/* * Process the tail end of a fork() for the child. */ void child_return(void *arg) { struct proc *p = arg; /* * Return values in the frame set by cpu_fork(). */ KERNEL_PROC_UNLOCK(p); userret(p); #ifdef KTRACE if (KTRPOINT(p, KTR_SYSRET)) { KERNEL_PROC_LOCK(p); ktrsysret(p, SYS_fork, 0, 0); KERNEL_PROC_UNLOCK(p); } #endif }
void osf1_syscall_fancy(struct proc *p, u_int64_t code, struct trapframe *framep) { const struct sysent *callp; int error; u_int64_t rval[2]; u_int64_t *args, copyargs[10]; /* XXX */ u_int hidden, nargs; KERNEL_PROC_LOCK(p); uvmexp.syscalls++; p->p_md.md_tf = framep; callp = p->p_emul->e_sysent; switch (code) { case OSF1_SYS_syscall: /* OSF/1 syscall() */ code = framep->tf_regs[FRAME_A0]; hidden = 1; break; default: hidden = 0; break; } code &= (OSF1_SYS_NSYSENT - 1); callp += code; nargs = callp->sy_narg + hidden; switch (nargs) { default: error = copyin((caddr_t)alpha_pal_rdusp(), ©args[6], (nargs - 6) * sizeof(u_int64_t)); if (error) goto bad; case 6: copyargs[5] = framep->tf_regs[FRAME_A5]; case 5: copyargs[4] = framep->tf_regs[FRAME_A4]; case 4: copyargs[3] = framep->tf_regs[FRAME_A3]; copyargs[2] = framep->tf_regs[FRAME_A2]; copyargs[1] = framep->tf_regs[FRAME_A1]; copyargs[0] = framep->tf_regs[FRAME_A0]; args = copyargs; break; case 3: case 2: case 1: case 0: args = &framep->tf_regs[FRAME_A0]; break; } args += hidden; #ifdef KTRACE if (KTRPOINT(p, KTR_SYSCALL)) ktrsyscall(p, code, callp->sy_argsize, args); #endif #ifdef SYSCALL_DEBUG scdebug_call(p, code, args); #endif rval[0] = 0; rval[1] = 0; error = (*callp->sy_call)(p, args, rval); switch (error) { case 0: framep->tf_regs[FRAME_V0] = rval[0]; framep->tf_regs[FRAME_A4] = rval[1]; framep->tf_regs[FRAME_A3] = 0; break; case ERESTART: framep->tf_regs[FRAME_PC] -= 4; break; case EJUSTRETURN: break; default: bad: error = native_to_osf1_errno[error]; framep->tf_regs[FRAME_V0] = error; framep->tf_regs[FRAME_A3] = 1; break; } #ifdef SYSCALL_DEBUG scdebug_ret(p, code, error, rval); #endif KERNEL_PROC_UNLOCK(p); userret(p); #ifdef KTRACE if (KTRPOINT(p, KTR_SYSRET)) { KERNEL_PROC_LOCK(p); ktrsysret(p, code, error, rval[0]); KERNEL_PROC_UNLOCK(p); } #endif }
void m88110_trap(unsigned type, struct trapframe *frame) { struct proc *p; struct vm_map *map; vaddr_t va, pcb_onfault; vm_prot_t ftype; int fault_type; u_long fault_code; unsigned fault_addr; struct vmspace *vm; union sigval sv; int result; #ifdef DDB int s; u_int psr; #endif int sig = 0; pt_entry_t *pte; extern struct vm_map *kernel_map; extern pt_entry_t *pmap_pte(pmap_t, vaddr_t); uvmexp.traps++; if ((p = curproc) == NULL) p = &proc0; if (USERMODE(frame->tf_epsr)) { type += T_USER; p->p_md.md_tf = frame; /* for ptrace/signals */ } fault_type = 0; fault_code = 0; fault_addr = frame->tf_exip & XIP_ADDR; switch (type) { default: panictrap(frame->tf_vector, frame); break; /*NOTREACHED*/ case T_110_DRM+T_USER: case T_110_DRM: #ifdef DEBUG printf("DMMU read miss: Hardware Table Searches should be enabled!\n"); #endif panictrap(frame->tf_vector, frame); break; /*NOTREACHED*/ case T_110_DWM+T_USER: case T_110_DWM: #ifdef DEBUG printf("DMMU write miss: Hardware Table Searches should be enabled!\n"); #endif panictrap(frame->tf_vector, frame); break; /*NOTREACHED*/ case T_110_IAM+T_USER: case T_110_IAM: #ifdef DEBUG printf("IMMU miss: Hardware Table Searches should be enabled!\n"); #endif panictrap(frame->tf_vector, frame); break; /*NOTREACHED*/ #ifdef DDB case T_KDB_TRACE: s = splhigh(); set_psr((psr = get_psr()) & ~PSR_IND); ddb_break_trap(T_KDB_TRACE, (db_regs_t*)frame); set_psr(psr); splx(s); return; case T_KDB_BREAK: s = splhigh(); set_psr((psr = get_psr()) & ~PSR_IND); ddb_break_trap(T_KDB_BREAK, (db_regs_t*)frame); set_psr(psr); splx(s); return; case T_KDB_ENTRY: s = splhigh(); set_psr((psr = get_psr()) & ~PSR_IND); ddb_entry_trap(T_KDB_ENTRY, (db_regs_t*)frame); set_psr(psr); /* skip one instruction */ if (frame->tf_exip & 1) frame->tf_exip = frame->tf_enip; else frame->tf_exip += 4; splx(s); return; #if 0 case T_ILLFLT: s = splhigh(); set_psr((psr = get_psr()) & ~PSR_IND); ddb_error_trap(type == T_ILLFLT ? "unimplemented opcode" : "error fault", (db_regs_t*)frame); set_psr(psr); splx(s); return; #endif /* 0 */ #endif /* DDB */ case T_ILLFLT: printf("Unimplemented opcode!\n"); panictrap(frame->tf_vector, frame); break; case T_NON_MASK: case T_NON_MASK+T_USER: curcpu()->ci_intrdepth++; md_interrupt_func(T_NON_MASK, frame); curcpu()->ci_intrdepth--; return; case T_INT: case T_INT+T_USER: curcpu()->ci_intrdepth++; md_interrupt_func(T_INT, frame); curcpu()->ci_intrdepth--; return; case T_MISALGNFLT: printf("kernel mode misaligned access exception @ 0x%08x\n", frame->tf_exip); panictrap(frame->tf_vector, frame); break; /*NOTREACHED*/ case T_INSTFLT: /* kernel mode instruction access fault. * Should never, never happen for a non-paged kernel. */ #ifdef TRAPDEBUG printf("Kernel Instruction fault exip %x isr %x ilar %x\n", frame->tf_exip, frame->tf_isr, frame->tf_ilar); #endif panictrap(frame->tf_vector, frame); break; /*NOTREACHED*/ case T_DATAFLT: /* kernel mode data fault */ /* data fault on the user address? */ if ((frame->tf_dsr & CMMU_DSR_SU) == 0) { type = T_DATAFLT + T_USER; goto m88110_user_fault; } #ifdef TRAPDEBUG printf("Kernel Data access fault exip %x dsr %x dlar %x\n", frame->tf_exip, frame->tf_dsr, frame->tf_dlar); #endif fault_addr = frame->tf_dlar; if (frame->tf_dsr & CMMU_DSR_RW) { ftype = VM_PROT_READ; fault_code = VM_PROT_READ; } else { ftype = VM_PROT_READ|VM_PROT_WRITE; fault_code = VM_PROT_WRITE; } va = trunc_page((vaddr_t)fault_addr); if (va == 0) { panic("trap: bad kernel access at %x", fault_addr); } KERNEL_LOCK(LK_CANRECURSE | LK_EXCLUSIVE); vm = p->p_vmspace; map = kernel_map; if (frame->tf_dsr & (CMMU_DSR_SI | CMMU_DSR_PI)) { frame->tf_dsr &= ~CMMU_DSR_WE; /* undefined */ /* * On a segment or a page fault, call uvm_fault() to * resolve the fault. */ if ((pcb_onfault = p->p_addr->u_pcb.pcb_onfault) != 0) p->p_addr->u_pcb.pcb_onfault = 0; result = uvm_fault(map, va, VM_FAULT_INVALID, ftype); p->p_addr->u_pcb.pcb_onfault = pcb_onfault; if (result == 0) { KERNEL_UNLOCK(); return; } } if (frame->tf_dsr & CMMU_DSR_WE) { /* write fault */ /* * This could be a write protection fault or an * exception to set the used and modified bits * in the pte. Basically, if we got a write error, * then we already have a pte entry that faulted * in from a previous seg fault or page fault. * Get the pte and check the status of the * modified and valid bits to determine if this * indeed a real write fault. XXX smurph */ pte = pmap_pte(map->pmap, va); #ifdef DEBUG if (pte == NULL) { KERNEL_UNLOCK(); panic("NULL pte on write fault??"); } #endif if (!(*pte & PG_M) && !(*pte & PG_RO)) { /* Set modified bit and try the write again. */ #ifdef TRAPDEBUG printf("Corrected kernel write fault, map %x pte %x\n", map->pmap, *pte); #endif *pte |= PG_M; KERNEL_UNLOCK(); return; #if 1 /* shouldn't happen */ } else { /* must be a real wp fault */ #ifdef TRAPDEBUG printf("Uncorrected kernel write fault, map %x pte %x\n", map->pmap, *pte); #endif if ((pcb_onfault = p->p_addr->u_pcb.pcb_onfault) != 0) p->p_addr->u_pcb.pcb_onfault = 0; result = uvm_fault(map, va, VM_FAULT_INVALID, ftype); p->p_addr->u_pcb.pcb_onfault = pcb_onfault; if (result == 0) { KERNEL_UNLOCK(); return; } #endif } } KERNEL_UNLOCK(); panictrap(frame->tf_vector, frame); /* NOTREACHED */ case T_INSTFLT+T_USER: /* User mode instruction access fault */ /* FALLTHROUGH */ case T_DATAFLT+T_USER: m88110_user_fault: if (type == T_INSTFLT+T_USER) { ftype = VM_PROT_READ; fault_code = VM_PROT_READ; #ifdef TRAPDEBUG printf("User Instruction fault exip %x isr %x ilar %x\n", frame->tf_exip, frame->tf_isr, frame->tf_ilar); #endif } else { fault_addr = frame->tf_dlar; if (frame->tf_dsr & CMMU_DSR_RW) { ftype = VM_PROT_READ; fault_code = VM_PROT_READ; } else { ftype = VM_PROT_READ|VM_PROT_WRITE; fault_code = VM_PROT_WRITE; } #ifdef TRAPDEBUG printf("User Data access fault exip %x dsr %x dlar %x\n", frame->tf_exip, frame->tf_dsr, frame->tf_dlar); #endif } va = trunc_page((vaddr_t)fault_addr); KERNEL_PROC_LOCK(p); vm = p->p_vmspace; map = &vm->vm_map; if ((pcb_onfault = p->p_addr->u_pcb.pcb_onfault) != 0) p->p_addr->u_pcb.pcb_onfault = 0; /* * Call uvm_fault() to resolve non-bus error faults * whenever possible. */ if (type == T_DATAFLT+T_USER) { /* data faults */ if (frame->tf_dsr & CMMU_DSR_BE) { /* bus error */ result = EACCES; } else if (frame->tf_dsr & (CMMU_DSR_SI | CMMU_DSR_PI)) { /* segment or page fault */ result = uvm_fault(map, va, VM_FAULT_INVALID, ftype); p->p_addr->u_pcb.pcb_onfault = pcb_onfault; } else if (frame->tf_dsr & (CMMU_DSR_CP | CMMU_DSR_WA)) { /* copyback or write allocate error */ result = EACCES; } else if (frame->tf_dsr & CMMU_DSR_WE) { /* write fault */ /* This could be a write protection fault or an * exception to set the used and modified bits * in the pte. Basically, if we got a write * error, then we already have a pte entry that * faulted in from a previous seg fault or page * fault. * Get the pte and check the status of the * modified and valid bits to determine if this * indeed a real write fault. XXX smurph */ pte = pmap_pte(vm_map_pmap(map), va); #ifdef DEBUG if (pte == NULL) { KERNEL_PROC_UNLOCK(p); panic("NULL pte on write fault??"); } #endif if (!(*pte & PG_M) && !(*pte & PG_RO)) { /* * Set modified bit and try the * write again. */ #ifdef TRAPDEBUG printf("Corrected userland write fault, map %x pte %x\n", map->pmap, *pte); #endif *pte |= PG_M; /* * invalidate ATCs to force * table search */ set_dcmd(CMMU_DCMD_INV_UATC); KERNEL_PROC_UNLOCK(p); return; } else { /* must be a real wp fault */ #ifdef TRAPDEBUG printf("Uncorrected userland write fault, map %x pte %x\n", map->pmap, *pte); #endif result = uvm_fault(map, va, VM_FAULT_INVALID, ftype); p->p_addr->u_pcb.pcb_onfault = pcb_onfault; } } else { #ifdef TRAPDEBUG printf("Unexpected Data access fault dsr %x\n", frame->tf_dsr); #endif KERNEL_PROC_UNLOCK(p); panictrap(frame->tf_vector, frame); } } else { /* instruction faults */ if (frame->tf_isr & (CMMU_ISR_BE | CMMU_ISR_SP | CMMU_ISR_TBE)) { /* bus error, supervisor protection */ result = EACCES; } else if (frame->tf_isr & (CMMU_ISR_SI | CMMU_ISR_PI)) { /* segment or page fault */ result = uvm_fault(map, va, VM_FAULT_INVALID, ftype); p->p_addr->u_pcb.pcb_onfault = pcb_onfault; } else { #ifdef TRAPDEBUG printf("Unexpected Instruction fault isr %x\n", frame->tf_isr); #endif KERNEL_PROC_UNLOCK(p); panictrap(frame->tf_vector, frame); } } if ((caddr_t)va >= vm->vm_maxsaddr) { if (result == 0) uvm_grow(p, va); else if (result == EACCES) result = EFAULT; } KERNEL_PROC_UNLOCK(p); /* * This could be a fault caused in copyin*() * while accessing user space. */ if (result != 0 && pcb_onfault != 0) { frame->tf_exip = pcb_onfault; /* * Continue as if the fault had been resolved. */ result = 0; } if (result != 0) { sig = result == EACCES ? SIGBUS : SIGSEGV; fault_type = result == EACCES ? BUS_ADRERR : SEGV_MAPERR; } break; case T_MISALGNFLT+T_USER: /* Fix any misaligned ld.d or st.d instructions */ sig = double_reg_fixup(frame); fault_type = BUS_ADRALN; break; case T_PRIVINFLT+T_USER: case T_ILLFLT+T_USER: #ifndef DDB case T_KDB_BREAK: case T_KDB_ENTRY: case T_KDB_TRACE: #endif case T_KDB_BREAK+T_USER: case T_KDB_ENTRY+T_USER: case T_KDB_TRACE+T_USER: sig = SIGILL; break; case T_BNDFLT+T_USER: sig = SIGFPE; break; case T_ZERODIV+T_USER: sig = SIGFPE; fault_type = FPE_INTDIV; break; case T_OVFFLT+T_USER: sig = SIGFPE; fault_type = FPE_INTOVF; break; case T_FPEPFLT+T_USER: sig = SIGFPE; break; case T_SIGSYS+T_USER: sig = SIGSYS; break; case T_STEPBPT+T_USER: #ifdef PTRACE /* * This trap is used by the kernel to support single-step * debugging (although any user could generate this trap * which should probably be handled differently). When a * process is continued by a debugger with the PT_STEP * function of ptrace (single step), the kernel inserts * one or two breakpoints in the user process so that only * one instruction (or two in the case of a delayed branch) * is executed. When this breakpoint is hit, we get the * T_STEPBPT trap. */ { u_int instr; vaddr_t pc = PC_REGS(&frame->tf_regs); /* read break instruction */ copyin((caddr_t)pc, &instr, sizeof(u_int)); /* check and see if we got here by accident */ if ((p->p_md.md_bp0va != pc && p->p_md.md_bp1va != pc) || instr != SSBREAKPOINT) { sig = SIGTRAP; fault_type = TRAP_TRACE; break; } /* restore original instruction and clear breakpoint */ if (p->p_md.md_bp0va == pc) { ss_put_value(p, pc, p->p_md.md_bp0save); p->p_md.md_bp0va = 0; } if (p->p_md.md_bp1va == pc) { ss_put_value(p, pc, p->p_md.md_bp1save); p->p_md.md_bp1va = 0; } sig = SIGTRAP; fault_type = TRAP_BRKPT; } #else sig = SIGTRAP; fault_type = TRAP_TRACE; #endif break; case T_USERBPT+T_USER: /* * This trap is meant to be used by debuggers to implement * breakpoint debugging. When we get this trap, we just * return a signal which gets caught by the debugger. */ sig = SIGTRAP; fault_type = TRAP_BRKPT; break; case T_ASTFLT+T_USER: uvmexp.softs++; p->p_md.md_astpending = 0; if (p->p_flag & P_OWEUPC) { KERNEL_PROC_LOCK(p); ADDUPROF(p); KERNEL_PROC_UNLOCK(p); } if (curcpu()->ci_want_resched) preempt(NULL); break; } /* * If trap from supervisor mode, just return */ if (type < T_USER) return; if (sig) { sv.sival_int = fault_addr; KERNEL_PROC_LOCK(p); trapsignal(p, sig, fault_code, fault_type, sv); KERNEL_PROC_UNLOCK(p); } userret(p); }
void m88100_trap(unsigned type, struct trapframe *frame) { struct proc *p; struct vm_map *map; vaddr_t va, pcb_onfault; vm_prot_t ftype; int fault_type, pbus_type; u_long fault_code; unsigned fault_addr; struct vmspace *vm; union sigval sv; int result; #ifdef DDB int s; u_int psr; #endif int sig = 0; extern struct vm_map *kernel_map; uvmexp.traps++; if ((p = curproc) == NULL) p = &proc0; if (USERMODE(frame->tf_epsr)) { type += T_USER; p->p_md.md_tf = frame; /* for ptrace/signals */ } fault_type = 0; fault_code = 0; fault_addr = frame->tf_sxip & XIP_ADDR; switch (type) { default: panictrap(frame->tf_vector, frame); break; /*NOTREACHED*/ #if defined(DDB) case T_KDB_BREAK: s = splhigh(); set_psr((psr = get_psr()) & ~PSR_IND); ddb_break_trap(T_KDB_BREAK, (db_regs_t*)frame); set_psr(psr); splx(s); return; case T_KDB_ENTRY: s = splhigh(); set_psr((psr = get_psr()) & ~PSR_IND); ddb_entry_trap(T_KDB_ENTRY, (db_regs_t*)frame); set_psr(psr); splx(s); return; #endif /* DDB */ case T_ILLFLT: printf("Unimplemented opcode!\n"); panictrap(frame->tf_vector, frame); break; case T_INT: case T_INT+T_USER: curcpu()->ci_intrdepth++; md_interrupt_func(T_INT, frame); curcpu()->ci_intrdepth--; return; case T_MISALGNFLT: printf("kernel misaligned access exception @ 0x%08x\n", frame->tf_sxip); panictrap(frame->tf_vector, frame); break; case T_INSTFLT: /* kernel mode instruction access fault. * Should never, never happen for a non-paged kernel. */ #ifdef TRAPDEBUG pbus_type = CMMU_PFSR_FAULT(frame->tf_ipfsr); printf("Kernel Instruction fault #%d (%s) v = 0x%x, frame 0x%x cpu %p\n", pbus_type, pbus_exception_type[pbus_type], fault_addr, frame, frame->tf_cpu); #endif panictrap(frame->tf_vector, frame); break; case T_DATAFLT: /* kernel mode data fault */ /* data fault on the user address? */ if ((frame->tf_dmt0 & DMT_DAS) == 0) { type = T_DATAFLT + T_USER; goto user_fault; } fault_addr = frame->tf_dma0; if (frame->tf_dmt0 & (DMT_WRITE|DMT_LOCKBAR)) { ftype = VM_PROT_READ|VM_PROT_WRITE; fault_code = VM_PROT_WRITE; } else { ftype = VM_PROT_READ; fault_code = VM_PROT_READ; } va = trunc_page((vaddr_t)fault_addr); if (va == 0) { panic("trap: bad kernel access at %x", fault_addr); } KERNEL_LOCK(LK_CANRECURSE | LK_EXCLUSIVE); vm = p->p_vmspace; map = kernel_map; pbus_type = CMMU_PFSR_FAULT(frame->tf_dpfsr); #ifdef TRAPDEBUG printf("Kernel Data access fault #%d (%s) v = 0x%x, frame 0x%x cpu %p\n", pbus_type, pbus_exception_type[pbus_type], fault_addr, frame, frame->tf_cpu); #endif switch (pbus_type) { case CMMU_PFSR_SUCCESS: /* * The fault was resolved. Call data_access_emulation * to drain the data unit pipe line and reset dmt0 * so that trap won't get called again. */ data_access_emulation((unsigned *)frame); frame->tf_dpfsr = 0; frame->tf_dmt0 = 0; KERNEL_UNLOCK(); return; case CMMU_PFSR_SFAULT: case CMMU_PFSR_PFAULT: if ((pcb_onfault = p->p_addr->u_pcb.pcb_onfault) != 0) p->p_addr->u_pcb.pcb_onfault = 0; result = uvm_fault(map, va, VM_FAULT_INVALID, ftype); p->p_addr->u_pcb.pcb_onfault = pcb_onfault; if (result == 0) { /* * We could resolve the fault. Call * data_access_emulation to drain the data * unit pipe line and reset dmt0 so that trap * won't get called again. */ data_access_emulation((unsigned *)frame); frame->tf_dpfsr = 0; frame->tf_dmt0 = 0; KERNEL_UNLOCK(); return; } break; } #ifdef TRAPDEBUG printf("PBUS Fault %d (%s) va = 0x%x\n", pbus_type, pbus_exception_type[pbus_type], va); #endif KERNEL_UNLOCK(); panictrap(frame->tf_vector, frame); /* NOTREACHED */ case T_INSTFLT+T_USER: /* User mode instruction access fault */ /* FALLTHROUGH */ case T_DATAFLT+T_USER: user_fault: if (type == T_INSTFLT + T_USER) { pbus_type = CMMU_PFSR_FAULT(frame->tf_ipfsr); #ifdef TRAPDEBUG printf("User Instruction fault #%d (%s) v = 0x%x, frame 0x%x cpu %p\n", pbus_type, pbus_exception_type[pbus_type], fault_addr, frame, frame->tf_cpu); #endif } else { fault_addr = frame->tf_dma0; pbus_type = CMMU_PFSR_FAULT(frame->tf_dpfsr); #ifdef TRAPDEBUG printf("User Data access fault #%d (%s) v = 0x%x, frame 0x%x cpu %p\n", pbus_type, pbus_exception_type[pbus_type], fault_addr, frame, frame->tf_cpu); #endif } if (frame->tf_dmt0 & (DMT_WRITE | DMT_LOCKBAR)) { ftype = VM_PROT_READ | VM_PROT_WRITE; fault_code = VM_PROT_WRITE; } else { ftype = VM_PROT_READ; fault_code = VM_PROT_READ; } va = trunc_page((vaddr_t)fault_addr); KERNEL_PROC_LOCK(p); vm = p->p_vmspace; map = &vm->vm_map; if ((pcb_onfault = p->p_addr->u_pcb.pcb_onfault) != 0) p->p_addr->u_pcb.pcb_onfault = 0; /* Call uvm_fault() to resolve non-bus error faults */ switch (pbus_type) { case CMMU_PFSR_SUCCESS: result = 0; break; case CMMU_PFSR_BERROR: result = EACCES; break; default: result = uvm_fault(map, va, VM_FAULT_INVALID, ftype); break; } p->p_addr->u_pcb.pcb_onfault = pcb_onfault; if ((caddr_t)va >= vm->vm_maxsaddr) { if (result == 0) uvm_grow(p, va); else if (result == EACCES) result = EFAULT; } KERNEL_PROC_UNLOCK(p); /* * This could be a fault caused in copyin*() * while accessing user space. */ if (result != 0 && pcb_onfault != 0) { frame->tf_snip = pcb_onfault | NIP_V; frame->tf_sfip = (pcb_onfault + 4) | FIP_V; frame->tf_sxip = 0; /* * Continue as if the fault had been resolved, but * do not try to complete the faulting access. */ frame->tf_dmt0 |= DMT_SKIP; result = 0; } if (result == 0) { if (type == T_DATAFLT+T_USER) { /* * We could resolve the fault. Call * data_access_emulation to drain the data unit * pipe line and reset dmt0 so that trap won't * get called again. */ data_access_emulation((unsigned *)frame); frame->tf_dpfsr = 0; frame->tf_dmt0 = 0; } else { /* * back up SXIP, SNIP, * clearing the Error bit */ frame->tf_sfip = frame->tf_snip & ~FIP_E; frame->tf_snip = frame->tf_sxip & ~NIP_E; frame->tf_ipfsr = 0; } } else { sig = result == EACCES ? SIGBUS : SIGSEGV; fault_type = result == EACCES ? BUS_ADRERR : SEGV_MAPERR; } break; case T_MISALGNFLT+T_USER: /* Fix any misaligned ld.d or st.d instructions */ sig = double_reg_fixup(frame); fault_type = BUS_ADRALN; break; case T_PRIVINFLT+T_USER: case T_ILLFLT+T_USER: #ifndef DDB case T_KDB_BREAK: case T_KDB_ENTRY: #endif case T_KDB_BREAK+T_USER: case T_KDB_ENTRY+T_USER: case T_KDB_TRACE: case T_KDB_TRACE+T_USER: sig = SIGILL; break; case T_BNDFLT+T_USER: sig = SIGFPE; break; case T_ZERODIV+T_USER: sig = SIGFPE; fault_type = FPE_INTDIV; break; case T_OVFFLT+T_USER: sig = SIGFPE; fault_type = FPE_INTOVF; break; case T_FPEPFLT+T_USER: sig = SIGFPE; break; case T_SIGSYS+T_USER: sig = SIGSYS; break; case T_STEPBPT+T_USER: #ifdef PTRACE /* * This trap is used by the kernel to support single-step * debugging (although any user could generate this trap * which should probably be handled differently). When a * process is continued by a debugger with the PT_STEP * function of ptrace (single step), the kernel inserts * one or two breakpoints in the user process so that only * one instruction (or two in the case of a delayed branch) * is executed. When this breakpoint is hit, we get the * T_STEPBPT trap. */ { u_int instr; vaddr_t pc = PC_REGS(&frame->tf_regs); /* read break instruction */ copyin((caddr_t)pc, &instr, sizeof(u_int)); /* check and see if we got here by accident */ if ((p->p_md.md_bp0va != pc && p->p_md.md_bp1va != pc) || instr != SSBREAKPOINT) { sig = SIGTRAP; fault_type = TRAP_TRACE; break; } /* restore original instruction and clear breakpoint */ if (p->p_md.md_bp0va == pc) { ss_put_value(p, pc, p->p_md.md_bp0save); p->p_md.md_bp0va = 0; } if (p->p_md.md_bp1va == pc) { ss_put_value(p, pc, p->p_md.md_bp1save); p->p_md.md_bp1va = 0; } #if 1 frame->tf_sfip = frame->tf_snip; frame->tf_snip = pc | NIP_V; #endif sig = SIGTRAP; fault_type = TRAP_BRKPT; } #else sig = SIGTRAP; fault_type = TRAP_TRACE; #endif break; case T_USERBPT+T_USER: /* * This trap is meant to be used by debuggers to implement * breakpoint debugging. When we get this trap, we just * return a signal which gets caught by the debugger. */ frame->tf_sfip = frame->tf_snip; frame->tf_snip = frame->tf_sxip; sig = SIGTRAP; fault_type = TRAP_BRKPT; break; case T_ASTFLT+T_USER: uvmexp.softs++; p->p_md.md_astpending = 0; if (p->p_flag & P_OWEUPC) { KERNEL_PROC_LOCK(p); ADDUPROF(p); KERNEL_PROC_UNLOCK(p); } if (curcpu()->ci_want_resched) preempt(NULL); break; } /* * If trap from supervisor mode, just return */ if (type < T_USER) return; if (sig) { sv.sival_int = fault_addr; KERNEL_PROC_LOCK(p); trapsignal(p, sig, fault_code, fault_type, sv); KERNEL_PROC_UNLOCK(p); /* * don't want multiple faults - we are going to * deliver signal. */ frame->tf_dmt0 = 0; frame->tf_ipfsr = frame->tf_dpfsr = 0; } userret(p); }
/* Instruction pointers operate differently on mc88110 */ void m88110_syscall(register_t code, struct trapframe *tf) { int i, nsys, nap; struct sysent *callp; struct proc *p; int error; register_t args[8], rval[2], *ap; uvmexp.syscalls++; p = curproc; callp = p->p_emul->e_sysent; nsys = p->p_emul->e_nsysent; p->p_md.md_tf = tf; /* * For 88k, all the arguments are passed in the registers (r2-r9), * and further arguments (if any) on stack. * For syscall (and __syscall), r2 (and r3) has the actual code. * __syscall takes a quad syscall number, so that other * arguments are at their natural alignments. */ ap = &tf->tf_r[2]; nap = 8; /* r2-r9 */ switch (code) { case SYS_syscall: code = *ap++; nap--; break; case SYS___syscall: if (callp != sysent) break; code = ap[_QUAD_LOWWORD]; ap += 2; nap -= 2; break; } if (code < 0 || code >= nsys) callp += p->p_emul->e_nosys; else callp += code; i = callp->sy_argsize / sizeof(register_t); if (i > sizeof(args) > sizeof(register_t)) panic("syscall nargs"); if (i > nap) { bcopy((caddr_t)ap, (caddr_t)args, nap * sizeof(register_t)); error = copyin((caddr_t)tf->tf_r[31], (caddr_t)(args + nap), (i - nap) * sizeof(register_t)); } else { bcopy((caddr_t)ap, (caddr_t)args, i * sizeof(register_t)); error = 0; } if (error != 0) goto bad; KERNEL_PROC_LOCK(p); #ifdef SYSCALL_DEBUG scdebug_call(p, code, args); #endif #ifdef KTRACE if (KTRPOINT(p, KTR_SYSCALL)) ktrsyscall(p, code, callp->sy_argsize, args); #endif rval[0] = 0; rval[1] = tf->tf_r[3]; #if NSYSTRACE > 0 if (ISSET(p->p_flag, P_SYSTRACE)) error = systrace_redirect(code, p, args, rval); else #endif error = (*callp->sy_call)(p, args, rval); /* * system call will look like: * or r13, r0, <code> * tb0 0, r0, <128> <- exip * br err <- enip * jmp r1 * err: or.u r3, r0, hi16(errno) * st r2, r3, lo16(errno) * subu r2, r0, 1 * jmp r1 * * So, when we take syscall trap, exip/enip will be as * shown above. * Given this, * 1. If the system call returned 0, need to jmp r1. * exip += 8 * 2. If the system call returned an errno > 0, increment * exip += 4 and plug the value in r2. This will have us * executing "br err" on return to user space. * 3. If the system call code returned ERESTART, * we need to rexecute the trap instruction. leave exip as is. * 4. If the system call returned EJUSTRETURN, just return. * exip += 4 */ KERNEL_PROC_UNLOCK(p); switch (error) { case 0: tf->tf_r[2] = rval[0]; tf->tf_r[3] = rval[1]; tf->tf_epsr &= ~PSR_C; /* skip two instructions */ if (tf->tf_exip & 1) tf->tf_exip = tf->tf_enip + 4; else tf->tf_exip += 4 + 4; break; case ERESTART: /* * Reexecute the trap. * exip is already at the trap instruction, so * there is nothing to do. */ tf->tf_epsr &= ~PSR_C; break; case EJUSTRETURN: tf->tf_epsr &= ~PSR_C; /* skip one instruction */ if (tf->tf_exip & 1) tf->tf_exip = tf->tf_enip; else tf->tf_exip += 4; break; default: bad: if (p->p_emul->e_errno) error = p->p_emul->e_errno[error]; tf->tf_r[2] = error; tf->tf_epsr |= PSR_C; /* fail */ /* skip one instruction */ if (tf->tf_exip & 1) tf->tf_exip = tf->tf_enip; else tf->tf_exip += 4; break; } #ifdef SYSCALL_DEBUG KERNEL_PROC_LOCK(p); scdebug_ret(p, code, error, rval); KERNEL_PROC_UNLOCK(p); #endif userret(p); #ifdef KTRACE if (KTRPOINT(p, KTR_SYSRET)) { KERNEL_PROC_LOCK(p); ktrsysret(p, code, error, rval[0]); KERNEL_PROC_UNLOCK(p); } #endif }
/*ARGSUSED*/ void trap(struct trapframe *frame) { struct proc *p = curproc; int type = (int)frame->tf_trapno; struct pcb *pcb; extern char doreti_iret[], resume_iret[]; caddr_t onfault; int error; uint64_t cr2; union sigval sv; uvmexp.traps++; pcb = (p != NULL && p->p_addr != NULL) ? &p->p_addr->u_pcb : NULL; #ifdef DEBUG if (trapdebug) { printf("trap %d code %lx rip %lx cs %lx rflags %lx cr2 %lx " "cpl %x\n", type, frame->tf_err, frame->tf_rip, frame->tf_cs, frame->tf_rflags, rcr2(), curcpu()->ci_ilevel); printf("curproc %p\n", curproc); if (curproc) printf("pid %d\n", p->p_pid); } #endif if (!KERNELMODE(frame->tf_cs, frame->tf_rflags)) { type |= T_USER; p->p_md.md_regs = frame; } switch (type) { default: we_re_toast: #ifdef KGDB if (kgdb_trap(type, frame)) return; else { /* * If this is a breakpoint, don't panic * if we're not connected. */ if (type == T_BPTFLT) { printf("kgdb: ignored %s\n", trap_type[type]); return; } } #endif #ifdef DDB if (kdb_trap(type, 0, frame)) return; #endif if (frame->tf_trapno < trap_types) printf("fatal %s", trap_type[frame->tf_trapno]); else printf("unknown trap %ld", (u_long)frame->tf_trapno); printf(" in %s mode\n", (type & T_USER) ? "user" : "supervisor"); printf("trap type %d code %lx rip %lx cs %lx rflags %lx cr2 " " %lx cpl %x rsp %lx\n", type, frame->tf_err, (u_long)frame->tf_rip, frame->tf_cs, frame->tf_rflags, rcr2(), curcpu()->ci_ilevel, frame->tf_rsp); panic("trap type %d, code=%lx, pc=%lx", type, frame->tf_err, frame->tf_rip); /*NOTREACHED*/ case T_PROTFLT: case T_SEGNPFLT: case T_ALIGNFLT: case T_TSSFLT: if (p == NULL) goto we_re_toast; /* Check for copyin/copyout fault. */ if (pcb->pcb_onfault != 0) { error = EFAULT; copyfault: frame->tf_rip = (u_int64_t)pcb->pcb_onfault; frame->tf_rax = error; return; } /* * Check for failure during return to user mode. * We do this by looking at the address of the * instruction that faulted. */ if (frame->tf_rip == (u_int64_t)doreti_iret) { frame->tf_rip = (u_int64_t)resume_iret; return; } goto we_re_toast; case T_PROTFLT|T_USER: /* protection fault */ case T_TSSFLT|T_USER: case T_SEGNPFLT|T_USER: case T_STKFLT|T_USER: case T_NMI|T_USER: #ifdef TRAP_SIGDEBUG printf("pid %d (%s): BUS at rip %lx addr %lx\n", p->p_pid, p->p_comm, frame->tf_rip, rcr2()); frame_dump(frame); #endif sv.sival_ptr = (void *)frame->tf_rip; KERNEL_PROC_LOCK(p); trapsignal(p, SIGBUS, type & ~T_USER, BUS_OBJERR, sv); KERNEL_PROC_UNLOCK(p); goto out; case T_ALIGNFLT|T_USER: sv.sival_ptr = (void *)frame->tf_rip; KERNEL_PROC_LOCK(p); trapsignal(p, SIGBUS, type & ~T_USER, BUS_ADRALN, sv); KERNEL_PROC_UNLOCK(p); goto out; case T_PRIVINFLT|T_USER: /* privileged instruction fault */ sv.sival_ptr = (void *)frame->tf_rip; KERNEL_PROC_LOCK(p); trapsignal(p, SIGILL, type & ~T_USER, ILL_PRVOPC, sv); KERNEL_PROC_UNLOCK(p); goto out; case T_FPOPFLT|T_USER: /* coprocessor operand fault */ #ifdef TRAP_SIGDEBUG printf("pid %d (%s): ILL at rip %lx addr %lx\n", p->p_pid, p->p_comm, frame->tf_rip, rcr2()); frame_dump(frame); #endif sv.sival_ptr = (void *)frame->tf_rip; KERNEL_PROC_LOCK(p); trapsignal(p, SIGILL, type & ~T_USER, ILL_COPROC, sv); KERNEL_PROC_UNLOCK(p); goto out; case T_ASTFLT|T_USER: /* Allow process switch */ uvmexp.softs++; if (p->p_flag & P_OWEUPC) { KERNEL_PROC_LOCK(p); ADDUPROF(p); KERNEL_PROC_UNLOCK(p); } /* Allow a forced task switch. */ if (curcpu()->ci_want_resched) preempt(NULL); goto out; case T_BOUND|T_USER: sv.sival_ptr = (void *)frame->tf_rip; KERNEL_PROC_LOCK(p); trapsignal(p, SIGFPE, type &~ T_USER, FPE_FLTSUB, sv); KERNEL_PROC_UNLOCK(p); goto out; case T_OFLOW|T_USER: sv.sival_ptr = (void *)frame->tf_rip; KERNEL_PROC_LOCK(p); trapsignal(p, SIGFPE, type &~ T_USER, FPE_INTOVF, sv); KERNEL_PROC_UNLOCK(p); goto out; case T_DIVIDE|T_USER: sv.sival_ptr = (void *)frame->tf_rip; KERNEL_PROC_LOCK(p); trapsignal(p, SIGFPE, type &~ T_USER, FPE_INTDIV, sv); KERNEL_PROC_UNLOCK(p); goto out; case T_ARITHTRAP|T_USER: case T_XMM|T_USER: fputrap(frame); goto out; case T_PAGEFLT: /* allow page faults in kernel mode */ if (p == NULL) goto we_re_toast; cr2 = rcr2(); KERNEL_LOCK(); goto faultcommon; case T_PAGEFLT|T_USER: { /* page fault */ vaddr_t va, fa; struct vmspace *vm; struct vm_map *map; vm_prot_t ftype; extern struct vm_map *kernel_map; cr2 = rcr2(); KERNEL_PROC_LOCK(p); faultcommon: vm = p->p_vmspace; if (vm == NULL) goto we_re_toast; fa = cr2; va = trunc_page((vaddr_t)cr2); /* * It is only a kernel address space fault iff: * 1. (type & T_USER) == 0 and * 2. pcb_onfault not set or * 3. pcb_onfault set but supervisor space fault * The last can occur during an exec() copyin where the * argument space is lazy-allocated. */ if (type == T_PAGEFLT && va >= VM_MIN_KERNEL_ADDRESS) map = kernel_map; else map = &vm->vm_map; if (frame->tf_err & PGEX_W) ftype = VM_PROT_WRITE; else if (frame->tf_err & PGEX_I) ftype = VM_PROT_EXECUTE; else ftype = VM_PROT_READ; #ifdef DIAGNOSTIC if (map == kernel_map && va == 0) { printf("trap: bad kernel access at %lx\n", va); goto we_re_toast; } #endif /* Fault the original page in. */ onfault = pcb->pcb_onfault; pcb->pcb_onfault = NULL; error = uvm_fault(map, va, frame->tf_err & PGEX_P? VM_FAULT_PROTECT : VM_FAULT_INVALID, ftype); pcb->pcb_onfault = onfault; if (error == 0) { if (map != kernel_map) uvm_grow(p, va); if (type == T_PAGEFLT) { KERNEL_UNLOCK(); return; } KERNEL_PROC_UNLOCK(p); goto out; } if (error == EACCES) { error = EFAULT; } if (type == T_PAGEFLT) { if (pcb->pcb_onfault != 0) { KERNEL_UNLOCK(); goto copyfault; } printf("uvm_fault(%p, 0x%lx, 0, %d) -> %x\n", map, va, ftype, error); goto we_re_toast; } if (error == ENOMEM) { printf("UVM: pid %d (%s), uid %d killed: out of swap\n", p->p_pid, p->p_comm, p->p_cred && p->p_ucred ? (int)p->p_ucred->cr_uid : -1); sv.sival_ptr = (void *)fa; trapsignal(p, SIGKILL, T_PAGEFLT, SEGV_MAPERR, sv); } else { #ifdef TRAP_SIGDEBUG printf("pid %d (%s): SEGV at rip %lx addr %lx\n", p->p_pid, p->p_comm, frame->tf_rip, va); frame_dump(frame); #endif sv.sival_ptr = (void *)fa; trapsignal(p, SIGSEGV, T_PAGEFLT, SEGV_MAPERR, sv); } if (type == T_PAGEFLT) KERNEL_UNLOCK(); else KERNEL_PROC_UNLOCK(p); break; } case T_TRCTRAP: goto we_re_toast; case T_BPTFLT|T_USER: /* bpt instruction fault */ case T_TRCTRAP|T_USER: /* trace trap */ #ifdef MATH_EMULATE trace: #endif KERNEL_PROC_LOCK(p); trapsignal(p, SIGTRAP, type &~ T_USER, TRAP_BRKPT, sv); KERNEL_PROC_UNLOCK(p); break; #if NISA > 0 case T_NMI: #if defined(KGDB) || defined(DDB) /* NMI can be hooked up to a pushbutton for debugging */ printf ("NMI ... going to debugger\n"); #ifdef KGDB if (kgdb_trap(type, frame)) return; #endif #ifdef DDB if (kdb_trap(type, 0, frame)) return; #endif #endif /* KGDB || DDB */ /* machine/parity/power fail/"kitchen sink" faults */ if (x86_nmi() != 0) goto we_re_toast; else return; #endif /* NISA > 0 */ } if ((type & T_USER) == 0) return; out: userret(p); }
/* * Process a system call. * * System calls are strange beasts. They are passed the syscall number * in v0, and the arguments in the registers (as normal). They return * an error flag in a3 (if a3 != 0 on return, the syscall had an error), * and the return value (if any) in v0. * * The assembly stub takes care of moving the call number into a register * we can get to, and moves all of the argument registers into their places * in the trap frame. On return, it restores the callee-saved registers, * a3, and v0 from the frame before returning to the user process. */ void syscall_plain(struct proc *p, u_int64_t code, struct trapframe *framep) { const struct sysent *callp; int error; u_int64_t rval[2]; u_int64_t *args, copyargs[10]; /* XXX */ u_int hidden, nargs; KERNEL_PROC_LOCK(p); uvmexp.syscalls++; p->p_md.md_tf = framep; callp = p->p_emul->e_sysent; switch (code) { case SYS_syscall: case SYS___syscall: /* * syscall() and __syscall() are handled the same on * the alpha, as everything is 64-bit aligned, anyway. */ code = framep->tf_regs[FRAME_A0]; hidden = 1; break; default: hidden = 0; break; } code &= (SYS_NSYSENT - 1); callp += code; nargs = callp->sy_narg + hidden; switch (nargs) { default: error = copyin((caddr_t)alpha_pal_rdusp(), ©args[6], (nargs - 6) * sizeof(u_int64_t)); if (error) goto bad; case 6: copyargs[5] = framep->tf_regs[FRAME_A5]; case 5: copyargs[4] = framep->tf_regs[FRAME_A4]; case 4: copyargs[3] = framep->tf_regs[FRAME_A3]; copyargs[2] = framep->tf_regs[FRAME_A2]; copyargs[1] = framep->tf_regs[FRAME_A1]; copyargs[0] = framep->tf_regs[FRAME_A0]; args = copyargs; break; case 3: case 2: case 1: case 0: args = &framep->tf_regs[FRAME_A0]; break; } args += hidden; #ifdef SYSCALL_DEBUG scdebug_call(p, code, args); #endif rval[0] = 0; rval[1] = 0; error = (*callp->sy_call)(p, args, rval); switch (error) { case 0: framep->tf_regs[FRAME_V0] = rval[0]; framep->tf_regs[FRAME_A4] = rval[1]; framep->tf_regs[FRAME_A3] = 0; break; case ERESTART: framep->tf_regs[FRAME_PC] -= 4; break; case EJUSTRETURN: break; default: bad: framep->tf_regs[FRAME_V0] = error; framep->tf_regs[FRAME_A3] = 1; break; } #ifdef SYSCALL_DEBUG scdebug_ret(p, code, error, rval); #endif KERNEL_PROC_UNLOCK(p); userret(p); }