Example #1
0
PetscErrorCode KSPBuildSolution_LGMRES(KSP ksp,Vec ptr,Vec *result)
{
    KSP_LGMRES     *lgmres = (KSP_LGMRES *)ksp->data;
    PetscErrorCode ierr;

    PetscFunctionBegin;
    if (!ptr) {
        if (!lgmres->sol_temp) {
            ierr = VecDuplicate(ksp->vec_sol,&lgmres->sol_temp);
            CHKERRQ(ierr);
            ierr = PetscLogObjectParent(ksp,lgmres->sol_temp);
            CHKERRQ(ierr);
        }
        ptr = lgmres->sol_temp;
    }
    if (!lgmres->nrs) {
        /* allocate the work area */
        ierr = PetscMalloc(lgmres->max_k*sizeof(PetscScalar),&lgmres->nrs);
        CHKERRQ(ierr);
        ierr = PetscLogObjectMemory(ksp,lgmres->max_k*sizeof(PetscScalar));
        CHKERRQ(ierr);
    }

    ierr = KSPLGMRESBuildSoln(lgmres->nrs,ksp->vec_sol,ptr,ksp,lgmres->it);
    CHKERRQ(ierr);
    if (result) *result = ptr;

    PetscFunctionReturn(0);
}
Example #2
0
PetscErrorCode KSPLGMRESCycle(PetscInt *itcount,KSP ksp)
{
  KSP_LGMRES     *lgmres = (KSP_LGMRES*)(ksp->data);
  PetscReal      res_norm, res;
  PetscReal      hapbnd, tt;
  PetscScalar    tmp;
  PetscBool      hapend = PETSC_FALSE;  /* indicates happy breakdown ending */
  PetscErrorCode ierr;
  PetscInt       loc_it;                /* local count of # of dir. in Krylov space */
  PetscInt       max_k  = lgmres->max_k; /* max approx space size */
  PetscInt       max_it = ksp->max_it;  /* max # of overall iterations for the method */

  /* LGMRES_MOD - new variables*/
  PetscInt    aug_dim = lgmres->aug_dim;
  PetscInt    spot    = 0;
  PetscInt    order   = 0;
  PetscInt    it_arnoldi;                /* number of arnoldi steps to take */
  PetscInt    it_total;                  /* total number of its to take (=approx space size)*/
  PetscInt    ii, jj;
  PetscReal   tmp_norm;
  PetscScalar inv_tmp_norm;
  PetscScalar *avec;

  PetscFunctionBegin;
  /* Number of pseudo iterations since last restart is the number
     of prestart directions */
  loc_it = 0;

  /* LGMRES_MOD: determine number of arnoldi steps to take */
  /* if approx_constant then we keep the space the same size even if
     we don't have the full number of aug vectors yet*/
  if (lgmres->approx_constant) it_arnoldi = max_k - lgmres->aug_ct;
  else it_arnoldi = max_k - aug_dim;

  it_total =  it_arnoldi + lgmres->aug_ct;

  /* initial residual is in VEC_VV(0)  - compute its norm*/
  ierr = VecNorm(VEC_VV(0),NORM_2,&res_norm);CHKERRQ(ierr);
  res  = res_norm;

  /* first entry in right-hand-side of hessenberg system is just
     the initial residual norm */
  *GRS(0) = res_norm;

  /* check for the convergence */
  if (!res) {
    if (itcount) *itcount = 0;
    ksp->reason = KSP_CONVERGED_ATOL;

    ierr = PetscInfo(ksp,"Converged due to zero residual norm on entry\n");CHKERRQ(ierr);
    PetscFunctionReturn(0);
  }

  /* scale VEC_VV (the initial residual) */
  tmp = 1.0/res_norm; ierr = VecScale(VEC_VV(0),tmp);CHKERRQ(ierr);

  ksp->rnorm = res;


  /* note: (lgmres->it) is always set one less than (loc_it) It is used in
     KSPBUILDSolution_LGMRES, where it is passed to KSPLGMRESBuildSoln.
     Note that when KSPLGMRESBuildSoln is called from this function,
     (loc_it -1) is passed, so the two are equivalent */
  lgmres->it = (loc_it - 1);


  /* MAIN ITERATION LOOP BEGINNING*/


  /* keep iterating until we have converged OR generated the max number
     of directions OR reached the max number of iterations for the method */
  ierr = (*ksp->converged)(ksp,ksp->its,res,&ksp->reason,ksp->cnvP);CHKERRQ(ierr);

  while (!ksp->reason && loc_it < it_total && ksp->its < max_it) { /* LGMRES_MOD: changed to it_total */
    ierr       = KSPLogResidualHistory(ksp,res);CHKERRQ(ierr);
    lgmres->it = (loc_it - 1);
    ierr       = KSPMonitor(ksp,ksp->its,res);CHKERRQ(ierr);

    /* see if more space is needed for work vectors */
    if (lgmres->vv_allocated <= loc_it + VEC_OFFSET + 1) {
      ierr = KSPLGMRESGetNewVectors(ksp,loc_it+1);CHKERRQ(ierr);
      /* (loc_it+1) is passed in as number of the first vector that should
          be allocated */
    }

    /*LGMRES_MOD: decide whether this is an arnoldi step or an aug step */
    if (loc_it < it_arnoldi) { /* Arnoldi */
      ierr = KSP_PCApplyBAorAB(ksp,VEC_VV(loc_it),VEC_VV(1+loc_it),VEC_TEMP_MATOP);CHKERRQ(ierr);
    } else { /*aug step */
      order = loc_it - it_arnoldi + 1; /* which aug step */
      for (ii=0; ii<aug_dim; ii++) {
        if (lgmres->aug_order[ii] == order) {
          spot = ii;
          break; /* must have this because there will be duplicates before aug_ct = aug_dim */
        }
      }

      ierr = VecCopy(A_AUGVEC(spot), VEC_VV(1+loc_it));CHKERRQ(ierr);
      /*note: an alternate implementation choice would be to only save the AUGVECS and
        not A_AUGVEC and then apply the PC here to the augvec */
    }

    /* update hessenberg matrix and do Gram-Schmidt - new direction is in
       VEC_VV(1+loc_it)*/
    ierr = (*lgmres->orthog)(ksp,loc_it);CHKERRQ(ierr);

    /* new entry in hessenburg is the 2-norm of our new direction */
    ierr = VecNorm(VEC_VV(loc_it+1),NORM_2,&tt);CHKERRQ(ierr);

    *HH(loc_it+1,loc_it)  = tt;
    *HES(loc_it+1,loc_it) = tt;


    /* check for the happy breakdown */
    hapbnd = PetscAbsScalar(tt / *GRS(loc_it)); /* GRS(loc_it) contains the res_norm from the last iteration  */
    if (hapbnd > lgmres->haptol) hapbnd = lgmres->haptol;
    if (tt > hapbnd) {
      tmp  = 1.0/tt;
      ierr = VecScale(VEC_VV(loc_it+1),tmp);CHKERRQ(ierr); /* scale new direction by its norm */
    } else {
      ierr   = PetscInfo2(ksp,"Detected happy breakdown, current hapbnd = %G tt = %G\n",hapbnd,tt);CHKERRQ(ierr);
      hapend = PETSC_TRUE;
    }

    /* Now apply rotations to new col of hessenberg (and right side of system),
       calculate new rotation, and get new residual norm at the same time*/
    ierr = KSPLGMRESUpdateHessenberg(ksp,loc_it,hapend,&res);CHKERRQ(ierr);
    if (ksp->reason) break;

    loc_it++;
    lgmres->it = (loc_it-1);   /* Add this here in case it has converged */

    ierr = PetscObjectSAWsTakeAccess((PetscObject)ksp);CHKERRQ(ierr);
    ksp->its++;
    ksp->rnorm = res;
    ierr       = PetscObjectSAWsGrantAccess((PetscObject)ksp);CHKERRQ(ierr);

    ierr = (*ksp->converged)(ksp,ksp->its,res,&ksp->reason,ksp->cnvP);CHKERRQ(ierr);

    /* Catch error in happy breakdown and signal convergence and break from loop */
    if (hapend) {
      if (!ksp->reason) {
        if (ksp->errorifnotconverged) SETERRQ1(PetscObjectComm((PetscObject)ksp),PETSC_ERR_NOT_CONVERGED,"You reached the happy break down, but convergence was not indicated. Residual norm = %G",res);
        else {
          ksp->reason = KSP_DIVERGED_BREAKDOWN;
          break;
        }
      }
    }
  }
  /* END OF ITERATION LOOP */
  ierr = KSPLogResidualHistory(ksp,res);CHKERRQ(ierr);

  /* Monitor if we know that we will not return for a restart */
  if (ksp->reason || ksp->its >= max_it) {
    ierr = KSPMonitor(ksp, ksp->its, res);CHKERRQ(ierr);
  }

  if (itcount) *itcount = loc_it;

  /*
    Down here we have to solve for the "best" coefficients of the Krylov
    columns, add the solution values together, and possibly unwind the
    preconditioning from the solution
   */

  /* Form the solution (or the solution so far) */
  /* Note: must pass in (loc_it-1) for iteration count so that KSPLGMRESBuildSoln
     properly navigates */

  ierr = KSPLGMRESBuildSoln(GRS(0),ksp->vec_sol,ksp->vec_sol,ksp,loc_it-1);CHKERRQ(ierr);


  /* LGMRES_MOD collect aug vector and A*augvector for future restarts -
     only if we will be restarting (i.e. this cycle performed it_total
     iterations)  */
  if (!ksp->reason && ksp->its < max_it && aug_dim > 0) {

    /*AUG_TEMP contains the new augmentation vector (assigned in  KSPLGMRESBuildSoln) */
    if (!lgmres->aug_ct) {
      spot = 0;
      lgmres->aug_ct++;
    } else if (lgmres->aug_ct < aug_dim) {
      spot = lgmres->aug_ct;
      lgmres->aug_ct++;
    } else { /* truncate */
      for (ii=0; ii<aug_dim; ii++) {
        if (lgmres->aug_order[ii] == aug_dim) spot = ii;
      }
    }



    ierr = VecCopy(AUG_TEMP, AUGVEC(spot));CHKERRQ(ierr);
    /*need to normalize */
    ierr = VecNorm(AUGVEC(spot), NORM_2, &tmp_norm);CHKERRQ(ierr);

    inv_tmp_norm = 1.0/tmp_norm;

    ierr = VecScale(AUGVEC(spot),inv_tmp_norm);CHKERRQ(ierr);

    /*set new aug vector to order 1  - move all others back one */
    for (ii=0; ii < aug_dim; ii++) AUG_ORDER(ii)++;
    AUG_ORDER(spot) = 1;

    /*now add the A*aug vector to A_AUGVEC(spot)  - this is independ. of preconditioning type*/
    /* want V*H*y - y is in GRS, V is in VEC_VV and H is in HES */


    /* first do H+*y */
    avec = lgmres->hwork;
    ierr = PetscMemzero(avec,(it_total+1)*sizeof(*avec));CHKERRQ(ierr);
    for (ii=0; ii < it_total + 1; ii++) {
      for (jj=0; jj <= ii+1 && jj < it_total+1; jj++) {
        avec[jj] += *HES(jj ,ii) * *GRS(ii);
      }
    }

    /*now multiply result by V+ */
    ierr = VecSet(VEC_TEMP,0.0);CHKERRQ(ierr);
    ierr = VecMAXPY(VEC_TEMP, it_total+1, avec, &VEC_VV(0));CHKERRQ(ierr); /*answer is in VEC_TEMP*/

    /*copy answer to aug location  and scale*/
    ierr = VecCopy(VEC_TEMP,  A_AUGVEC(spot));CHKERRQ(ierr);
    ierr = VecScale(A_AUGVEC(spot),inv_tmp_norm);CHKERRQ(ierr);
  }
  PetscFunctionReturn(0);
}