Example #1
0
static void
opt_not(struct block *b)
{
	struct block *tmp = JT(b);

	JT(b) = JF(b);
	JF(b) = tmp;
}
Example #2
0
static struct block *
fold_edge(struct block *child, struct edge *ep)
{
	int sense;
	int aval0, aval1, oval0, oval1;
	int code = ep->code;

	if (code < 0) {
		code = -code;
		sense = 0;
	} else
		sense = 1;

	if (child->s.code != code)
		return 0;

	aval0 = child->val[A_ATOM];
	oval0 = child->oval;
	aval1 = ep->pred->val[A_ATOM];
	oval1 = ep->pred->oval;

	if (aval0 != aval1)
		return 0;

	if (oval0 == oval1)
		/*
		 * The operands of the branch instructions are
		 * identical, so the result is true if a true
		 * branch was taken to get here, otherwise false.
		 */
		return sense ? JT(child) : JF(child);

	if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
		/*
		 * At this point, we only know the comparison if we
		 * came down the true branch, and it was an equality
		 * comparison with a constant.
		 *
		 * I.e., if we came down the true branch, and the branch
		 * was an equality comparison with a constant, we know the
		 * accumulator contains that constant.  If we came down
		 * the false branch, or the comparison wasn't with a
		 * constant, we don't know what was in the accumulator.
		 *
		 * We rely on the fact that distinct constants have distinct
		 * value numbers.
		 */
		return JF(child);

	return 0;
}
Example #3
0
/*
 * Find dominator relationships.
 * Assumes graph has been leveled.
 */
static void
find_dom(struct block *root)
{
	int i;
	struct block *b;
	bpf_u_int32 *x;

	/*
	 * Initialize sets to contain all nodes.
	 */
	x = all_dom_sets;
	i = n_blocks * nodewords;
	while (--i >= 0)
		*x++ = ~0;
	/* Root starts off empty. */
	for (i = nodewords; --i >= 0;)
		root->dom[i] = 0;

	/* root->level is the highest level no found. */
	for (i = root->level; i >= 0; --i) {
		for (b = levels[i]; b; b = b->link) {
			SET_INSERT(b->dom, b->id);
			if (JT(b) == 0)
				continue;
			SET_INTERSECT(JT(b)->dom, b->dom, nodewords);
			SET_INTERSECT(JF(b)->dom, b->dom, nodewords);
		}
	}
}
Example #4
0
/*
 * Return the number of nodes reachable by 'p'.
 * All nodes should be initially unmarked.
 */
static int
count_blocks(struct block *p)
{
	if (p == 0 || isMarked(p))
		return 0;
	Mark(p);
	return count_blocks(JT(p)) + count_blocks(JF(p)) + 1;
}
bool ScriptMethodsSpawnerNamespace::install()
{
const JNINativeMethod NATIVES[] = {
	#define JF(a,b,c) {a,b,(void*)(ScriptMethodsSpawnerNamespace::c)}
	JF("getServerSpawnLimit", "()I", getServerSpawnLimit),
};

	return JavaLibrary::registerNatives(NATIVES, sizeof(NATIVES)/sizeof(NATIVES[0]));
}
bool ScriptMethodsRemoteDebugNamespace::install()
{
const JNINativeMethod NATIVES[] = {
	#define JF(a,b,c) {a,b,(void*)(ScriptMethodsRemoteDebugNamespace::c)}
	JF("printChannelMessage", "(Ljava/lang/String;Ljava/lang/String;)V", printChannelMessage),
};

	return JavaLibrary::registerNatives(NATIVES, sizeof(NATIVES)/sizeof(NATIVES[0]));
}
Example #7
0
static void
intern_blocks(struct block *root)
{
	struct block *p;
	int i, j;
	int done1; /* don't shadow global */
 top:
	done1 = 1;
	for (i = 0; i < n_blocks; ++i)
		blocks[i]->link = 0;

	mark_code(root);

	for (i = n_blocks - 1; --i >= 0; ) {
		if (!isMarked(blocks[i]))
			continue;
		for (j = i + 1; j < n_blocks; ++j) {
			if (!isMarked(blocks[j]))
				continue;
			if (eq_blk(blocks[i], blocks[j])) {
				blocks[i]->link = blocks[j]->link ?
					blocks[j]->link : blocks[j];
				break;
			}
		}
	}
	for (i = 0; i < n_blocks; ++i) {
		p = blocks[i];
		if (JT(p) == 0)
			continue;
		if (JT(p)->link) {
			done1 = 0;
			JT(p) = JT(p)->link;
		}
		if (JF(p)->link) {
			done1 = 0;
			JF(p) = JF(p)->link;
		}
	}
	if (!done1)
		goto top;
}
Example #8
0
static void
make_marks(struct block *p)
{
	if (!isMarked(p)) {
		Mark(p);
		if (BPF_CLASS(p->s.code) != BPF_RET) {
			make_marks(JT(p));
			make_marks(JF(p));
		}
	}
}
Example #9
0
/*
 * Return the number of stmts in the flowgraph reachable by 'p'.
 * The nodes should be unmarked before calling.
 *
 * Note that "stmts" means "instructions", and that this includes
 *
 *	side-effect statements in 'p' (slength(p->stmts));
 *
 *	statements in the true branch from 'p' (count_stmts(JT(p)));
 *
 *	statements in the false branch from 'p' (count_stmts(JF(p)));
 *
 *	the conditional jump itself (1);
 *
 *	an extra long jump if the true branch requires it (p->longjt);
 *
 *	an extra long jump if the false branch requires it (p->longjf).
 */
static u_int
count_stmts(struct block *p)
{
	u_int n;

	if (p == 0 || isMarked(p))
		return 0;
	Mark(p);
	n = count_stmts(JT(p)) + count_stmts(JF(p));
	return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
}
Example #10
0
static void
opt_j(struct edge *ep)
{
	register int i, k;
	register struct block *target;

	if (JT(ep->succ) == 0)
		return;

	if (JT(ep->succ) == JF(ep->succ)) {
		/*
		 * Common branch targets can be eliminated, provided
		 * there is no data dependency.
		 */
		if (!use_conflict(ep->pred, ep->succ->et.succ)) {
			done = 0;
			ep->succ = JT(ep->succ);
		}
	}
	/*
	 * For each edge dominator that matches the successor of this
	 * edge, promote the edge successor to the its grandchild.
	 *
	 * XXX We violate the set abstraction here in favor a reasonably
	 * efficient loop.
	 */
 top:
	for (i = 0; i < edgewords; ++i) {
		register bpf_u_int32 x = ep->edom[i];

		while (x != 0) {
			k = ffs(x) - 1;
			x &=~ (1 << k);
			k += i * BITS_PER_WORD;

			target = fold_edge(ep->succ, edges[k]);
			/*
			 * Check that there is no data dependency between
			 * nodes that will be violated if we move the edge.
			 */
			if (target != 0 && !use_conflict(ep->pred, target)) {
				done = 0;
				ep->succ = target;
				if (JT(target) != 0)
					/*
					 * Start over unless we hit a leaf.
					 */
					goto top;
				return;
			}
		}
	}
}
Example #11
0
static void
find_levels_r(struct block *b)
{
	int level;

	if (isMarked(b))
		return;

	Mark(b);
	b->link = 0;

	if (JT(b)) {
		find_levels_r(JT(b));
		find_levels_r(JF(b));
		level = MAX(JT(b)->level, JF(b)->level) + 1;
	} else
		level = 0;
	b->level = level;
	b->link = levels[level];
	levels[level] = b;
}
Example #12
0
/*
 * Do a depth first search on the flow graph, numbering the
 * the basic blocks, and entering them into the 'blocks' array.`
 */
static void
number_blks_r(struct block *p)
{
	int n;

	if (p == 0 || isMarked(p))
		return;

	Mark(p);
	n = n_blocks++;
	p->id = n;
	blocks[n] = p;

	number_blks_r(JT(p));
	number_blks_r(JF(p));
}
bool ScriptMethodsSystemNamespace::install()
{
const JNINativeMethod NATIVES[] = {
	#define JF(a,b,c) {a,b,(void*)(ScriptMethodsSystemNamespace::c)}
	JF("_sendConsoleCommand", "(Ljava/lang/String;J)Z", sendConsoleCommand),
	JF("getConfigSetting", "(Ljava/lang/String;Ljava/lang/String;)Ljava/lang/String;", getConfigSetting),
	JF("_fixHouseItemLimit", "(J)Z", fixHouseItemLimit),
	JF("_saveTextOnClient", "(JLjava/lang/String;Ljava/lang/String;)V", saveTextOnClient),
	JF("_saveBytesOnClient", "(JLjava/lang/String;[B)V", saveBytesOnClient),
	JF("_launchClientWebBrowser", "(JLjava/lang/String;)V", launchClientWebBrowser),
	JF("_playCutScene", "(JLjava/lang/String;)V", playCutScene),
};

	return JavaLibrary::registerNatives(NATIVES, sizeof(NATIVES)/sizeof(NATIVES[0]));
}
Example #14
0
int main(int argc, char **argv)
{
  JS("null");
  JS("true");
  JS("false");
  JS("0");
  JS("1");
  JS("-1");
  JS("1.0");
  JS("-1.0");
#ifdef JX_64_BIT
  JS("1.0000100000000001");
  JS("-1.0000100000000001");
  JS("9223372036854775807");
  JS("-9223372036854775808");
#else
  JS("1.00001");
  JS("-1.00001");
  JS("2147483647");
  JS("-2147483648");
#endif
  JS("[]");
  JS("{}");
  JS("\"hi\"");
  JS("[null]");
  JS("[true]");
  JS("[false]");
  JS("[1]");
  JS("[-1]");
  JS("[\"one\"]");
  JS("{1:2}");
  JS("{-1:-2}");
  JS("{\"one\":\"two\"}");
  JS("[1,2]");
  JS("[-1,-2]");
  JS("[1,[2]]");
  JS("[1,[2,3]]");
  JS("{1:{2:3}}");
  JS("[1,[2,3,4,5]]");
  JS("{1:{2:3,4:5}}");
  JS("[1,[2,\"three\",4,5]]");

  /* below are all invalid and should give null */
  JF("");
  JF("-");
  JF("{[]:1}");
  JF("{{}:1}");
  JF("{[1,2]:1}");
  JF("{[1,2]:[3,4]}");

}
Example #15
0
static void
find_inedges(struct block *root)
{
	int i;
	struct block *b;

	for (i = 0; i < n_blocks; ++i)
		blocks[i]->in_edges = 0;

	/*
	 * Traverse the graph, adding each edge to the predecessor
	 * list of its successors.  Skip the leaves (i.e. level 0).
	 */
	for (i = root->level; i > 0; --i) {
		for (b = levels[i]; b != 0; b = b->link) {
			link_inedge(&b->et, JT(b));
			link_inedge(&b->ef, JF(b));
		}
	}
}
Example #16
0
static void
opt_root(struct block **b)
{
	struct slist *tmp, *s;

	s = (*b)->stmts;
	(*b)->stmts = 0;
	while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
		*b = JT(*b);

	tmp = (*b)->stmts;
	if (tmp != 0)
		sappend(s, tmp);
	(*b)->stmts = s;

	/*
	 * If the root node is a return, then there is no
	 * point executing any statements (since the bpf machine
	 * has no side effects).
	 */
	if (BPF_CLASS((*b)->s.code) == BPF_RET)
		(*b)->stmts = 0;
}
Example #17
0
/*
 * Find the backwards transitive closure of the flow graph.  These sets
 * are backwards in the sense that we find the set of nodes that reach
 * a given node, not the set of nodes that can be reached by a node.
 *
 * Assumes graph has been leveled.
 */
static void
find_closure(struct block *root)
{
	int i;
	struct block *b;

	/*
	 * Initialize sets to contain no nodes.
	 */
	memset((char *)all_closure_sets, 0,
	      n_blocks * nodewords * sizeof(*all_closure_sets));

	/* root->level is the highest level no found. */
	for (i = root->level; i >= 0; --i) {
		for (b = levels[i]; b; b = b->link) {
			SET_INSERT(b->closure, b->id);
			if (JT(b) == 0)
				continue;
			SET_UNION(JT(b)->closure, b->closure, nodewords);
			SET_UNION(JF(b)->closure, b->closure, nodewords);
		}
	}
}
Example #18
0
/*
 * Assume graph is already leveled.
 */
static void
find_ud(struct block *root)
{
	int i, maxlevel;
	struct block *p;

	/*
	 * root->level is the highest level no found;
	 * count down from there.
	 */
	maxlevel = root->level;
	for (i = maxlevel; i >= 0; --i)
		for (p = levels[i]; p; p = p->link) {
			compute_local_ud(p);
			p->out_use = 0;
		}

	for (i = 1; i <= maxlevel; ++i) {
		for (p = levels[i]; p; p = p->link) {
			p->out_use |= JT(p)->in_use | JF(p)->in_use;
			p->in_use |= p->out_use &~ p->kill;
		}
	}
}
Example #19
0
static void
opt_peep(struct block *b)
{
	struct slist *s;
	struct slist *next, *last;
	int val;

	s = b->stmts;
	if (s == 0)
		return;

	last = s;
	for (/*empty*/; /*empty*/; s = next) {
		/*
		 * Skip over nops.
		 */
		s = this_op(s);
		if (s == 0)
			break;	/* nothing left in the block */

		/*
		 * Find the next real instruction after that one
		 * (skipping nops).
		 */
		next = this_op(s->next);
		if (next == 0)
			break;	/* no next instruction */
		last = next;

		/*
		 * st  M[k]	-->	st  M[k]
		 * ldx M[k]		tax
		 */
		if (s->s.code == BPF_ST &&
		    next->s.code == (BPF_LDX|BPF_MEM) &&
		    s->s.k == next->s.k) {
			done = 0;
			next->s.code = BPF_MISC|BPF_TAX;
		}
		/*
		 * ld  #k	-->	ldx  #k
		 * tax			txa
		 */
		if (s->s.code == (BPF_LD|BPF_IMM) &&
		    next->s.code == (BPF_MISC|BPF_TAX)) {
			s->s.code = BPF_LDX|BPF_IMM;
			next->s.code = BPF_MISC|BPF_TXA;
			done = 0;
		}
		/*
		 * This is an ugly special case, but it happens
		 * when you say tcp[k] or udp[k] where k is a constant.
		 */
		if (s->s.code == (BPF_LD|BPF_IMM)) {
			struct slist *add, *tax, *ild;

			/*
			 * Check that X isn't used on exit from this
			 * block (which the optimizer might cause).
			 * We know the code generator won't generate
			 * any local dependencies.
			 */
			if (ATOMELEM(b->out_use, X_ATOM))
				continue;

			/*
			 * Check that the instruction following the ldi
			 * is an addx, or it's an ldxms with an addx
			 * following it (with 0 or more nops between the
			 * ldxms and addx).
			 */
			if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
				add = next;
			else
				add = this_op(next->next);
			if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
				continue;

			/*
			 * Check that a tax follows that (with 0 or more
			 * nops between them).
			 */
			tax = this_op(add->next);
			if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
				continue;

			/*
			 * Check that an ild follows that (with 0 or more
			 * nops between them).
			 */
			ild = this_op(tax->next);
			if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
			    BPF_MODE(ild->s.code) != BPF_IND)
				continue;
			/*
			 * We want to turn this sequence:
			 *
			 * (004) ldi     #0x2		{s}
			 * (005) ldxms   [14]		{next}  -- optional
			 * (006) addx			{add}
			 * (007) tax			{tax}
			 * (008) ild     [x+0]		{ild}
			 *
			 * into this sequence:
			 *
			 * (004) nop
			 * (005) ldxms   [14]
			 * (006) nop
			 * (007) nop
			 * (008) ild     [x+2]
			 *
			 * XXX We need to check that X is not
			 * subsequently used, because we want to change
			 * what'll be in it after this sequence.
			 *
			 * We know we can eliminate the accumulator
			 * modifications earlier in the sequence since
			 * it is defined by the last stmt of this sequence
			 * (i.e., the last statement of the sequence loads
			 * a value into the accumulator, so we can eliminate
			 * earlier operations on the accumulator).
			 */
			ild->s.k += s->s.k;
			s->s.code = NOP;
			add->s.code = NOP;
			tax->s.code = NOP;
			done = 0;
		}
	}
	/*
	 * If the comparison at the end of a block is an equality
	 * comparison against a constant, and nobody uses the value
	 * we leave in the A register at the end of a block, and
	 * the operation preceding the comparison is an arithmetic
	 * operation, we can sometime optimize it away.
	 */
	if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) &&
	    !ATOMELEM(b->out_use, A_ATOM)) {
	    	/*
	    	 * We can optimize away certain subtractions of the
	    	 * X register.
	    	 */
		if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) {
			val = b->val[X_ATOM];
			if (vmap[val].is_const) {
				/*
				 * If we have a subtract to do a comparison,
				 * and the X register is a known constant,
				 * we can merge this value into the
				 * comparison:
				 *
				 * sub x  ->	nop
				 * jeq #y	jeq #(x+y)
				 */
				b->s.k += vmap[val].const_val;
				last->s.code = NOP;
				done = 0;
			} else if (b->s.k == 0) {
				/*
				 * If the X register isn't a constant,
				 * and the comparison in the test is
				 * against 0, we can compare with the
				 * X register, instead:
				 *
				 * sub x  ->	nop
				 * jeq #0	jeq x
				 */
				last->s.code = NOP;
				b->s.code = BPF_JMP|BPF_JEQ|BPF_X;
				done = 0;
			}
		}
		/*
		 * Likewise, a constant subtract can be simplified:
		 *
		 * sub #x ->	nop
		 * jeq #y ->	jeq #(x+y)
		 */
		else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) {
			last->s.code = NOP;
			b->s.k += last->s.k;
			done = 0;
		}
		/*
		 * And, similarly, a constant AND can be simplified
		 * if we're testing against 0, i.e.:
		 *
		 * and #k	nop
		 * jeq #0  ->	jset #k
		 */
		else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
		    b->s.k == 0) {
			b->s.k = last->s.k;
			b->s.code = BPF_JMP|BPF_K|BPF_JSET;
			last->s.code = NOP;
			done = 0;
			opt_not(b);
		}
	}
	/*
	 * jset #0        ->   never
	 * jset #ffffffff ->   always
	 */
	if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) {
		if (b->s.k == 0)
			JT(b) = JF(b);
		if (b->s.k == (int)0xffffffff)
			JF(b) = JT(b);
	}
	/*
	 * If we're comparing against the index register, and the index
	 * register is a known constant, we can just compare against that
	 * constant.
	 */
	val = b->val[X_ATOM];
	if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) {
		bpf_int32 v = vmap[val].const_val;
		b->s.code &= ~BPF_X;
		b->s.k = v;
	}
	/*
	 * If the accumulator is a known constant, we can compute the
	 * comparison result.
	 */
	val = b->val[A_ATOM];
	if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
		bpf_int32 v = vmap[val].const_val;
		switch (BPF_OP(b->s.code)) {

		case BPF_JEQ:
			v = v == b->s.k;
			break;

		case BPF_JGT:
			v = (unsigned)v > (unsigned)b->s.k;
			break;

		case BPF_JGE:
			v = (unsigned)v >= (unsigned)b->s.k;
			break;

		case BPF_JSET:
			v &= b->s.k;
			break;

		default:
			abort();
		}
		if (JF(b) != JT(b))
			done = 0;
		if (v)
			JF(b) = JT(b);
		else
			JT(b) = JF(b);
	}
}
static int show_journal(struct seq_file *m, void *unused)
{
	struct super_block *sb = m->private;
	struct reiserfs_sb_info *r = REISERFS_SB(sb);
	struct reiserfs_super_block *rs = r->s_rs;
	struct journal_params *jp = &rs->s_v1.s_journal;
	char b[BDEVNAME_SIZE];

	seq_printf(m,		/* on-disk fields */
		   "jp_journal_1st_block: \t%i\n"
		   "jp_journal_dev: \t%s[%x]\n"
		   "jp_journal_size: \t%i\n"
		   "jp_journal_trans_max: \t%i\n"
		   "jp_journal_magic: \t%i\n"
		   "jp_journal_max_batch: \t%i\n"
		   "jp_journal_max_commit_age: \t%i\n"
		   "jp_journal_max_trans_age: \t%i\n"
		   /* incore fields */
		   "j_1st_reserved_block: \t%i\n"
		   "j_state: \t%li\n"
		   "j_trans_id: \t%u\n"
		   "j_mount_id: \t%lu\n"
		   "j_start: \t%lu\n"
		   "j_len: \t%lu\n"
		   "j_len_alloc: \t%lu\n"
		   "j_wcount: \t%i\n"
		   "j_bcount: \t%lu\n"
		   "j_first_unflushed_offset: \t%lu\n"
		   "j_last_flush_trans_id: \t%u\n"
		   "j_trans_start_time: \t%li\n"
		   "j_list_bitmap_index: \t%i\n"
		   "j_must_wait: \t%i\n"
		   "j_next_full_flush: \t%i\n"
		   "j_next_async_flush: \t%i\n"
		   "j_cnode_used: \t%i\n" "j_cnode_free: \t%i\n" "\n"
		   /* reiserfs_proc_info_data_t.journal fields */
		   "in_journal: \t%12lu\n"
		   "in_journal_bitmap: \t%12lu\n"
		   "in_journal_reusable: \t%12lu\n"
		   "lock_journal: \t%12lu\n"
		   "lock_journal_wait: \t%12lu\n"
		   "journal_begin: \t%12lu\n"
		   "journal_relock_writers: \t%12lu\n"
		   "journal_relock_wcount: \t%12lu\n"
		   "mark_dirty: \t%12lu\n"
		   "mark_dirty_already: \t%12lu\n"
		   "mark_dirty_notjournal: \t%12lu\n"
		   "restore_prepared: \t%12lu\n"
		   "prepare: \t%12lu\n"
		   "prepare_retry: \t%12lu\n",
		   DJP(jp_journal_1st_block),
		   bdevname(SB_JOURNAL(sb)->j_dev_bd, b),
		   DJP(jp_journal_dev),
		   DJP(jp_journal_size),
		   DJP(jp_journal_trans_max),
		   DJP(jp_journal_magic),
		   DJP(jp_journal_max_batch),
		   SB_JOURNAL(sb)->j_max_commit_age,
		   DJP(jp_journal_max_trans_age),
		   JF(j_1st_reserved_block),
		   JF(j_state),
		   JF(j_trans_id),
		   JF(j_mount_id),
		   JF(j_start),
		   JF(j_len),
		   JF(j_len_alloc),
		   atomic_read(&r->s_journal->j_wcount),
		   JF(j_bcount),
		   JF(j_first_unflushed_offset),
		   JF(j_last_flush_trans_id),
		   JF(j_trans_start_time),
		   JF(j_list_bitmap_index),
		   JF(j_must_wait),
		   JF(j_next_full_flush),
		   JF(j_next_async_flush),
		   JF(j_cnode_used),
		   JF(j_cnode_free),
		   SFPJ(in_journal),
		   SFPJ(in_journal_bitmap),
		   SFPJ(in_journal_reusable),
		   SFPJ(lock_journal),
		   SFPJ(lock_journal_wait),
		   SFPJ(journal_being),
		   SFPJ(journal_relock_writers),
		   SFPJ(journal_relock_wcount),
		   SFPJ(mark_dirty),
		   SFPJ(mark_dirty_already),
		   SFPJ(mark_dirty_notjournal),
		   SFPJ(restore_prepared), SFPJ(prepare), SFPJ(prepare_retry)
	    );
	return 0;
}
bool ScriptMethodsChatNamespace::install()
{
const JNINativeMethod NATIVES[] = {
	#define JF(a,b,c) {a,b,(void*)(ScriptMethodsChatNamespace::c)}
	JF("_chatCreateRoom", "(Ljava/lang/String;ZLjava/lang/String;Ljava/lang/String;)V", chatCreateRoom),
	JF("chatDestroyRoom", "(Ljava/lang/String;)V", chatDestroyRoom),
	JF("_chatEnterRoom", "(Ljava/lang/String;Ljava/lang/String;)V", chatEnterRoom),
	JF("_chatExitRoom", "(Ljava/lang/String;Ljava/lang/String;)V", chatExitRoom),
	JF("chatAddModeratorToRoom", "(Ljava/lang/String;Ljava/lang/String;)V", chatAddModeratorToRoom),
	JF("chatRemoveModeratorFromRoom", "(Ljava/lang/String;Ljava/lang/String;)V", chatRemoveModeratorFromRoom),
	JF("_chatSendInstantMessage", "(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;)V", chatSendInstantMessage),
	JF("_chatSendPersistentMessage", "(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;)V", chatSendPersistentMessage),
	JF("_chatSendToRoom", "(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;)V", chatSendToRoom),
	JF("__packOutOfBandToken", "(JLjava/lang/String;I)Ljava/lang/String;", chatPackOutOfBandToken),
	JF("__packOutOfBandWaypoint", "(JLjava/lang/String;I)Ljava/lang/String;", chatPackOutOfBandWaypoint),
	JF("_packOutOfBandWaypointData", "(Ljava/lang/String;ILjava/lang/String;FFLscript/string_id;Ljava/lang/String;)Ljava/lang/String;", chatPackOutOfBandWaypointData),
	JF("__packOutOfBandProsePackage", "(Ljava/lang/String;ILscript/string_id;JJJLscript/string_id;Lscript/string_id;Lscript/string_id;Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;IFZ)Ljava/lang/String;", packOutOfBandProsePackage),
	JF("sendSystemMessage", "(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;)V", chatSendSystemMessage),
	JF("_sendSystemMessage", "(JLjava/lang/String;Ljava/lang/String;)V", chatSendSystemMessageObjId),
	JF("getEmoteFromCrc", "(I)Ljava/lang/String;", getEmoteFromCrc),
	JF("_sendQuestSystemMessage", "(JLjava/lang/String;Ljava/lang/String;)V", chatSendQuestSystemMessage),
	JF("sendFactionalSystemMessagePlanet", "(Ljava/lang/String;Lscript/location;FZZ)V", chatSendFactionalSystemMessagePlanet),
};

	return JavaLibrary::registerNatives(NATIVES, sizeof(NATIVES)/sizeof(NATIVES[0]));
}
Example #22
0
/*
 * Returns true if successful.  Returns false if a branch has
 * an offset that is too large.  If so, we have marked that
 * branch so that on a subsequent iteration, it will be treated
 * properly.
 */
static int
convert_code_r(struct block *p)
{
	struct bpf_insn *dst;
	struct slist *src;
	u_int slen;
	u_int off;
	int extrajmps;		/* number of extra jumps inserted */
	struct slist **offset = NULL;

	if (p == 0 || isMarked(p))
		return (1);
	Mark(p);

	if (convert_code_r(JF(p)) == 0)
		return (0);
	if (convert_code_r(JT(p)) == 0)
		return (0);

	slen = slength(p->stmts);
	dst = ftail -= (slen + 1 + p->longjt + p->longjf);
		/* inflate length by any extra jumps */

	p->offset = dst - fstart;

	/* generate offset[] for convenience  */
	if (slen) {
		offset = (struct slist **)calloc(slen, sizeof(struct slist *));
		if (!offset) {
			bpf_error("not enough core");
			/*NOTREACHED*/
		}
	}
	src = p->stmts;
	for (off = 0; off < slen && src; off++) {
#if 0
		printf("off=%d src=%x\n", off, src);
#endif
		offset[off] = src;
		src = src->next;
	}

	off = 0;
	for (src = p->stmts; src; src = src->next) {
		if (src->s.code == NOP)
			continue;
		dst->code = (u_short)src->s.code;
		dst->k = src->s.k;

		/* fill block-local relative jump */
		if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
#if 0
			if (src->s.jt || src->s.jf) {
				bpf_error("illegal jmp destination");
				/*NOTREACHED*/
			}
#endif
			goto filled;
		}
		if (off == slen - 2)	/*???*/
			goto filled;

	    {
		u_int i;
		int jt, jf;
static const char ljerr[] = "%s for block-local relative jump: off=%d";

#if 0
		printf("code=%x off=%d %x %x\n", src->s.code,
			off, src->s.jt, src->s.jf);
#endif

		if (!src->s.jt || !src->s.jf) {
			bpf_error(ljerr, "no jmp destination", off);
			/*NOTREACHED*/
		}

		jt = jf = 0;
		for (i = 0; i < slen; i++) {
			if (offset[i] == src->s.jt) {
				if (jt) {
					bpf_error(ljerr, "multiple matches", off);
					/*NOTREACHED*/
				}

				dst->jt = i - off - 1;
				jt++;
			}
			if (offset[i] == src->s.jf) {
				if (jf) {
					bpf_error(ljerr, "multiple matches", off);
					/*NOTREACHED*/
				}
				dst->jf = i - off - 1;
				jf++;
			}
		}
		if (!jt || !jf) {
			bpf_error(ljerr, "no destination found", off);
			/*NOTREACHED*/
		}
	    }
filled:
		++dst;
		++off;
	}
	if (offset)
		free(offset);

#ifdef BDEBUG
	bids[dst - fstart] = p->id + 1;
#endif
	dst->code = (u_short)p->s.code;
	dst->k = p->s.k;
	if (JT(p)) {
		extrajmps = 0;
		off = JT(p)->offset - (p->offset + slen) - 1;
		if (off >= 256) {
		    /* offset too large for branch, must add a jump */
		    if (p->longjt == 0) {
		    	/* mark this instruction and retry */
			p->longjt++;
			return(0);
		    }
		    /* branch if T to following jump */
		    dst->jt = extrajmps;
		    extrajmps++;
		    dst[extrajmps].code = BPF_JMP|BPF_JA;
		    dst[extrajmps].k = off - extrajmps;
		}
		else
		    dst->jt = off;
		off = JF(p)->offset - (p->offset + slen) - 1;
		if (off >= 256) {
		    /* offset too large for branch, must add a jump */
		    if (p->longjf == 0) {
		    	/* mark this instruction and retry */
			p->longjf++;
			return(0);
		    }
		    /* branch if F to following jump */
		    /* if two jumps are inserted, F goes to second one */
		    dst->jf = extrajmps;
		    extrajmps++;
		    dst[extrajmps].code = BPF_JMP|BPF_JA;
		    dst[extrajmps].k = off - extrajmps;
		}
		else
		    dst->jf = off;
	}
	return (1);
}
Example #23
0
int reiserfs_journal_in_proc( char *buffer, char **start, off_t offset,
			      int count, int *eof, void *data )
{
	struct super_block *sb;
	struct reiserfs_sb_info *r;
	struct reiserfs_super_block *rs;
	int len = 0;
    
	sb = procinfo_prologue( ( kdev_t ) ( long ) data );
	if( sb == NULL )
		return -ENOENT;
	r = &sb->u.reiserfs_sb;
	rs = r -> s_rs;

	len += sprintf( &buffer[ len ], 
			/* on-disk fields */
			"s_journal_block: \t%i\n"
			"s_journal_dev: \t%s[%x]\n"
			"s_orig_journal_size: \t%i\n"
			"s_journal_trans_max: \t%i\n"
			"s_journal_block_count: \t%i\n"
			"s_journal_max_batch: \t%i\n"
			"s_journal_max_commit_age: \t%i\n"
			"s_journal_max_trans_age: \t%i\n"
			/* incore fields */
			"j_state: \t%li\n"			
			"j_trans_id: \t%lu\n"
			"j_mount_id: \t%lu\n"
			"j_start: \t%lu\n"
			"j_len: \t%lu\n"
			"j_len_alloc: \t%lu\n"
			"j_wcount: \t%i\n"
			"j_bcount: \t%lu\n"
			"j_first_unflushed_offset: \t%lu\n"
			"j_last_flush_trans_id: \t%lu\n"
			"j_trans_start_time: \t%li\n"
			"j_journal_list_index: \t%i\n"
			"j_list_bitmap_index: \t%i\n"
			"j_must_wait: \t%i\n"
			"j_next_full_flush: \t%i\n"
			"j_next_async_flush: \t%i\n"
			"j_cnode_used: \t%i\n"
			"j_cnode_free: \t%i\n"
			"\n"
			/* reiserfs_proc_info_data_t.journal fields */
			"in_journal: \t%12lu\n"
			"in_journal_bitmap: \t%12lu\n"
			"in_journal_reusable: \t%12lu\n"
			"lock_journal: \t%12lu\n"
			"lock_journal_wait: \t%12lu\n"
			"journal_begin: \t%12lu\n"
			"journal_relock_writers: \t%12lu\n"
			"journal_relock_wcount: \t%12lu\n"
			"mark_dirty: \t%12lu\n"
			"mark_dirty_already: \t%12lu\n"
			"mark_dirty_notjournal: \t%12lu\n"
			"restore_prepared: \t%12lu\n"
			"prepare: \t%12lu\n"
			"prepare_retry: \t%12lu\n",

			DJF( s_journal_block ),
			DJF( s_journal_dev ) == 0 ? "none" : bdevname( DJF( s_journal_dev ) ), 
			DJF( s_journal_dev ),
			DJF( s_orig_journal_size ),
			DJF( s_journal_trans_max ),
			DJF( s_journal_block_count ),
			DJF( s_journal_max_batch ),
			DJF( s_journal_max_commit_age ),
			DJF( s_journal_max_trans_age ),
			
			JF( j_state ),			
			JF( j_trans_id ),
			JF( j_mount_id ),
			JF( j_start ),
			JF( j_len ),
			JF( j_len_alloc ),
			atomic_read( & r -> s_journal -> j_wcount ),
			JF( j_bcount ),
			JF( j_first_unflushed_offset ),
			JF( j_last_flush_trans_id ),
			JF( j_trans_start_time ),
			JF( j_journal_list_index ),
			JF( j_list_bitmap_index ),
			JF( j_must_wait ),
			JF( j_next_full_flush ),
			JF( j_next_async_flush ),
			JF( j_cnode_used ),
			JF( j_cnode_free ),

			SFPJ( in_journal ),
			SFPJ( in_journal_bitmap ),
			SFPJ( in_journal_reusable ),
			SFPJ( lock_journal ),
			SFPJ( lock_journal_wait ),
			SFPJ( journal_being ),
			SFPJ( journal_relock_writers ),
			SFPJ( journal_relock_wcount ),
			SFPJ( mark_dirty ),
			SFPJ( mark_dirty_already ),
			SFPJ( mark_dirty_notjournal ),
			SFPJ( restore_prepared ),
			SFPJ( prepare ),
			SFPJ( prepare_retry )
		);

	procinfo_epilogue( sb );
	return reiserfs_proc_tail( len, buffer, start, offset, count, eof );
}
Example #24
0
static void
and_pullup(struct block *b)
{
	int val, at_top;
	struct block *pull;
	struct block **diffp, **samep;
	struct edge *ep;

	ep = b->in_edges;
	if (ep == 0)
		return;

	/*
	 * Make sure each predecessor loads the same value.
	 */
	val = ep->pred->val[A_ATOM];
	for (ep = ep->next; ep != 0; ep = ep->next)
		if (val != ep->pred->val[A_ATOM])
			return;

	if (JT(b->in_edges->pred) == b)
		diffp = &JT(b->in_edges->pred);
	else
		diffp = &JF(b->in_edges->pred);

	at_top = 1;
	while (1) {
		if (*diffp == 0)
			return;

		if (JF(*diffp) != JF(b))
			return;

		if (!SET_MEMBER((*diffp)->dom, b->id))
			return;

		if ((*diffp)->val[A_ATOM] != val)
			break;

		diffp = &JT(*diffp);
		at_top = 0;
	}
	samep = &JT(*diffp);
	while (1) {
		if (*samep == 0)
			return;

		if (JF(*samep) != JF(b))
			return;

		if (!SET_MEMBER((*samep)->dom, b->id))
			return;

		if ((*samep)->val[A_ATOM] == val)
			break;

		/* XXX Need to check that there are no data dependencies
		   between diffp and samep.  Currently, the code generator
		   will not produce such dependencies. */
		samep = &JT(*samep);
	}
#ifdef notdef
	/* XXX This doesn't cover everything. */
	for (i = 0; i < N_ATOMS; ++i)
		if ((*samep)->val[i] != pred->val[i])
			return;
#endif
	/* Pull up the node. */
	pull = *samep;
	*samep = JT(pull);
	JT(pull) = *diffp;

	/*
	 * At the top of the chain, each predecessor needs to point at the
	 * pulled up node.  Inside the chain, there is only one predecessor
	 * to worry about.
	 */
	if (at_top) {
		for (ep = b->in_edges; ep != 0; ep = ep->next) {
			if (JT(ep->pred) == b)
				JT(ep->pred) = pull;
			else
				JF(ep->pred) = pull;
		}
	}
	else
		*diffp = pull;

	done = 0;
}
bool ScriptMethodsServerUINamespace::install()
{
const JNINativeMethod NATIVES[] = {
	#define JF(a,b,c) {a,b,(void*)(ScriptMethodsServerUINamespace::c)}
	JF("_createSUIPage",             "(Ljava/lang/String;JJ)I",        createSuiPage),
	JF("clearSUIDataSource",        "(ILjava/lang/String;)Z",                                     clearSuiDataSource),
	JF("clearSUIDataSourceContainer",        "(ILjava/lang/String;)Z",                                     clearSuiDataSourceContainer),
	JF("addSUIDataItem",            "(ILjava/lang/String;Ljava/lang/String;)Z",                   addSuiDataItem),
	JF("addSUIDataSourceContainer", "(ILjava/lang/String;Ljava/lang/String;)Z",                   addSuiDataSourceContainer),
	JF("addSUIDataSource",			"(ILjava/lang/String;Ljava/lang/String;)Z",                   addSuiDataSource),
	JF("addSUIChildWidget",         "(ILjava/lang/String;Ljava/lang/String;Ljava/lang/String;)Z", addSuiChildWidget),
	JF("setSUIProperty",            "(ILjava/lang/String;Ljava/lang/String;Ljava/lang/String;)Z", setSuiProperty),
	JF("subscribeToSUIEvent",       "(IILjava/lang/String;Ljava/lang/String;)Z",                  subscribeToSuiEvent),
	JF("subscribeToSUIPropertyForEvent",   "(IILjava/lang/String;Ljava/lang/String;Ljava/lang/String;)Z",   subscribeToSuiPropertyForEvent),
	JF("showSUIPage",               "(I)Z",                                                       showSuiPage),
	JF("forceCloseSUIPage",         "(I)Z",                                                       forceCloseSuiPage),
	JF("_setSUIAssociatedObject",   "(IJ)Z",                                                      setSuiAssociatedObject),
	JF("_setSUIAssociatedLocation", "(IJ)Z",                                                      setSuiAssociatedLocation),
	JF("setSUIMaxRangeToObject",    "(IF)Z",                                                      setSuiMaxRangeToObject),
	JF("_clientMinigameOpen",       "(JLscript/dictionary;)Z",                                    clientMinigameOpen),
	JF("_clientMinigameClose",      "(JLscript/dictionary;)Z",                                    clientMinigameClose),

};

	return JavaLibrary::registerNatives(NATIVES, sizeof(NATIVES)/sizeof(NATIVES[0]));
}