Example #1
0
bool Triangulate::Snip(
    const Vector2fVector &contour, int u, int v, int w, int n, int *V) {
  int p;
  float Ax, Ay, Bx, By, Cx, Cy, Px, Py;

  Ax = contour[V[u]].x;
  Ay = contour[V[u]].y;

  Bx = contour[V[v]].x;
  By = contour[V[v]].y;

  Cx = contour[V[w]].x;
  Cy = contour[V[w]].y;

  if (EPSILON > (((Bx - Ax) * (Cy - Ay)) - ((By - Ay) * (Cx - Ax))))
    return false;

  for (p = 0; p < n; p++) {
    if ((p == u) || (p == v) || (p == w)) continue;
    Px = contour[V[p]].x;
    Py = contour[V[p]].y;
    if (InsideTriangle(Ax, Ay, Bx, By, Cx, Cy, Px, Py)) return false;
  }

  return true;
}
Example #2
0
bool HSTriangular::Snip( const HSVector2dV &contour,int u,int v,int w,int Vsize,int *V )
{
	int p;
	float Ax, Ay, Bx, By, Cx, Cy, Px, Py;

	Ax = contour[V[u]].GetX();
	Ay = contour[V[u]].GetY();

	Bx = contour[V[v]].GetX();
	By = contour[V[v]].GetY();

	Cx = contour[V[w]].GetX();
	Cy = contour[V[w]].GetY();
	
	if ( HS_EPSILON > (((Bx-Ax)*(Cy-Ay)) - ((By-Ay)*(Cx-Ax))) ) return false;

	for (p=0;p<Vsize;p++)
	{
		if( (p == u) || (p == v) || (p == w) ) continue;
		Px = contour[V[p]].GetX();
		Py = contour[V[p]].GetY();
		if (InsideTriangle(Ax,Ay,Bx,By,Cx,Cy,Px,Py)) return false;
	}

	return true;
}
Example #3
0
bool IsEar(const Polygon& poly, int u, int v, int w, int n, int *verts)
{
    int p;
    Point U, V, W, P;

    U = poly[verts[u]];
    V = poly[verts[v]];
    W = poly[verts[w]];

    if ((V.x - U.x) * (W.y - U.y) - (V.y - U.y) * (W.x - U.x) < EPS) {
        return false;
    }

    for (p = 0; p < n; p++) {
        if (p == u || p == v || p == w) {
            continue;
        }

        P = poly[verts[p]];
        if (InsideTriangle(U, V, W, P)) {
            return false;
        }
    }

    return true;
}
Example #4
0
static unsigned
_PolygonToTriangles(const PT *points, unsigned num_points,
                    GLushort *triangles, typename PT::scalar_type min_distance)
{
  // no redundant start/end please
  if (num_points >= 1 && points[0] == points[num_points - 1])
    num_points--;

  if (num_points < 3)
    return 0;

  assert(num_points < 65536);
  // next vertex pointer
  auto next = new GLushort[num_points];
  // index of the first vertex
  GLushort start = 0;

  // initialize next pointer counterclockwise
  if (PolygonRotatesLeft(points, num_points)) {
    for (unsigned i = 0; i < num_points-1; i++)
      next[i] = i + 1;
    next[num_points - 1] = 0;
  } else {
    next[0] = num_points - 1;
    for (unsigned i = 1; i < num_points; i++)
      next[i] = i - 1;
  }

  // thinning
  if (min_distance > 0) {
    for (unsigned a = start, b = next[a], c = next[b], heat = 0;
         num_points > 3 && heat < num_points;
         a = b, b = c, c = next[c], heat++) {
      bool point_removeable = TriangleEmpty(points[a], points[b], points[c]);
      if (!point_removeable) {
        typename PT::scalar_type distance = ManhattanDistance(points[a],
                                                              points[b]);
        if (distance < min_distance) {
          point_removeable = true;
          if (distance > 0) {
            for (unsigned p = next[c]; p != a; p = next[p]) {
              if (InsideTriangle(points[p], points[a], points[b], points[c])) {
                point_removeable = false;
                break;
              }
            }
          }
        }
      }
      if (point_removeable) {
        // remove node b from polygon
        if (b == start)
          // keep track of the smallest index
          start = std::min(a, c);

        next[a] = c;
        num_points--;
        // 'a' should stay the same in the next loop
        b = a;
        // reset heat
        heat = 0;
      }
    }
    //LogDebug(_T("polygon thinning (%u) removed %u of %u vertices"),
    //         min_distance, orig_num_points-num_points, orig_num_points);
  }

  // triangulation
  auto t = triangles;
  for (unsigned a = start, b = next[a], c = next[b], heat = 0;
       num_points > 2; a = b, b = c, c = next[c]) {
    typename PT::product_type bendiness =
      LeftBend(points[a], points[b], points[c]);

    // left bend, spike or line with a redundant point in the middle
    bool ear_cuttable = (bendiness >= 0);

    if (bendiness > 0) {
      // left bend
      for (unsigned prev_p = c, p = next[c]; p != a;
           prev_p = p, p = next[p]) {
        typename PT::product_type ab = PointLeftOfLine(points[p], points[a],
                                                       points[b]);
        typename PT::product_type bc = PointLeftOfLine(points[p], points[b],
                                                       points[c]);
        typename PT::product_type ca = PointLeftOfLine(points[p], points[c],
                                                       points[a]);
        if (ab > 0 && bc > 0 && ca > 0) {
          // p is inside a,b,c
          ear_cuttable = false;
          break;
        } else if (ab >= 0 && bc >= 0 && ca >= 0) {
          // p is on one or two edges of a,b,c
          bool outside_ab = (ab == 0) &&
            PointLeftOfLine(points[prev_p], points[a], points[b]) <= 0;
          bool outside_bc = (bc == 0) &&
            PointLeftOfLine(points[prev_p], points[b], points[c]) <= 0;
          bool outside_ca = (ca == 0) &&
            PointLeftOfLine(points[prev_p], points[c], points[a]) <= 0;
          if (!(outside_ab || outside_bc || outside_ca)) {
            // line p,prev_p intersects with triangle a,b,c
            ear_cuttable = false;
            break;
          }

          outside_ab = (ab == 0) &&
            PointLeftOfLine(points[next[p]], points[a], points[b]) <= 0;
          outside_bc = (bc == 0) &&
            PointLeftOfLine(points[next[p]], points[b], points[c]) <= 0;
          outside_ca = (ca == 0) &&
            PointLeftOfLine(points[next[p]], points[c], points[a]) <= 0;
          if (!(outside_ab || outside_bc || outside_ca)) {
            // line p,next[p] intersects with triangle a,b,c
            ear_cuttable = false;
            break;
          }
        }
      }
      if (ear_cuttable) {
        // save triangle indices
        *t++ = a;
        *t++ = b;
        *t++ = c;
      }
    }

    if (ear_cuttable) {
      // remove node b from polygon
      next[a] = c;
      num_points--;
      // 'a' should stay the same in the next loop
      b = a;
      // reset heat
      heat = 0;
    }

    if (heat++ > num_points) {
      // if polygon edges overlap we may loop endlessly
      //LogDebug(_T("polygon_to_triangle: bad polygon"));
      delete[] next;
      return 0;
    }
  }

  delete[] next;
  return t - triangles;
}
Example #5
0
static unsigned
_PolygonToTriangles(const PT *points, unsigned num_points,
                    GLushort *triangles, unsigned min_distance)
#endif
{
  // no redundant start/end please
  if (num_points >= 1 &&
      points[0].x == points[num_points - 1].x &&
      points[0].y == points[num_points - 1].y)
    num_points--;

  if (num_points < 3)
    return 0;

  assert(num_points < 65536);
  // next vertex pointer
  GLushort *next = new GLushort[num_points];
  // index of the first vertex
  GLushort start = 0;

  // initialize next pointer counterclockwise
  if (PolygonRotatesLeft(points, num_points)) {
    for (unsigned i = 0; i < num_points-1; i++)
      next[i] = i + 1;
    next[num_points - 1] = 0;
  } else {
    next[0] = num_points - 1;
    for (unsigned i = 1; i < num_points; i++)
      next[i] = i - 1;
  }

  // thinning
  if (min_distance > 0) {
    for (unsigned a = start, b = next[a], c = next[b], heat = 0;
         num_points > 3 && heat < num_points;
         a = b, b = c, c = next[c], heat++) {
      bool point_removeable = TriangleEmpty(points[a], points[b], points[c]);
      if (!point_removeable) {
        unsigned distance = manhattan_distance(points[a], points[b]);
        if (distance < min_distance) {
          point_removeable = true;
          if (distance != 0) {
            for (unsigned p = next[c]; p != a; p = next[p]) {
              if (InsideTriangle(points[p], points[a], points[b], points[c])) {
                point_removeable = false;
                break;
              }
            }
          }
        }
      }
      if (point_removeable) {
        // remove node b from polygon
        if (b == start)
          // keep track of the smallest index
          start = std::min(a, c);

        next[a] = c;
        num_points--;
        // 'a' should stay the same in the next loop
        b = a;
        // reset heat
        heat = 0;
      }
    }
    //LogDebug(_T("polygon thinning (%u) removed %u of %u vertices"),
    //         min_distance, orig_num_points-num_points, orig_num_points);
  }

  // triangulation
  GLushort *t = triangles;
  for (unsigned a = start, b = next[a], c = next[b], heat = 0;
       num_points > 2; a = b, b = c, c = next[c]) {
    if (LeftBend(points[a], points[b], points[c])) {
      bool ear_cuttable = true;
      for (unsigned p = next[c]; p != a; p = next[p]) {
        if (InsideTriangle(points[p], points[a], points[b], points[c])) {
          ear_cuttable = false;
          break;
        }
      }
      if (ear_cuttable) {
        // save triangle indices
        *t++ = a;
        *t++ = b;
        *t++ = c;
        // remove node b from polygon
        next[a] = c;
        num_points--;
        // 'a' should stay the same in the next loop
        b = a;
        // reset heat
        heat = 0;
      }
    }
    if (heat++ > num_points) {
      // if polygon edges overlap we may loop endlessly
      //LogDebug(_T("polygon_to_triangle: bad polygon"));
      delete[] next;
      return 0;
    }
  }

  delete[] next;
  return t - triangles;
}