/** Returns a boolean indicating if the firmware configuration interface is available or not. This function may change fw_cfg state. @retval TRUE The interface is available @retval FALSE The interface is not available **/ BOOLEAN EFIAPI QemuFwCfgIsAvailable ( VOID ) { return InternalQemuFwCfgIsAvailable (); }
/** Selects a firmware configuration item for reading. Following this call, any data read from this item will start from the beginning of the configuration item's data. @param[in] QemuFwCfgItem Firmware Configuration item to read **/ VOID EFIAPI QemuFwCfgSelectItem ( IN FIRMWARE_CONFIG_ITEM QemuFwCfgItem ) { if (InternalQemuFwCfgIsAvailable ()) { MmioWrite16 (mFwCfgSelectorAddress, SwapBytes16 ((UINT16)QemuFwCfgItem)); } }
RETURN_STATUS EFIAPI QemuFwCfgInitialize ( VOID ) { EFI_STATUS Status; FDT_CLIENT_PROTOCOL *FdtClient; CONST UINT64 *Reg; UINT32 RegSize; UINTN AddressCells, SizeCells; UINT64 FwCfgSelectorAddress; UINT64 FwCfgSelectorSize; UINT64 FwCfgDataAddress; UINT64 FwCfgDataSize; UINT64 FwCfgDmaAddress; UINT64 FwCfgDmaSize; Status = gBS->LocateProtocol (&gFdtClientProtocolGuid, NULL, (VOID **)&FdtClient); ASSERT_EFI_ERROR (Status); Status = FdtClient->FindCompatibleNodeReg (FdtClient, "qemu,fw-cfg-mmio", (CONST VOID **)&Reg, &AddressCells, &SizeCells, &RegSize); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_WARN, "%a: No 'qemu,fw-cfg-mmio' compatible DT node found (Status == %r)\n", __FUNCTION__, Status)); return EFI_SUCCESS; } ASSERT (AddressCells == 2); ASSERT (SizeCells == 2); ASSERT (RegSize == 2 * sizeof (UINT64)); FwCfgDataAddress = SwapBytes64 (Reg[0]); FwCfgDataSize = 8; FwCfgSelectorAddress = FwCfgDataAddress + FwCfgDataSize; FwCfgSelectorSize = 2; // // The following ASSERT()s express // // Address + Size - 1 <= MAX_UINTN // // for both registers, that is, that the last byte in each MMIO range is // expressible as a MAX_UINTN. The form below is mathematically // equivalent, and it also prevents any unsigned overflow before the // comparison. // ASSERT (FwCfgSelectorAddress <= MAX_UINTN - FwCfgSelectorSize + 1); ASSERT (FwCfgDataAddress <= MAX_UINTN - FwCfgDataSize + 1); mFwCfgSelectorAddress = FwCfgSelectorAddress; mFwCfgDataAddress = FwCfgDataAddress; DEBUG ((EFI_D_INFO, "Found FwCfg @ 0x%Lx/0x%Lx\n", FwCfgSelectorAddress, FwCfgDataAddress)); if (SwapBytes64 (Reg[1]) >= 0x18) { FwCfgDmaAddress = FwCfgDataAddress + 0x10; FwCfgDmaSize = 0x08; // // See explanation above. // ASSERT (FwCfgDmaAddress <= MAX_UINTN - FwCfgDmaSize + 1); DEBUG ((EFI_D_INFO, "Found FwCfg DMA @ 0x%Lx\n", FwCfgDmaAddress)); } else { FwCfgDmaAddress = 0; } if (InternalQemuFwCfgIsAvailable ()) { UINT32 Signature; QemuFwCfgSelectItem (QemuFwCfgItemSignature); Signature = QemuFwCfgRead32 (); if (Signature == SIGNATURE_32 ('Q', 'E', 'M', 'U')) { // // For DMA support, we require the DTB to advertise the register, and the // feature bitmap (which we read without DMA) to confirm the feature. // if (FwCfgDmaAddress != 0) { UINT32 Features; QemuFwCfgSelectItem (QemuFwCfgItemInterfaceVersion); Features = QemuFwCfgRead32 (); if ((Features & BIT1) != 0) { mFwCfgDmaAddress = FwCfgDmaAddress; InternalQemuFwCfgReadBytes = DmaReadBytes; } } } else { mFwCfgSelectorAddress = 0; mFwCfgDataAddress = 0; } } return RETURN_SUCCESS; }