Example #1
0
// This is the 'final' version of the AlmostEqualUlps function.
// The optional checks are included for completeness, but in many
// cases they are not necessary, or even not desirable.
bool AlmostEqualUlpsFinal(float A, float B, int maxUlps)
{
    // There are several optional checks that you can do, depending
    // on what behavior you want from your floating point comparisons.
    // These checks should not be necessary and they are included
    // mainly for completeness.

#ifdef  INFINITYCHECK
    // If A or B are infinity (positive or negative) then
    // only return true if they are exactly equal to each other -
    // that is, if they are both infinities of the same sign.
    // This check is only needed if you will be generating
    // infinities and you don't want them 'close' to numbers
    // near FLT_MAX.
    if (IsInfinite(A) || IsInfinite(B))
        return A == B;
#endif

#ifdef  NANCHECK
    // If A or B are a NAN, return false. NANs are equal to nothing,
    // not even themselves.
    // This check is only needed if you will be generating NANs
    // and you use a maxUlps greater than 4 million or you want to
    // ensure that a NAN does not equal itself.
    if (IsNan(A) || IsNan(B))
        return false;
#endif

#ifdef  SIGNCHECK
    // After adjusting floats so their representations are lexicographically
    // ordered as twos-complement integers a very small positive number
    // will compare as 'close' to a very small negative number. If this is
    // not desireable, and if you are on a platform that supports
    // subnormals (which is the only place the problem can show up) then
    // you need this check.
    // The check for A == B is because zero and negative zero have different
    // signs but are equal to each other.
    if (Sign(A) != Sign(B))
        return A == B;
#endif

    int aInt = *(int*)&A;
    // Make aInt lexicographically ordered as a twos-complement int
    if (aInt < 0)
        aInt = 0x80000000 - aInt;
    // Make bInt lexicographically ordered as a twos-complement int
    int bInt = *(int*)&B;
    if (bInt < 0)
        bInt = 0x80000000 - bInt;

    // Now we can compare aInt and bInt to find out how far apart A and B
    // are.
    int intDiff = abs(aInt - bInt);
    if (intDiff <= maxUlps)
        return true;
    return false;
}
Example #2
0
Value Iterator::FindMinMaxIndices(Environment &env, bool maxFlag)
{
	Signal &sig = env.GetSignal();
	if (IsInfinite()) {
		SetError_InfiniteNotAllowed(sig);
		return Value::Nil;
	}
	Value valueHit;
	if (!Next(env, valueHit)) return Value::Nil;
	Value result;
	int idxHit = GetIndexCur();
	Object_list *pObjListResult = result.InitAsList(env);
	pObjListResult->Add(Value(idxHit));
	Value value;
	while (Next(env, value)) {
		int cmp = Value::Compare(env, valueHit, value);
		if (sig.IsSignalled()) return Value::Nil;
		if (maxFlag) cmp = -cmp;
		if (cmp > 0) {
			int idxHit = GetIndexCur();
			valueHit = value;
			pObjListResult->Clear();
			pObjListResult->Add(Value(idxHit));
		} else if (cmp == 0) {
			int idxHit = GetIndexCur();
			pObjListResult->Add(Value(static_cast<Number>(idxHit)));
		}
	}
	if (sig.IsSignalled()) return Value::Nil;
	return result;
}
Example #3
0
Value Iterator::Reduce(Environment &env, Value valueAccum, const Function *pFuncBlock)
{
	Signal &sig = env.GetSignal();
	if (IsInfinite()) {
		SetError_InfiniteNotAllowed(sig);
		return Value::Nil;
	}
	Value value;
	while (Next(env, value)) {
		AutoPtr<Argument> pArgSub(new Argument(pFuncBlock));
		if (!pArgSub->StoreValue(env, value, valueAccum)) return Value::Nil;
		Value result = pFuncBlock->Eval(env, *pArgSub);
		if (!sig.IsSignalled()) {
			// nothing to do
		} else if (sig.IsBreak()) {
			result = sig.GetValue();
			sig.ClearSignal();
			if (result.IsValid()) return result;
			return valueAccum;
		} else if (sig.IsContinue()) {
			result = sig.GetValue();
			sig.ClearSignal();
			if (result.IsInvalid()) continue;
		} else if (sig.IsReturn()) {
			return Value::Nil;
		} else {
			return Value::Nil;
		}
		valueAccum = result;
	}
	if (sig.IsSignalled()) return Value::Nil;
	return valueAccum;
}
Example #4
0
Value Iterator::ToList(Environment &env, bool alwaysListFlag, bool excludeNilFlag)
{
	Signal &sig = env.GetSignal();
	if (IsInfinite()) {
		SetError_InfiniteNotAllowed(sig);
		return Value::Nil;
	}
	Value result;
	Object_list *pObjList = nullptr;
	size_t cnt = 0;
	Value value;
	if (alwaysListFlag) {
		pObjList = result.InitAsList(env);
	}
	while (Next(env, value)) {
		if (pObjList == nullptr && !value.IsUndefined()) {
			pObjList = result.InitAsList(env, cnt, Value::Nil);
		}
		if (value.IsValid()) {
			if (pObjList == nullptr) {
				pObjList = result.InitAsList(env, cnt, Value::Nil);
			}
			pObjList->Add(value);
		} else if (excludeNilFlag) {
			// nothing to do
		} else if (pObjList != nullptr) {
			pObjList->Add(value);
		}
		cnt++;
	}
	if (sig.IsSignalled()) return Value::Nil;
	return result;
}
Example #5
0
size_t Iterator::Count(Environment &env, const Value &criteria)
{
	Signal &sig = env.GetSignal();
	if (IsInfinite()) {
		SetError_InfiniteNotAllowed(sig);
		return 0;
	}
	size_t cnt = 0;
	if (criteria.Is_function()) {
		const Function *pFunc = criteria.GetFunction();
		Value value;
		while (Next(env, value)) {
			AutoPtr<Argument> pArg(new Argument(pFunc));
			if (!pArg->StoreValue(env, value)) return 0;
			Value valueFlag = pFunc->Eval(env, *pArg);
			if (sig.IsSignalled()) return 0;
			if (valueFlag.GetBoolean()) cnt++;
		}
		if (sig.IsSignalled()) return 0;
	} else {
		Value value;
		while (Next(env, value)) {
			int cmp = Value::Compare(env, value, criteria);
			if (sig.IsSignalled()) return 0;
			if (cmp == 0) cnt++;
		}
	}
	return cnt;
}
Example #6
0
void
SourceBuffer::DoRangeRemoval(double aStart, double aEnd)
{
  MSE_DEBUG("DoRangeRemoval(%f, %f)", aStart, aEnd);
  if (mTrackBuffer && !IsInfinite(aStart)) {
    mTrackBuffer->RangeRemoval(media::Microseconds::FromSeconds(aStart),
                               media::Microseconds::FromSeconds(aEnd));
  }
}
Example #7
0
Value Iterator::StandardDeviation(Environment &env, size_t &cnt, bool populationFlag)
{
	Signal &sig = env.GetSignal();
	if (IsInfinite()) {
		SetError_InfiniteNotAllowed(sig);
		return Value::Nil;
	}
	Value valueVar = Clone()->Variance(env, cnt, populationFlag);
	if (!valueVar.Is_number()) return Value::Nil;
	return Value(::sqrt(valueVar.GetNumber()));
}
Example #8
0
bool Iterator::Consume(Environment &env)
{
	Signal &sig = env.GetSignal();
	if (IsInfinite()) {
		SetError_InfiniteNotAllowed(sig);
		return false;
	}
	Value value;
	while (Next(env, value)) ;
	return !sig.IsSignalled();
}
Example #9
0
size_t Iterator::FindTrue(Environment &env, Value &value)
{
	Signal &sig = env.GetSignal();
	if (IsInfinite()) {
		SetError_InfiniteNotAllowed(sig);
		return 0;
	}
	while (Next(env, value)) {
		if (value.GetBoolean()) return GetIndexCur();
	}
	return InvalidSize;
}
Example #10
0
size_t Iterator::Find(Environment &env, const Value &criteria, Value &value)
{
	Signal &sig = env.GetSignal();
	if (criteria.Is_function()) {
		if (IsInfinite()) {
			SetError_InfiniteNotAllowed(sig);
			return InvalidSize;
		}
		const Function *pFunc = criteria.GetFunction();
		while (Next(env, value)) {
			AutoPtr<Argument> pArg(new Argument(pFunc));
			if (!pArg->StoreValue(env, value)) return InvalidSize;
			Value valueFlag = pFunc->Eval(env, *pArg);
			if (sig.IsSignalled()) return InvalidSize;
			if (valueFlag.GetBoolean()) return GetIndexCur();
		}
		if (sig.IsSignalled()) return InvalidSize;
	} else if (criteria.Is_list() || criteria.Is_iterator()) {
		AutoPtr<Iterator> pIteratorCriteria(criteria.CreateIterator(sig));
		if (sig.IsSignalled()) return InvalidSize;
		if (IsInfinite() && pIteratorCriteria->IsInfinite()) {
			SetError_InfiniteNotAllowed(sig);
			return InvalidSize;
		}
		while (Next(env, value)) {
			Value valueCriteria;
			if (!pIteratorCriteria->Next(env, valueCriteria)) break;
			if (valueCriteria.GetBoolean()) return GetIndexCur();
		}
		return InvalidSize;
	} else {
		while (Next(env, value)) {
			//int cmp = Value::Compare(env, value, criteria);
			//if (sig.IsSignalled()) return InvalidSize;
			//if (cmp == 0) return GetIndexCur();
			if (value.Is(criteria)) return GetIndexCur();
		}
	}
	return InvalidSize;
}
Example #11
0
size_t Iterator::CountTrue(Environment &env)
{
	Signal &sig = env.GetSignal();
	if (IsInfinite()) {
		SetError_InfiniteNotAllowed(sig);
		return 0;
	}
	size_t cnt = 0;
	Value value;
	while (Next(env, value)) {
		if (value.GetBoolean()) cnt++;
	}
	return cnt;
}
Example #12
0
size_t Iterator::GetLengthEx(Environment &env)
{
	if (IsFinitePredictable()) return GetLength();
	Signal &sig = env.GetSignal();
	if (IsInfinite()) {
		SetError_InfiniteNotAllowed(sig);
		return 0;
	}
	size_t len = 0;
	AutoPtr<Iterator> pIterator(Clone());
	Value value;
	for ( ; pIterator->Next(env, value); len++) ;
	return sig.IsSignalled()? 0 : len;
}
Example #13
0
bool Iterator::DoesContain(Environment &env, const Value &value)
{
	Signal &sig = env.GetSignal();
	if (IsInfinite()) {
		SetError_InfiniteNotAllowed(sig);
		return false;
	}
	Value valueToFind;
	while (Next(env, valueToFind)) {
		int cmp = Value::Compare(env, value, valueToFind);
		if (sig.IsSignalled()) return false;
		if (cmp == 0) return true;
	}
	return false;
}
Example #14
0
Value Iterator::Or(Environment &env)
{
	Signal &sig = env.GetSignal();
	if (IsInfinite()) {
		SetError_InfiniteNotAllowed(sig);
		return Value::Nil;
	}
	Value value;
	if (!Next(env, value)) return Value::Nil;
	if (value.GetBoolean()) return Value(true);
	while (Next(env, value)) {
		if (value.GetBoolean()) return Value(true);
	}
	if (sig.IsSignalled()) return Value::Nil;
	return Value(false);
}
Example #15
0
Binary Iterator::Joinb(Environment &env)
{
	Signal &sig = env.GetSignal();
	Binary rtn;
	Value value;
	if (IsInfinite()) {
		SetError_InfiniteNotAllowed(sig);
		return rtn;
	}
	while (Next(env, value)) {
		if (!value.Is_binary()) {
			sig.SetError(ERR_ValueError, "invalid value type");
			return "";
		}
		rtn += value.GetBinary();
	}
	return rtn;
}
Example #16
0
String Iterator::Join(Environment &env, const char *sep)
{
	Signal &sig = env.GetSignal();
	String rtn;
	Value value;
	if (IsInfinite()) {
		SetError_InfiniteNotAllowed(sig);
		return rtn;
	}
	if (Next(env, value)) {
		rtn += value.ToString(false);
		while (Next(env, value)) {
			rtn += sep;
			rtn += value.ToString(false);
		}
	}
	return rtn;
}
Example #17
0
Value Iterator::Average(Environment &env, size_t &cnt)
{
	Signal &sig = env.GetSignal();
	if (IsInfinite()) {
		SetError_InfiniteNotAllowed(sig);
		return Value::Nil;
	}
	Value valueSum = Clone()->Sum(env, cnt);
	if (valueSum.IsInvalid()) {
		return Value::Nil;
	} else if (valueSum.Is_number()) {
		return Value(valueSum.GetNumber() / static_cast<Number>(cnt));
	} else if (valueSum.Is_complex()) {
		return Value(valueSum.GetComplex() / static_cast<Number>(cnt));
	} else {
		const Operator *pOperatorDiv = env.GetOperator(OPTYPE_Div);
		return pOperatorDiv->EvalBinary(env, valueSum, Value(cnt), FLAG_None);
	}
}
Example #18
0
Value Iterator::FindMinMax(Environment &env, bool maxFlag)
{
	Signal &sig = env.GetSignal();
	if (IsInfinite()) {
		SetError_InfiniteNotAllowed(sig);
		return Value::Nil;
	}
	Value valueHit;
	if (!Next(env, valueHit)) return Value::Nil;
	Value value;
	while (Next(env, value)) {
		int cmp = Value::Compare(env, valueHit, value);
		if (sig.IsSignalled()) return Value::Nil;
		if (maxFlag) cmp = -cmp;
		if (cmp > 0) {
			valueHit = value;
		}
	}
	if (sig.IsSignalled()) return Value::Nil;
	return valueHit;
}
void DynamicsCompressorKernel::process(float* sourceChannels[],
                                       float* destinationChannels[],
                                       unsigned numberOfChannels,
                                       unsigned framesToProcess,

                                       float dbThreshold,
                                       float dbKnee,
                                       float ratio,
                                       float attackTime,
                                       float releaseTime,
                                       float preDelayTime,
                                       float dbPostGain,
                                       float effectBlend, /* equal power crossfade */

                                       float releaseZone1,
                                       float releaseZone2,
                                       float releaseZone3,
                                       float releaseZone4
                                       )
{
    MOZ_ASSERT(m_preDelayBuffers.Length() == numberOfChannels);

    float sampleRate = this->sampleRate();

    float dryMix = 1 - effectBlend;
    float wetMix = effectBlend;

    float k = updateStaticCurveParameters(dbThreshold, dbKnee, ratio);

    // Makeup gain.
    float fullRangeGain = saturate(1, k);
    float fullRangeMakeupGain = 1 / fullRangeGain;

    // Empirical/perceptual tuning.
    fullRangeMakeupGain = powf(fullRangeMakeupGain, 0.6f);

    float masterLinearGain = WebAudioUtils::ConvertDecibelsToLinear(dbPostGain) * fullRangeMakeupGain;

    // Attack parameters.
    attackTime = max(0.001f, attackTime);
    float attackFrames = attackTime * sampleRate;

    // Release parameters.
    float releaseFrames = sampleRate * releaseTime;

    // Detector release time.
    float satReleaseTime = 0.0025f;
    float satReleaseFrames = satReleaseTime * sampleRate;

    // Create a smooth function which passes through four points.

    // Polynomial of the form
    // y = a + b*x + c*x^2 + d*x^3 + e*x^4;

    float y1 = releaseFrames * releaseZone1;
    float y2 = releaseFrames * releaseZone2;
    float y3 = releaseFrames * releaseZone3;
    float y4 = releaseFrames * releaseZone4;

    // All of these coefficients were derived for 4th order polynomial curve fitting where the y values
    // match the evenly spaced x values as follows: (y1 : x == 0, y2 : x == 1, y3 : x == 2, y4 : x == 3)
    float kA = 0.9999999999999998f*y1 + 1.8432219684323923e-16f*y2 - 1.9373394351676423e-16f*y3 + 8.824516011816245e-18f*y4;
    float kB = -1.5788320352845888f*y1 + 2.3305837032074286f*y2 - 0.9141194204840429f*y3 + 0.1623677525612032f*y4;
    float kC = 0.5334142869106424f*y1 - 1.272736789213631f*y2 + 0.9258856042207512f*y3 - 0.18656310191776226f*y4;
    float kD = 0.08783463138207234f*y1 - 0.1694162967925622f*y2 + 0.08588057951595272f*y3 - 0.00429891410546283f*y4;
    float kE = -0.042416883008123074f*y1 + 0.1115693827987602f*y2 - 0.09764676325265872f*y3 + 0.028494263462021576f*y4;

    // x ranges from 0 -> 3       0    1    2   3
    //                           -15  -10  -5   0db

    // y calculates adaptive release frames depending on the amount of compression.

    setPreDelayTime(preDelayTime);

    const int nDivisionFrames = 32;

    const int nDivisions = framesToProcess / nDivisionFrames;

    unsigned frameIndex = 0;
    for (int i = 0; i < nDivisions; ++i) {
        // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        // Calculate desired gain
        // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

        // Fix gremlins.
        if (IsNaN(m_detectorAverage))
            m_detectorAverage = 1;
        if (IsInfinite(m_detectorAverage))
            m_detectorAverage = 1;

        float desiredGain = m_detectorAverage;

        // Pre-warp so we get desiredGain after sin() warp below.
        float scaledDesiredGain = asinf(desiredGain) / (0.5f * M_PI);

        // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        // Deal with envelopes
        // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

        // envelopeRate is the rate we slew from current compressor level to the desired level.
        // The exact rate depends on if we're attacking or releasing and by how much.
        float envelopeRate;

        bool isReleasing = scaledDesiredGain > m_compressorGain;

        // compressionDiffDb is the difference between current compression level and the desired level.
        float compressionDiffDb = WebAudioUtils::ConvertLinearToDecibels(m_compressorGain / scaledDesiredGain, -1000.0f);

        if (isReleasing) {
            // Release mode - compressionDiffDb should be negative dB
            m_maxAttackCompressionDiffDb = -1;

            // Fix gremlins.
            if (IsNaN(compressionDiffDb))
                compressionDiffDb = -1;
            if (IsInfinite(compressionDiffDb))
                compressionDiffDb = -1;

            // Adaptive release - higher compression (lower compressionDiffDb)  releases faster.

            // Contain within range: -12 -> 0 then scale to go from 0 -> 3
            float x = compressionDiffDb;
            x = max(-12.0f, x);
            x = min(0.0f, x);
            x = 0.25f * (x + 12);

            // Compute adaptive release curve using 4th order polynomial.
            // Normal values for the polynomial coefficients would create a monotonically increasing function.
            float x2 = x * x;
            float x3 = x2 * x;
            float x4 = x2 * x2;
            float releaseFrames = kA + kB * x + kC * x2 + kD * x3 + kE * x4;

#define kSpacingDb 5
            float dbPerFrame = kSpacingDb / releaseFrames;

            envelopeRate = WebAudioUtils::ConvertDecibelsToLinear(dbPerFrame);
        } else {
            // Attack mode - compressionDiffDb should be positive dB

            // Fix gremlins.
            if (IsNaN(compressionDiffDb))
                compressionDiffDb = 1;
            if (IsInfinite(compressionDiffDb))
                compressionDiffDb = 1;

            // As long as we're still in attack mode, use a rate based off
            // the largest compressionDiffDb we've encountered so far.
            if (m_maxAttackCompressionDiffDb == -1 || m_maxAttackCompressionDiffDb < compressionDiffDb)
                m_maxAttackCompressionDiffDb = compressionDiffDb;

            float effAttenDiffDb = max(0.5f, m_maxAttackCompressionDiffDb);

            float x = 0.25f / effAttenDiffDb;
            envelopeRate = 1 - powf(x, 1 / attackFrames);
        }

        // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        // Inner loop - calculate shaped power average - apply compression.
        // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

        {
            int preDelayReadIndex = m_preDelayReadIndex;
            int preDelayWriteIndex = m_preDelayWriteIndex;
            float detectorAverage = m_detectorAverage;
            float compressorGain = m_compressorGain;

            int loopFrames = nDivisionFrames;
            while (loopFrames--) {
                float compressorInput = 0;

                // Predelay signal, computing compression amount from un-delayed version.
                for (unsigned i = 0; i < numberOfChannels; ++i) {
                    float* delayBuffer = m_preDelayBuffers[i].get();
                    float undelayedSource = sourceChannels[i][frameIndex];
                    delayBuffer[preDelayWriteIndex] = undelayedSource;

                    float absUndelayedSource = undelayedSource > 0 ? undelayedSource : -undelayedSource;
                    if (compressorInput < absUndelayedSource)
                        compressorInput = absUndelayedSource;
                }

                // Calculate shaped power on undelayed input.

                float scaledInput = compressorInput;
                float absInput = scaledInput > 0 ? scaledInput : -scaledInput;

                // Put through shaping curve.
                // This is linear up to the threshold, then enters a "knee" portion followed by the "ratio" portion.
                // The transition from the threshold to the knee is smooth (1st derivative matched).
                // The transition from the knee to the ratio portion is smooth (1st derivative matched).
                float shapedInput = saturate(absInput, k);

                float attenuation = absInput <= 0.0001f ? 1 : shapedInput / absInput;

                float attenuationDb = -WebAudioUtils::ConvertLinearToDecibels(attenuation, -1000.0f);
                attenuationDb = max(2.0f, attenuationDb);

                float dbPerFrame = attenuationDb / satReleaseFrames;

                float satReleaseRate = WebAudioUtils::ConvertDecibelsToLinear(dbPerFrame) - 1;

                bool isRelease = (attenuation > detectorAverage);
                float rate = isRelease ? satReleaseRate : 1;

                detectorAverage += (attenuation - detectorAverage) * rate;
                detectorAverage = min(1.0f, detectorAverage);

                // Fix gremlins.
                if (IsNaN(detectorAverage))
                    detectorAverage = 1;
                if (IsInfinite(detectorAverage))
                    detectorAverage = 1;

                // Exponential approach to desired gain.
                if (envelopeRate < 1) {
                    // Attack - reduce gain to desired.
                    compressorGain += (scaledDesiredGain - compressorGain) * envelopeRate;
                } else {
                    // Release - exponentially increase gain to 1.0
                    compressorGain *= envelopeRate;
                    compressorGain = min(1.0f, compressorGain);
                }

                // Warp pre-compression gain to smooth out sharp exponential transition points.
                float postWarpCompressorGain = sinf(0.5f * M_PI * compressorGain);

                // Calculate total gain using master gain and effect blend.
                float totalGain = dryMix + wetMix * masterLinearGain * postWarpCompressorGain;

                // Calculate metering.
                float dbRealGain = 20 * log10(postWarpCompressorGain);
                if (dbRealGain < m_meteringGain)
                    m_meteringGain = dbRealGain;
                else
                    m_meteringGain += (dbRealGain - m_meteringGain) * m_meteringReleaseK;

                // Apply final gain.
                for (unsigned i = 0; i < numberOfChannels; ++i) {
                    float* delayBuffer = m_preDelayBuffers[i].get();
                    destinationChannels[i][frameIndex] = delayBuffer[preDelayReadIndex] * totalGain;
                }

                frameIndex++;
                preDelayReadIndex = (preDelayReadIndex + 1) & MaxPreDelayFramesMask;
                preDelayWriteIndex = (preDelayWriteIndex + 1) & MaxPreDelayFramesMask;
            }

            // Locals back to member variables.
            m_preDelayReadIndex = preDelayReadIndex;
            m_preDelayWriteIndex = preDelayWriteIndex;
            m_detectorAverage = DenormalDisabler::flushDenormalFloatToZero(detectorAverage);
            m_compressorGain = DenormalDisabler::flushDenormalFloatToZero(compressorGain);
        }
    }
}
Example #20
0
Value Iterator::Variance(Environment &env, size_t &cnt, bool populationFlag)
{
	Signal &sig = env.GetSignal();
	if (IsInfinite()) {
		SetError_InfiniteNotAllowed(sig);
		return Value::Nil;
	}
	// this doesn't use a variance calculation formula V(x) = E(x**2) - E(x)**2
	// to minimize calculation error.
	Value valueAve = Clone()->Average(env, cnt);
	if (!valueAve.IsNumberOrComplex()) return Value::Nil;
	Number denom = static_cast<Number>((cnt <= 1)? 1 : populationFlag? cnt : cnt - 1);
	Value value;
	if (!Next(env, value)) return Value::Nil;
	if (value.Is_number() && valueAve.Is_number()) {
		Number result;
		Number average = valueAve.GetNumber();
		do {
			Number tmp = value.GetNumber() - average;
			result = tmp * tmp;
		} while (0);
		while (Next(env, value)) {
			if (value.Is_number()) {
				Number tmp = value.GetNumber() - average;
				result += tmp * tmp;
			} else if (value.Is_complex()) {
				while (Next(env, value)) {
					if (value.IsNumberOrComplex()) {
						Complex tmp = value.GetComplex() - average;
						result += std::norm(tmp);
					} else {
						SetError_InvalidDataTypeOfElement(sig);
						return Value::Nil;
					}
				}
			} else {
				SetError_InvalidDataTypeOfElement(sig);
				return Value::Nil;
			}
		}
		if (sig.IsSignalled()) return Value::Nil;
		return Value(result / denom);
	} else if (value.IsNumberOrComplex()) {
		Number result;
		Complex average = valueAve.GetComplex();
		do {
			Complex tmp = value.GetComplex() - average;
			result = std::norm(tmp);
		} while (0);
		while (Next(env, value)) {
			if (value.IsNumberOrComplex()) {
				Complex tmp = value.GetComplex() - average;
				result += std::norm(tmp);
			} else {
				SetError_InvalidDataTypeOfElement(sig);
				return Value::Nil;
			}
		}
		if (sig.IsSignalled()) return Value::Nil;
		return Value(result / denom);
	} else {
		SetError_InvalidDataTypeOfElement(sig);
		return Value::Nil;
	}
}