oir,
			   IRIns *ir, IRCallID id)
{
  IRRef tmp, op1 = ir->op1, op2 = ir->op2;
  J->cur.nins--;
#if LJ_LE
  tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), oir[op1].prev, hisubst[op1]);
  tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, oir[op2].prev);
  tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, hisubst[op2]);
#else
  tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), hisubst[op1], oir[op1].prev);
  tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, hisubst[op2]);
  tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, oir[op2].prev);
#endif
  ir->prev = tmp = split_emit(J, IRTI(IR_CALLN), tmp, id);
  return split_emit(J,
    IRT(IR_HIOP, (LJ_SOFTFP && irt_isnum(ir->t)) ? IRT_SOFTFP : IRT_INT),
    tmp, tmp);
}
static void LJ_FASTCALL recff_table_insert(jit_State *J, RecordFFData *rd)
{
  RecordIndex ix;
  ix.tab = J->base[0];
  ix.val = J->base[1];
  rd->nres = 0;
  if (tref_istab(ix.tab) && ix.val) {
    if (!J->base[2]) {  /* Simple push: t[#t+1] = v */
      TRef trlen = lj_ir_call(J, IRCALL_lj_tab_len, ix.tab);
      GCtab *t = tabV(&rd->argv[0]);
      ix.key = emitir(IRTI(IR_ADD), trlen, lj_ir_kint(J, 1));
      settabV(J->L, &ix.tabv, t);
      setintV(&ix.keyv, lj_tab_len(t) + 1);
      ix.idxchain = 0;
      lj_record_idx(J, &ix);  /* Set new value. */
    } else {  /* Complex case: insert in the middle. */
      recff_nyiu(J);
    }
  }  /* else: Interpreter will throw. */
}
static void LJ_FASTCALL recff_io_write(jit_State *J, RecordFFData *rd)
{
  TRef fp = recff_io_fp(J, rd->data);
  TRef zero = lj_ir_kint(J, 0);
  TRef one = lj_ir_kint(J, 1);
  ptrdiff_t i = rd->data == 0 ? 1 : 0;
  for (; J->base[i]; i++) {
    TRef str = lj_ir_tostr(J, J->base[i]);
    TRef buf = emitir(IRT(IR_STRREF, IRT_P32), str, zero);
    TRef len = emitir(IRTI(IR_FLOAD), str, IRFL_STR_LEN);
    if (tref_isk(len) && IR(tref_ref(len))->i == 1) {
      TRef tr = emitir(IRT(IR_XLOAD, IRT_U8), buf, IRXLOAD_READONLY);
      tr = lj_ir_call(J, IRCALL_fputc, tr, fp);
      if (results_wanted(J) != 0)  /* Check result only if not ignored. */
	emitir(IRTGI(IR_NE), tr, lj_ir_kint(J, -1));
    } else {
      TRef tr = lj_ir_call(J, IRCALL_fwrite, buf, one, len, fp);
      if (results_wanted(J) != 0)  /* Check result only if not ignored. */
	emitir(IRTGI(IR_EQ), tr, len);
    }
  }
  J->base[0] = TREF_TRUE;
}
static void LJ_FASTCALL recff_string_len(jit_State *J, RecordFFData *rd)
{
  J->base[0] = emitir(IRTI(IR_FLOAD), lj_ir_tostr(J, J->base[0]), IRFL_STR_LEN);
  UNUSED(rd);
}
/* Handle string.byte (rd->data = 0) and string.sub (rd->data = 1). */
static void LJ_FASTCALL recff_string_range(jit_State *J, RecordFFData *rd)
{
  TRef trstr = lj_ir_tostr(J, J->base[0]);
  TRef trlen = emitir(IRTI(IR_FLOAD), trstr, IRFL_STR_LEN);
  TRef tr0 = lj_ir_kint(J, 0);
  TRef trstart, trend;
  GCstr *str = argv2str(J, &rd->argv[0]);
  int32_t start, end;
  if (rd->data) {  /* string.sub(str, start [,end]) */
    start = argv2int(J, &rd->argv[1]);
    trstart = lj_opt_narrow_toint(J, J->base[1]);
    trend = J->base[2];
    if (tref_isnil(trend)) {
      trend = lj_ir_kint(J, -1);
      end = -1;
    } else {
      trend = lj_opt_narrow_toint(J, trend);
      end = argv2int(J, &rd->argv[2]);
    }
  } else {  /* string.byte(str, [,start [,end]]) */
    if (J->base[1]) {
      start = argv2int(J, &rd->argv[1]);
      trstart = lj_opt_narrow_toint(J, J->base[1]);
      trend = J->base[2];
      if (tref_isnil(trend)) {
	trend = trstart;
	end = start;
      } else {
	trend = lj_opt_narrow_toint(J, trend);
	end = argv2int(J, &rd->argv[2]);
      }
    } else {
      trend = trstart = lj_ir_kint(J, 1);
      end = start = 1;
    }
  }
  if (end < 0) {
    emitir(IRTGI(IR_LT), trend, tr0);
    trend = emitir(IRTI(IR_ADD), emitir(IRTI(IR_ADD), trlen, trend),
		   lj_ir_kint(J, 1));
    end = end+(int32_t)str->len+1;
  } else if ((MSize)end <= str->len) {
    emitir(IRTGI(IR_ULE), trend, trlen);
  } else {
    emitir(IRTGI(IR_GT), trend, trlen);
    end = (int32_t)str->len;
    trend = trlen;
  }
  if (start < 0) {
    emitir(IRTGI(IR_LT), trstart, tr0);
    trstart = emitir(IRTI(IR_ADD), trlen, trstart);
    start = start+(int32_t)str->len;
    emitir(start < 0 ? IRTGI(IR_LT) : IRTGI(IR_GE), trstart, tr0);
    if (start < 0) {
      trstart = tr0;
      start = 0;
    }
  } else {
    if (start == 0) {
      emitir(IRTGI(IR_EQ), trstart, tr0);
      trstart = tr0;
    } else {
      trstart = emitir(IRTI(IR_ADD), trstart, lj_ir_kint(J, -1));
      emitir(IRTGI(IR_GE), trstart, tr0);
      start--;
    }
  }
  if (rd->data) {  /* Return string.sub result. */
    if (end - start >= 0) {
      /* Also handle empty range here, to avoid extra traces. */
      TRef trptr, trslen = emitir(IRTI(IR_SUB), trend, trstart);
      emitir(IRTGI(IR_GE), trslen, tr0);
      trptr = emitir(IRT(IR_STRREF, IRT_P32), trstr, trstart);
      J->base[0] = emitir(IRT(IR_SNEW, IRT_STR), trptr, trslen);
    } else {  /* Range underflow: return empty string. */
      emitir(IRTGI(IR_LT), trend, trstart);
      J->base[0] = lj_ir_kstr(J, lj_str_new(J->L, strdata(str), 0));
    }
  } else {  /* Return string.byte result(s). */
    ptrdiff_t i, len = end - start;
    if (len > 0) {
      TRef trslen = emitir(IRTI(IR_SUB), trend, trstart);
      emitir(IRTGI(IR_EQ), trslen, lj_ir_kint(J, (int32_t)len));
      if (J->baseslot + len > LJ_MAX_JSLOTS)
	lj_trace_err_info(J, LJ_TRERR_STACKOV);
      rd->nres = len;
      for (i = 0; i < len; i++) {
	TRef tmp = emitir(IRTI(IR_ADD), trstart, lj_ir_kint(J, (int32_t)i));
	tmp = emitir(IRT(IR_STRREF, IRT_P32), trstr, tmp);
	J->base[i] = emitir(IRT(IR_XLOAD, IRT_U8), tmp, IRXLOAD_READONLY);
      }
    } else {  /* Empty range or range underflow: return no results. */
      emitir(IRTGI(IR_LE), trend, trstart);
      rd->nres = 0;
    }
  }
}
/* Record unary bit.tobit, bit.bnot, bit.bswap. */
static void LJ_FASTCALL recff_bit_unary(jit_State *J, RecordFFData *rd)
{
  TRef tr = lj_opt_narrow_tobit(J, J->base[0]);
  J->base[0] = (rd->data == IR_TOBIT) ? tr : emitir(IRTI(rd->data), tr, 0);
}
Example #14
0
/* Backpropagate narrowing conversion. Return number of needed conversions. */
static int narrow_conv_backprop(NarrowConv *nc, IRRef ref, int depth)
{
  jit_State *J = nc->J;
  IRIns *ir = IR(ref);
  IRRef cref;

  /* Check the easy cases first. */
  if (ir->o == IR_TONUM) {  /* Undo inverse conversion. */
    *nc->sp++ = NARROWINS(NARROW_REF, ir->op1);
    return 0;
  } else if (ir->o == IR_KNUM) {  /* Narrow FP constant. */
    lua_Number n = ir_knum(ir)->n;
    if (nc->mode == IRTOINT_TOBIT) {  /* Allows a wider range of constants. */
      int64_t k64 = (int64_t)n;
      if (n == cast_num(k64)) {  /* Only if constant doesn't lose precision. */
	*nc->sp++ = NARROWINS(NARROW_INT, 0);
	*nc->sp++ = (NarrowIns)k64;  /* But always truncate to 32 bits. */
	return 0;
      }
    } else {
      int32_t k = lj_num2int(n);
      if (n == cast_num(k)) {  /* Only if constant is really an integer. */
	*nc->sp++ = NARROWINS(NARROW_INT, 0);
	*nc->sp++ = (NarrowIns)k;
	return 0;
      }
    }
    return 10;  /* Never narrow other FP constants (this is rare). */
  }

  /* Try to CSE the conversion. Stronger checks are ok, too. */
  for (cref = J->chain[fins->o]; cref > ref; cref = IR(cref)->prev)
    if (IR(cref)->op1 == ref &&
	irt_isguard(IR(cref)->t) >= irt_isguard(fins->t)) {
      *nc->sp++ = NARROWINS(NARROW_REF, cref);
      return 0;  /* Already there, no additional conversion needed. */
    }

  /* Backpropagate across ADD/SUB. */
  if (ir->o == IR_ADD || ir->o == IR_SUB) {
    /* Try cache lookup first. */
    IRRef bpref, mode = nc->mode;
    if (mode == IRTOINT_INDEX && depth > 0)
      mode = IRTOINT_CHECK;  /* Inner conversions need a stronger check. */
    bpref = narrow_bpc_get(nc->J, (IRRef1)ref, mode);
    if (bpref) {
      *nc->sp++ = NARROWINS(NARROW_REF, bpref);
      return 0;
    }
    if (++depth < NARROW_MAX_BACKPROP && nc->sp < nc->maxsp) {
      NarrowIns *savesp = nc->sp;
      int count = narrow_conv_backprop(nc, ir->op1, depth);
      count += narrow_conv_backprop(nc, ir->op2, depth);
      if (count <= nc->lim) {  /* Limit total number of conversions. */
	*nc->sp++ = NARROWINS(IRTI(ir->o), ref);
	return count;
      }
      nc->sp = savesp;  /* Too many conversions, need to backtrack. */
    }
  }

  /* Otherwise add a conversion. */
  *nc->sp++ = NARROWINS(NARROW_CONV, ref);
  return 1;
}
Example #15
0
/* XLOAD forwarding. */
TRef LJ_FASTCALL lj_opt_fwd_xload(jit_State *J)
{
  IRRef xref = fins->op1;
  IRIns *xr = IR(xref);
  IRRef lim = xref;  /* Search limit. */
  IRRef ref;

  if ((fins->op2 & IRXLOAD_READONLY))
    goto cselim;
  if ((fins->op2 & IRXLOAD_VOLATILE))
    goto doemit;

  /* Search for conflicting stores. */
  ref = J->chain[IR_XSTORE];
retry:
  if (J->chain[IR_CALLXS] > lim) lim = J->chain[IR_CALLXS];
  if (J->chain[IR_XBAR] > lim) lim = J->chain[IR_XBAR];
  while (ref > lim) {
    IRIns *store = IR(ref);
    switch (aa_xref(J, xr, fins, store)) {
    case ALIAS_NO:   break;  /* Continue searching. */
    case ALIAS_MAY:  lim = ref; goto cselim;  /* Limit search for load. */
    case ALIAS_MUST:
      /* Emit conversion if the loaded type doesn't match the forwarded type. */
      if (!irt_sametype(fins->t, IR(store->op2)->t)) {
	IRType st = irt_type(fins->t);
	if (st == IRT_I8 || st == IRT_I16) {  /* Trunc + sign-extend. */
	  st |= IRCONV_SEXT;
	} else if (st == IRT_U8 || st == IRT_U16) {  /* Trunc + zero-extend. */
	} else if (st == IRT_INT) {
	  st = irt_type(IR(store->op2)->t);  /* Needs dummy CONV.int.*. */
	} else {  /* I64/U64 are boxed, U32 is hidden behind a CONV.num.u32. */
	  goto store_fwd;
	}
	fins->ot = IRTI(IR_CONV);
	fins->op1 = store->op2;
	fins->op2 = (IRT_INT<<5)|st;
	return RETRYFOLD;
      }
    store_fwd:
      return store->op2;  /* Store forwarding. */
    }
    ref = store->prev;
  }

cselim:
  /* Try to find a matching load. Below the conflicting store, if any. */
  ref = J->chain[IR_XLOAD];
  while (ref > lim) {
    /* CSE for XLOAD depends on the type, but not on the IRXLOAD_* flags. */
    if (IR(ref)->op1 == xref && irt_sametype(IR(ref)->t, fins->t))
      return ref;
    ref = IR(ref)->prev;
  }

  /* Reassociate XLOAD across PHIs to handle a[i-1] forwarding case. */
  if (!(fins->op2 & IRXLOAD_READONLY) && J->chain[IR_LOOP] &&
      xref == fins->op1 && (xref = reassoc_xref(J, xr)) != 0) {
    ref = J->chain[IR_XSTORE];
    while (ref > lim)  /* Skip stores that have already been checked. */
      ref = IR(ref)->prev;
    lim = xref;
    xr = IR(xref);
    goto retry;  /* Retry with the reassociated reference. */
  }
doemit:
  return EMITFOLD;
}
/* Transform the old IR to the new IR. */
static void split_ir(jit_State *J)
{
  IRRef nins = J->cur.nins, nk = J->cur.nk;
  MSize irlen = nins - nk;
  MSize need = (irlen+1)*(sizeof(IRIns) + sizeof(IRRef1));
  IRIns *oir = (IRIns *)lj_str_needbuf(J->L, &G(J->L)->tmpbuf, need);
  IRRef1 *hisubst;
  IRRef ref, snref;
  SnapShot *snap;

  /* Copy old IR to buffer. */
  memcpy(oir, IR(nk), irlen*sizeof(IRIns));
  /* Bias hiword substitution table and old IR. Loword kept in field prev. */
  hisubst = (IRRef1 *)&oir[irlen] - nk;
  oir -= nk;

  /* Remove all IR instructions, but retain IR constants. */
  J->cur.nins = REF_FIRST;
  J->loopref = 0;

  /* Process constants and fixed references. */
  for (ref = nk; ref <= REF_BASE; ref++) {
    IRIns *ir = &oir[ref];
    if ((LJ_SOFTFP && ir->o == IR_KNUM) || ir->o == IR_KINT64) {
      /* Split up 64 bit constant. */
      TValue tv = *ir_k64(ir);
      ir->prev = lj_ir_kint(J, (int32_t)tv.u32.lo);
      hisubst[ref] = lj_ir_kint(J, (int32_t)tv.u32.hi);
    } else {
      ir->prev = ref;  /* Identity substitution for loword. */
      hisubst[ref] = 0;
    }
  }

  /* Process old IR instructions. */
  snap = J->cur.snap;
  snref = snap->ref;
  for (ref = REF_FIRST; ref < nins; ref++) {
    IRIns *ir = &oir[ref];
    IRRef nref = lj_ir_nextins(J);
    IRIns *nir = IR(nref);
    IRRef hi = 0;

    if (ref >= snref) {
      snap->ref = nref;
      split_subst_snap(J, snap++, oir);
      snref = snap < &J->cur.snap[J->cur.nsnap] ? snap->ref : ~(IRRef)0;
    }

    /* Copy-substitute old instruction to new instruction. */
    nir->op1 = ir->op1 < nk ? ir->op1 : oir[ir->op1].prev;
    nir->op2 = ir->op2 < nk ? ir->op2 : oir[ir->op2].prev;
    ir->prev = nref;  /* Loword substitution. */
    nir->o = ir->o;
    nir->t.irt = ir->t.irt & ~(IRT_MARK|IRT_ISPHI);
    hisubst[ref] = 0;

    /* Split 64 bit instructions. */
#if LJ_SOFTFP
    if (irt_isnum(ir->t)) {
      nir->t.irt = IRT_INT | (nir->t.irt & IRT_GUARD);  /* Turn into INT op. */
      /* Note: hi ref = lo ref + 1! Required for SNAP_SOFTFPNUM logic. */
      switch (ir->o) {
      case IR_ADD:
	hi = split_call_ll(J, hisubst, oir, ir, IRCALL_softfp_add);
	break;
      case IR_SUB:
	hi = split_call_ll(J, hisubst, oir, ir, IRCALL_softfp_sub);
	break;
      case IR_MUL:
	hi = split_call_ll(J, hisubst, oir, ir, IRCALL_softfp_mul);
	break;
      case IR_DIV:
	hi = split_call_ll(J, hisubst, oir, ir, IRCALL_softfp_div);
	break;
      case IR_POW:
	hi = split_call_li(J, hisubst, oir, ir, IRCALL_lj_vm_powi);
	break;
      case IR_FPMATH:
	/* Try to rejoin pow from EXP2, MUL and LOG2. */
	if (nir->op2 == IRFPM_EXP2 && nir->op1 > J->loopref) {
	  IRIns *irp = IR(nir->op1);
	  if (irp->o == IR_CALLN && irp->op2 == IRCALL_softfp_mul) {
	    IRIns *irm4 = IR(irp->op1);
	    IRIns *irm3 = IR(irm4->op1);
	    IRIns *irm12 = IR(irm3->op1);
	    IRIns *irl1 = IR(irm12->op1);
	    if (irm12->op1 > J->loopref && irl1->o == IR_CALLN &&
		irl1->op2 == IRCALL_lj_vm_log2) {
	      IRRef tmp = irl1->op1;  /* Recycle first two args from LOG2. */
	      IRRef arg3 = irm3->op2, arg4 = irm4->op2;
	      J->cur.nins--;
	      tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, arg3);
	      tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, arg4);
	      ir->prev = tmp = split_emit(J, IRTI(IR_CALLN), tmp, IRCALL_pow);
	      hi = split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), tmp, tmp);
	      break;
	    }
	  }
	}
	hi = split_call_l(J, hisubst, oir, ir, IRCALL_lj_vm_floor + ir->op2);
	break;
      case IR_ATAN2:
	hi = split_call_ll(J, hisubst, oir, ir, IRCALL_atan2);
	break;
      case IR_LDEXP:
	hi = split_call_li(J, hisubst, oir, ir, IRCALL_ldexp);
	break;
      case IR_NEG: case IR_ABS:
	nir->o = IR_CONV;  /* Pass through loword. */
	nir->op2 = (IRT_INT << 5) | IRT_INT;
	hi = split_emit(J, IRT(ir->o == IR_NEG ? IR_BXOR : IR_BAND, IRT_SOFTFP),
			hisubst[ir->op1], hisubst[ir->op2]);
	break;
      case IR_SLOAD:
	if ((nir->op2 & IRSLOAD_CONVERT)) {  /* Convert from int to number. */
	  nir->op2 &= ~IRSLOAD_CONVERT;
	  ir->prev = nref = split_emit(J, IRTI(IR_CALLN), nref,
				       IRCALL_softfp_i2d);
	  hi = split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nref, nref);
	  break;
	}
	/* fallthrough */
      case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD:
      case IR_STRTO:
	hi = split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nref, nref);
	break;
      case IR_XLOAD: {
	IRIns inslo = *nir;  /* Save/undo the emit of the lo XLOAD. */
	J->cur.nins--;
	hi = split_ptr(J, oir, ir->op1);  /* Insert the hiref ADD. */
	nref = lj_ir_nextins(J);
	nir = IR(nref);
	*nir = inslo;  /* Re-emit lo XLOAD immediately before hi XLOAD. */
	hi = split_emit(J, IRT(IR_XLOAD, IRT_SOFTFP), hi, ir->op2);
#if LJ_LE
	ir->prev = nref;
#else
	ir->prev = hi; hi = nref;
#endif
	break;
	}
      case IR_ASTORE: case IR_HSTORE: case IR_USTORE: case IR_XSTORE:
	split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nir->op1, hisubst[ir->op2]);
	break;
      case IR_CONV: {  /* Conversion to number. Others handled below. */
	IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK);
	UNUSED(st);
#if LJ_32 && LJ_HASFFI
	if (st == IRT_I64 || st == IRT_U64) {
	  hi = split_call_l(J, hisubst, oir, ir,
		 st == IRT_I64 ? IRCALL_fp64_l2d : IRCALL_fp64_ul2d);
	  break;
	}
#endif
	lua_assert(st == IRT_INT ||
		   (LJ_32 && LJ_HASFFI && (st == IRT_U32 || st == IRT_FLOAT)));
	nir->o = IR_CALLN;
#if LJ_32 && LJ_HASFFI
	nir->op2 = st == IRT_INT ? IRCALL_softfp_i2d :
		   st == IRT_FLOAT ? IRCALL_softfp_f2d :
		   IRCALL_softfp_ui2d;
#else
	nir->op2 = IRCALL_softfp_i2d;
#endif
	hi = split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nref, nref);
	break;
	}
      case IR_CALLN:
      case IR_CALLL:
      case IR_CALLS:
      case IR_CALLXS:
	goto split_call;
      case IR_PHI:
	if (nir->op1 == nir->op2)
	  J->cur.nins--;  /* Drop useless PHIs. */
	if (hisubst[ir->op1] != hisubst[ir->op2])
	  split_emit(J, IRT(IR_PHI, IRT_SOFTFP),
		     hisubst[ir->op1], hisubst[ir->op2]);
	break;
      case IR_HIOP:
	J->cur.nins--;  /* Drop joining HIOP. */
	ir->prev = nir->op1;
	hi = nir->op2;
	break;
      default:
	lua_assert(ir->o <= IR_NE || ir->o == IR_MIN || ir->o == IR_MAX);
	hi = split_emit(J, IRTG(IR_HIOP, IRT_SOFTFP),
			hisubst[ir->op1], hisubst[ir->op2]);
	break;
      }
    } else
#endif
#if LJ_32 && LJ_HASFFI
    if (irt_isint64(ir->t)) {
      IRRef hiref = hisubst[ir->op1];
      nir->t.irt = IRT_INT | (nir->t.irt & IRT_GUARD);  /* Turn into INT op. */
      switch (ir->o) {
      case IR_ADD:
      case IR_SUB:
	/* Use plain op for hiword if loword cannot produce a carry/borrow. */
	if (irref_isk(nir->op2) && IR(nir->op2)->i == 0) {
	  ir->prev = nir->op1;  /* Pass through loword. */
	  nir->op1 = hiref; nir->op2 = hisubst[ir->op2];
	  hi = nref;
	  break;
	}
	/* fallthrough */
      case IR_NEG:
	hi = split_emit(J, IRTI(IR_HIOP), hiref, hisubst[ir->op2]);
	break;
      case IR_MUL:
	hi = split_call_ll(J, hisubst, oir, ir, IRCALL_lj_carith_mul64);
	break;
      case IR_DIV:
	hi = split_call_ll(J, hisubst, oir, ir,
			   irt_isi64(ir->t) ? IRCALL_lj_carith_divi64 :
					      IRCALL_lj_carith_divu64);
	break;
      case IR_MOD:
	hi = split_call_ll(J, hisubst, oir, ir,
			   irt_isi64(ir->t) ? IRCALL_lj_carith_modi64 :
					      IRCALL_lj_carith_modu64);
	break;
      case IR_POW:
	hi = split_call_ll(J, hisubst, oir, ir,
			   irt_isi64(ir->t) ? IRCALL_lj_carith_powi64 :
					      IRCALL_lj_carith_powu64);
	break;
      case IR_FLOAD:
	lua_assert(ir->op2 == IRFL_CDATA_INT64);
	hi = split_emit(J, IRTI(IR_FLOAD), nir->op1, IRFL_CDATA_INT64_4);
#if LJ_BE
	ir->prev = hi; hi = nref;
#endif
	break;
      case IR_XLOAD:
	hi = split_emit(J, IRTI(IR_XLOAD), split_ptr(J, oir, ir->op1), ir->op2);
#if LJ_BE
	ir->prev = hi; hi = nref;
#endif
	break;
      case IR_XSTORE:
	split_emit(J, IRTI(IR_HIOP), nir->op1, hisubst[ir->op2]);
	break;
      case IR_CONV: {  /* Conversion to 64 bit integer. Others handled below. */
	IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK);
#if LJ_SOFTFP
	if (st == IRT_NUM) {  /* NUM to 64 bit int conv. */
	  hi = split_call_l(J, hisubst, oir, ir,
		 irt_isi64(ir->t) ? IRCALL_fp64_d2l : IRCALL_fp64_d2ul);
	} else if (st == IRT_FLOAT) {  /* FLOAT to 64 bit int conv. */
	  nir->o = IR_CALLN;
	  nir->op2 = irt_isi64(ir->t) ? IRCALL_fp64_f2l : IRCALL_fp64_f2ul;
	  hi = split_emit(J, IRTI(IR_HIOP), nref, nref);
	}
#else
	if (st == IRT_NUM || st == IRT_FLOAT) {  /* FP to 64 bit int conv. */
	  hi = split_emit(J, IRTI(IR_HIOP), nir->op1, nref);
	}
#endif
	else if (st == IRT_I64 || st == IRT_U64) {  /* 64/64 bit cast. */
	  /* Drop cast, since assembler doesn't care. But fwd both parts. */
	  hi = hiref;
	  goto fwdlo;
	} else if ((ir->op2 & IRCONV_SEXT)) {  /* Sign-extend to 64 bit. */
	  IRRef k31 = lj_ir_kint(J, 31);
	  nir = IR(nref);  /* May have been reallocated. */
	  ir->prev = nir->op1;  /* Pass through loword. */
	  nir->o = IR_BSAR;  /* hi = bsar(lo, 31). */
	  nir->op2 = k31;
	  hi = nref;
	} else {  /* Zero-extend to 64 bit. */
	  hi = lj_ir_kint(J, 0);
	  goto fwdlo;
	}
	break;
	}
      case IR_CALLXS:
	goto split_call;
      case IR_PHI: {
	IRRef hiref2;
	if ((irref_isk(nir->op1) && irref_isk(nir->op2)) ||
	    nir->op1 == nir->op2)
	  J->cur.nins--;  /* Drop useless PHIs. */
	hiref2 = hisubst[ir->op2];
	if (!((irref_isk(hiref) && irref_isk(hiref2)) || hiref == hiref2))
	  split_emit(J, IRTI(IR_PHI), hiref, hiref2);
	break;
	}
      case IR_HIOP:
	J->cur.nins--;  /* Drop joining HIOP. */
	ir->prev = nir->op1;
	hi = nir->op2;
	break;
      default:
	lua_assert(ir->o <= IR_NE);  /* Comparisons. */
	split_emit(J, IRTGI(IR_HIOP), hiref, hisubst[ir->op2]);
	break;
      }
    } else
#endif
#if LJ_SOFTFP
    if (ir->o == IR_SLOAD) {
      if ((nir->op2 & IRSLOAD_CONVERT)) {  /* Convert from number to int. */
	nir->op2 &= ~IRSLOAD_CONVERT;
	if (!(nir->op2 & IRSLOAD_TYPECHECK))
	  nir->t.irt = IRT_INT;  /* Drop guard. */
	split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nref, nref);
	ir->prev = split_num2int(J, nref, nref+1, irt_isguard(ir->t));
      }
    } else if (ir->o == IR_TOBIT) {
      IRRef tmp, op1 = ir->op1;
      J->cur.nins--;
#if LJ_LE
      tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), oir[op1].prev, hisubst[op1]);
#else
      tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), hisubst[op1], oir[op1].prev);
#endif
      ir->prev = split_emit(J, IRTI(IR_CALLN), tmp, IRCALL_lj_vm_tobit);
    } else if (ir->o == IR_TOSTR) {
      if (hisubst[ir->op1]) {
	if (irref_isk(ir->op1))
	  nir->op1 = ir->op1;
	else
	  split_emit(J, IRT(IR_HIOP, IRT_NIL), hisubst[ir->op1], nref);
      }
    } else if (ir->o == IR_HREF || ir->o == IR_NEWREF) {
      if (irref_isk(ir->op2) && hisubst[ir->op2])
	nir->op2 = ir->op2;
    } else
#endif
    if (ir->o == IR_CONV) {  /* See above, too. */
      IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK);
#if LJ_32 && LJ_HASFFI
      if (st == IRT_I64 || st == IRT_U64) {  /* Conversion from 64 bit int. */
#if LJ_SOFTFP
	if (irt_isfloat(ir->t)) {
	  split_call_l(J, hisubst, oir, ir,
		       st == IRT_I64 ? IRCALL_fp64_l2f : IRCALL_fp64_ul2f);
	  J->cur.nins--;  /* Drop unused HIOP. */
	}
#else
	if (irt_isfp(ir->t)) {  /* 64 bit integer to FP conversion. */
	  ir->prev = split_emit(J, IRT(IR_HIOP, irt_type(ir->t)),
				hisubst[ir->op1], nref);
	}
#endif
	else {  /* Truncate to lower 32 bits. */
	fwdlo:
	  ir->prev = nir->op1;  /* Forward loword. */
	  /* Replace with NOP to avoid messing up the snapshot logic. */
	  nir->ot = IRT(IR_NOP, IRT_NIL);
	  nir->op1 = nir->op2 = 0;
	}
      }
#endif
#if LJ_SOFTFP && LJ_32 && LJ_HASFFI
      else if (irt_isfloat(ir->t)) {
	if (st == IRT_NUM) {
	  split_call_l(J, hisubst, oir, ir, IRCALL_softfp_d2f);
	  J->cur.nins--;  /* Drop unused HIOP. */
	} else {
	  nir->o = IR_CALLN;
	  nir->op2 = st == IRT_INT ? IRCALL_softfp_i2f : IRCALL_softfp_ui2f;
	}
      } else if (st == IRT_FLOAT) {
	nir->o = IR_CALLN;
	nir->op2 = irt_isint(ir->t) ? IRCALL_softfp_f2i : IRCALL_softfp_f2ui;
      } else
#endif
#if LJ_SOFTFP
      if (st == IRT_NUM || (LJ_32 && LJ_HASFFI && st == IRT_FLOAT)) {
	if (irt_isguard(ir->t)) {
	  lua_assert(st == IRT_NUM && irt_isint(ir->t));
	  J->cur.nins--;
	  ir->prev = split_num2int(J, nir->op1, hisubst[ir->op1], 1);
	} else {
	  split_call_l(J, hisubst, oir, ir,
#if LJ_32 && LJ_HASFFI
	    st == IRT_NUM ?
	      (irt_isint(ir->t) ? IRCALL_softfp_d2i : IRCALL_softfp_d2ui) :
	      (irt_isint(ir->t) ? IRCALL_softfp_f2i : IRCALL_softfp_f2ui)
#else
	    IRCALL_softfp_d2i
#endif
	  );
	  J->cur.nins--;  /* Drop unused HIOP. */
	}
      }
#endif
    } else if (ir->o == IR_CALLXS) {
      IRRef hiref;
    split_call:
      hiref = hisubst[ir->op1];
      if (hiref) {
	IROpT ot = nir->ot;
	IRRef op2 = nir->op2;
	nir->ot = IRT(IR_CARG, IRT_NIL);
#if LJ_LE
	nir->op2 = hiref;
#else
	nir->op2 = nir->op1; nir->op1 = hiref;
#endif
	ir->prev = nref = split_emit(J, ot, nref, op2);
      }
      if (LJ_SOFTFP ? irt_is64(ir->t) : irt_isint64(ir->t))
	hi = split_emit(J,
	  IRT(IR_HIOP, (LJ_SOFTFP && irt_isnum(ir->t)) ? IRT_SOFTFP : IRT_INT),
	  nref, nref);
    } else if (ir->o == IR_CARG) {
      IRRef hiref = hisubst[ir->op1];
      if (hiref) {
	IRRef op2 = nir->op2;
#if LJ_LE
	nir->op2 = hiref;
#else
	nir->op2 = nir->op1; nir->op1 = hiref;
#endif
	ir->prev = nref = split_emit(J, IRT(IR_CARG, IRT_NIL), nref, op2);
	nir = IR(nref);
      }
      hiref = hisubst[ir->op2];
      if (hiref) {
#if !LJ_TARGET_X86
	int carg = 0;
	IRIns *cir;
	for (cir = IR(nir->op1); cir->o == IR_CARG; cir = IR(cir->op1))
	  carg++;
	if ((carg & 1) == 0) {  /* Align 64 bit arguments. */
	  IRRef op2 = nir->op2;
	  nir->op2 = REF_NIL;
	  nref = split_emit(J, IRT(IR_CARG, IRT_NIL), nref, op2);
	  nir = IR(nref);
	}
#endif
#if LJ_BE
	{ IRRef tmp = nir->op2; nir->op2 = hiref; hiref = tmp; }
#endif
	ir->prev = split_emit(J, IRT(IR_CARG, IRT_NIL), nref, hiref);
      }
    } else if (ir->o == IR_CNEWI) {
      if (hisubst[ir->op2])
	split_emit(J, IRT(IR_HIOP, IRT_NIL), nref, hisubst[ir->op2]);
    } else if (ir->o == IR_LOOP) {
      J->loopref = nref;  /* Needed by assembler. */
    }
    hisubst[ref] = hi;  /* Store hiword substitution. */
  }
  if (snref == nins) {  /* Substitution for last snapshot. */
    snap->ref = J->cur.nins;
    split_subst_snap(J, snap, oir);
  }

  /* Add PHI marks. */
  for (ref = J->cur.nins-1; ref >= REF_FIRST; ref--) {
    IRIns *ir = IR(ref);
    if (ir->o != IR_PHI) break;
    if (!irref_isk(ir->op1)) irt_setphi(IR(ir->op1)->t);
    if (ir->op2 > J->loopref) irt_setphi(IR(ir->op2)->t);
  }
}
Example #17
0
/* Transform the old IR to the new IR. */
static void split_ir(jit_State *J)
{
  IRRef nins = J->cur.nins, nk = J->cur.nk;
  MSize irlen = nins - nk;
  MSize need = (irlen+1)*(sizeof(IRIns) + sizeof(IRRef1));
  IRIns *oir = (IRIns *)lj_str_needbuf(J->L, &G(J->L)->tmpbuf, need);
  IRRef1 *hisubst;
  IRRef ref;

  /* Copy old IR to buffer. */
  memcpy(oir, IR(nk), irlen*sizeof(IRIns));
  /* Bias hiword substitution table and old IR. Loword kept in field prev. */
  hisubst = (IRRef1 *)&oir[irlen] - nk;
  oir -= nk;

  /* Remove all IR instructions, but retain IR constants. */
  J->cur.nins = REF_FIRST;

  /* Process constants and fixed references. */
  for (ref = nk; ref <= REF_BASE; ref++) {
    IRIns *ir = &oir[ref];
    if (ir->o == IR_KINT64) {  /* Split up 64 bit constant. */
      TValue tv = *ir_k64(ir);
      ir->prev = lj_ir_kint(J, (int32_t)tv.u32.lo);
      hisubst[ref] = lj_ir_kint(J, (int32_t)tv.u32.hi);
    } else {
      ir->prev = ref;  /* Identity substitution for loword. */
      hisubst[ref] = 0;
    }
  }

  /* Process old IR instructions. */
  for (ref = REF_FIRST; ref < nins; ref++) {
    IRIns *ir = &oir[ref];
    IRRef nref = lj_ir_nextins(J);
    IRIns *nir = IR(nref);
    IRRef hi = 0;

    /* Copy-substitute old instruction to new instruction. */
    nir->op1 = ir->op1 < nk ? ir->op1 : oir[ir->op1].prev;
    nir->op2 = ir->op2 < nk ? ir->op2 : oir[ir->op2].prev;
    ir->prev = nref;  /* Loword substitution. */
    nir->o = ir->o;
    nir->t.irt = ir->t.irt & ~(IRT_MARK|IRT_ISPHI);
    hisubst[ref] = 0;

    /* Split 64 bit instructions. */
    if (irt_isint64(ir->t)) {
      IRRef hiref = hisubst[ir->op1];
      nir->t.irt = IRT_INT | (nir->t.irt & IRT_GUARD);  /* Turn into INT op. */
      switch (ir->o) {
      case IR_ADD:
      case IR_SUB:
	/* Use plain op for hiword if loword cannot produce a carry/borrow. */
	if (irref_isk(nir->op2) && IR(nir->op2)->i == 0) {
	  ir->prev = nir->op1;  /* Pass through loword. */
	  nir->op1 = hiref; nir->op2 = hisubst[ir->op2];
	  hi = nref;
	  break;
	}
	/* fallthrough */
      case IR_NEG:
	hi = split_emit(J, IRTI(IR_HIOP), hiref, hisubst[ir->op2]);
	break;
      case IR_MUL:
	hi = split_call64(J, hisubst, oir, ir, IRCALL_lj_carith_mul64);
	break;
      case IR_DIV:
	hi = split_call64(J, hisubst, oir, ir,
			  irt_isi64(ir->t) ? IRCALL_lj_carith_divi64 :
					     IRCALL_lj_carith_divu64);
	break;
      case IR_MOD:
	hi = split_call64(J, hisubst, oir, ir,
			  irt_isi64(ir->t) ? IRCALL_lj_carith_modi64 :
					     IRCALL_lj_carith_modu64);
	break;
      case IR_POW:
	hi = split_call64(J, hisubst, oir, ir,
			  irt_isi64(ir->t) ? IRCALL_lj_carith_powi64 :
					     IRCALL_lj_carith_powu64);
	break;
      case IR_FLOAD:
	lua_assert(ir->op2 == IRFL_CDATA_INT64);
	hi = split_emit(J, IRTI(IR_FLOAD), nir->op1, IRFL_CDATA_INT64HI);
#if LJ_BE
	ir->prev = hi; hi = nref;
#endif
	break;
      case IR_XLOAD:
	hi = split_emit(J, IRTI(IR_XLOAD), split_ptr(J, nir->op1), ir->op2);
#if LJ_BE
	ir->prev = hi; hi = nref;
#endif
	break;
      case IR_XSTORE:
#if LJ_LE
	hiref = hisubst[ir->op2];
#else
	hiref = nir->op2; nir->op2 = hisubst[ir->op2];
#endif
	split_emit(J, IRTI(IR_XSTORE), split_ptr(J, nir->op1), hiref);
	break;
      case IR_CONV: {  /* Conversion to 64 bit integer. Others handled below. */
	IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK);
	if (st == IRT_NUM || st == IRT_FLOAT) {  /* FP to 64 bit int conv. */
	  hi = split_emit(J, IRTI(IR_HIOP), nir->op1, nref);
	} else if (st == IRT_I64 || st == IRT_U64) {  /* 64/64 bit cast. */
	  /* Drop cast, since assembler doesn't care. */
	  goto fwdlo;
	} else if ((ir->op2 & IRCONV_SEXT)) {  /* Sign-extend to 64 bit. */
	  IRRef k31 = lj_ir_kint(J, 31);
	  nir = IR(nref);  /* May have been reallocated. */
	  ir->prev = nir->op1;  /* Pass through loword. */
	  nir->o = IR_BSAR;  /* hi = bsar(lo, 31). */
	  nir->op2 = k31;
	  hi = nref;
	} else {  /* Zero-extend to 64 bit. */
	  hi = lj_ir_kint(J, 0);
	  goto fwdlo;
	}
	break;
	}
      case IR_PHI: {
	IRRef hiref2;
	if ((irref_isk(nir->op1) && irref_isk(nir->op2)) ||
	    nir->op1 == nir->op2)
	  J->cur.nins--;  /* Drop useless PHIs. */
	hiref2 = hisubst[ir->op2];
	if (!((irref_isk(hiref) && irref_isk(hiref2)) || hiref == hiref2))
	  split_emit(J, IRTI(IR_PHI), hiref, hiref2);
	break;
	}
      default:
	lua_assert(ir->o <= IR_NE);  /* Comparisons. */
	split_emit(J, IRTGI(IR_HIOP), hiref, hisubst[ir->op2]);
	break;
      }
    } else if (ir->o == IR_CONV) {  /* See above, too. */
      IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK);
      if (st == IRT_I64 || st == IRT_U64) {  /* Conversion from 64 bit int. */
	if (irt_isfp(ir->t)) {  /* 64 bit integer to FP conversion. */
	  ir->prev = split_emit(J, IRT(IR_HIOP, irt_type(ir->t)),
				hisubst[ir->op1], nref);
	} else {  /* Truncate to lower 32 bits. */
	fwdlo:
	  ir->prev = nir->op1;  /* Forward loword. */
	  /* Replace with NOP to avoid messing up the snapshot logic. */
	  nir->ot = IRT(IR_NOP, IRT_NIL);
	  nir->op1 = nir->op2 = 0;
	}
      }
    } else if (ir->o == IR_CNEWI) {
      if (hisubst[ir->op2])
	split_emit(J, IRT(IR_HIOP, IRT_NIL), nref, hisubst[ir->op2]);
    } else if (ir->o == IR_LOOP) {
      J->loopref = nref;  /* Needed by assembler. */
    }
    hisubst[ref] = hi;  /* Store hiword substitution. */
  }

  /* Add PHI marks. */
  for (ref = J->cur.nins-1; ref >= REF_FIRST; ref--) {
    IRIns *ir = IR(ref);
    if (ir->o != IR_PHI) break;
    if (!irref_isk(ir->op1)) irt_setphi(IR(ir->op1)->t);
    if (ir->op2 > J->loopref) irt_setphi(IR(ir->op2)->t);
  }

  /* Substitute snapshot maps. */
  oir[nins].prev = J->cur.nins;  /* Substitution for last snapshot. */
  {
    SnapNo i, nsnap = J->cur.nsnap;
    for (i = 0; i < nsnap; i++) {
      SnapShot *snap = &J->cur.snap[i];
      SnapEntry *map = &J->cur.snapmap[snap->mapofs];
      MSize n, nent = snap->nent;
      snap->ref = oir[snap->ref].prev;
      for (n = 0; n < nent; n++) {
	SnapEntry sn = map[n];
	map[n] = ((sn & 0xffff0000) | oir[snap_ref(sn)].prev);
      }
    }
  }
}