static LLVMValueRef
add_test(LLVMModuleRef module, const char *name, lp_func_t lp_func)
{
   LLVMTypeRef v4sf = LLVMVectorType(LLVMFloatType(), 4);
   LLVMTypeRef args[1] = { v4sf };
   LLVMValueRef func = LLVMAddFunction(module, name, LLVMFunctionType(v4sf, args, 1, 0));
   LLVMValueRef arg1 = LLVMGetParam(func, 0);
   LLVMBuilderRef builder = LLVMCreateBuilder();
   LLVMBasicBlockRef block = LLVMAppendBasicBlock(func, "entry");
   LLVMValueRef ret;
   struct lp_build_context bld;

   bld.builder = builder;
   bld.type.floating = 1;
   bld.type.width = 32;
   bld.type.length = 4;

   LLVMSetFunctionCallConv(func, LLVMCCallConv);

   LLVMPositionBuilderAtEnd(builder, block);

   ret = lp_func(&bld, arg1);

   LLVMBuildRet(builder, ret);
   LLVMDisposeBuilder(builder);
   return func;
}
int test_kal_codegen_function() {
    kal_named_value *val;
    unsigned int arg_count = 1;
    char **args = malloc(sizeof(char*) * arg_count);
    args[0] = "foo";
    
    LLVMModuleRef module = LLVMModuleCreateWithName("kal");
    LLVMBuilderRef builder = LLVMCreateBuilder();
    kal_ast_node *prototype = kal_ast_prototype_create("my_func", args, arg_count);
    kal_ast_node *lhs = kal_ast_variable_create("foo");
    kal_ast_node *rhs = kal_ast_number_create(20);
    kal_ast_node *body = kal_ast_binary_expr_create(KAL_BINOP_PLUS, lhs, rhs);
    kal_ast_node *node = kal_ast_function_create(prototype, body);

    kal_codegen_reset();
    LLVMValueRef value = kal_codegen(node, module, builder);

    mu_assert(value != NULL, "");
    mu_assert(LLVMGetNamedFunction(module, "my_func") == value, "");
    mu_assert(LLVMCountParams(value) == 1, "");

    val = kal_codegen_named_value("foo");
    mu_assert(val->value == LLVMGetParam(value, 0), "");
    mu_assert(LLVMGetTypeKind(LLVMTypeOf(LLVMGetParam(value, 0))) == LLVMDoubleTypeKind, "");

    LLVMDisposeBuilder(builder);
    LLVMDisposeModule(module);
    kal_ast_node_free(node);
    return 0;
}
Example #3
0
void
vm_state_destroy(struct vm_state *vm)
{
   LLVMBasicBlockRef current_block, return_block;
   char *error;

   current_block = LLVMGetInsertBlock(vm->builder);
   return_block = LLVMInsertBasicBlock(current_block, "ret");

   LLVMPositionBuilderAtEnd(vm->builder, current_block);
   LLVMBuildBr(vm->builder, return_block);

   LLVMPositionBuilderAtEnd(vm->builder, return_block);
   LLVMBuildRetVoid(vm->builder);

   LLVMMoveBasicBlockAfter(return_block, current_block);

   LLVMDumpModule(vm->module);

   error = NULL;
   LLVMVerifyModule(vm->module, LLVMAbortProcessAction, &error);
   LLVMDisposeMessage(error);

   LLVMDisposeBuilder(vm->builder);
   LLVMDisposeModule(vm->module);
   symbol_table_destroy(vm->symtab);
}
Example #4
0
int main(int argc, char const *argv[]) {
    LLVMModuleRef mod = LLVMModuleCreateWithName("sum");

    LLVMTypeRef param_types[] = { LLVMInt32Type(), LLVMInt32Type() };
    LLVMTypeRef ret_type = LLVMFunctionType(LLVMInt32Type(), /* ret type */
                                            param_types, /* arg types */
                                            2, /* arg count */
                                            0 /* is variadic */);
    LLVMValueRef sum = LLVMAddFunction(mod, "sum", ret_type);

    LLVMBasicBlockRef entry = LLVMAppendBasicBlock(sum, "entry");
    
    LLVMBuilderRef builder = LLVMCreateBuilder();
    LLVMPositionBuilderAtEnd(builder, entry);
    LLVMValueRef tmp = LLVMBuildAdd(builder, 
                            LLVMGetParam(sum, 0), 
                            LLVMGetParam(sum, 1), "tmp");
    LLVMBuildRet(builder, tmp);

    char *error = NULL;
    LLVMVerifyModule(mod, LLVMAbortProcessAction, &error);
    LLVMDisposeMessage(error);

    LLVMExecutionEngineRef engine;
    error = NULL;
    LLVMLinkInJIT();
    LLVMInitializeNativeTarget();
    if (LLVMCreateExecutionEngineForModule(&engine, mod, &error) != 0) {
        fprintf(stderr, "failed to create execution engine\n");
        abort();
    }
    if (error) {
        fprintf(stderr, "error: %s\n", error);
        LLVMDisposeMessage(error);
        exit(EXIT_FAILURE);
    }

    if (argc < 3) {
        fprintf(stderr, "usage: %s x y\n", argv[0]);
        exit(EXIT_FAILURE);
    }

    long long x = strtoll(argv[1], NULL, 10);
    long long y = strtoll(argv[2], NULL, 10);

    LLVMGenericValueRef args[] = {
        LLVMCreateGenericValueOfInt(LLVMInt32Type(), x, 0),
        LLVMCreateGenericValueOfInt(LLVMInt32Type(), y, 0),
    };
    LLVMGenericValueRef res = LLVMRunFunction(engine, sum,  2, args);
    printf("%d\n", (int)LLVMGenericValueToInt(res, 0));

    // write bitcode to file
    if (LLVMWriteBitcodeToFile(mod, "sum.bc") != 0) {
        fprintf(stderr, "error writing bitcode to file\n");
    }

    LLVMDisposeBuilder(builder);
    LLVMDisposeExecutionEngine(engine);
}
Example #5
0
LLVMCompiledProgram LLVM_compile(ASTNode *node)
{
  char *error = NULL; // Used to retrieve messages from functions
  LLVMLinkInJIT();
  LLVMInitializeNativeTarget();
  LLVMModuleRef mod = LLVMModuleCreateWithName("calc_module");
  LLVMTypeRef program_args[] = { };
  LLVMValueRef program = LLVMAddFunction(mod, "program", LLVMFunctionType(LLVMInt32Type(), program_args, 0, 0));
  LLVMSetFunctionCallConv(program, LLVMCCallConv);

  LLVMBuilderRef builder = LLVMCreateBuilder();
  LLVMBasicBlockRef entry = LLVMAppendBasicBlock(program, "entry");

  LLVMPositionBuilderAtEnd(builder, entry);

  LLVMValueRef res = LLVM_visit(node, builder);

  LLVMBuildRet(builder, res);
  LLVMVerifyModule(mod, LLVMAbortProcessAction, &error);
  LLVMDisposeMessage(error); // Handler == LLVMAbortProcessAction -> No need to check errors

  LLVMDisposeBuilder(builder);

  return (LLVMCompiledProgram) { .module = mod, .function = program };
}
Example #6
0
static void handle_line(char **tokens, int ntokens) {
  char *name = tokens[0];
  LLVMValueRef param;
  LLVMValueRef res;

  LLVMModuleRef M = LLVMModuleCreateWithName(name);

  LLVMTypeRef I64ty = LLVMInt64Type();
  LLVMTypeRef I64Ptrty = LLVMPointerType(I64ty, 0);
  LLVMTypeRef Fty = LLVMFunctionType(I64ty, &I64Ptrty, 1, 0);

  LLVMValueRef F = LLVMAddFunction(M, name, Fty);
  LLVMBuilderRef builder = LLVMCreateBuilder();
  LLVMPositionBuilderAtEnd(builder, LLVMAppendBasicBlock(F, "entry"));

  LLVMGetParams(F, &param);
  LLVMSetValueName(param, "in");

  res = build_from_tokens(tokens + 1, ntokens - 1, builder, param);
  if (res) {
    char *irstr = LLVMPrintModuleToString(M);
    puts(irstr);
    LLVMDisposeMessage(irstr);
  }

  LLVMDisposeBuilder(builder);

  LLVMDisposeModule(M);
}
Example #7
0
SCM llvm_function_destroy(SCM scm_self)
{
  struct llvm_function_t *self = get_llvm_function_no_check(scm_self);
  if (self->builder) {
    LLVMDisposeBuilder(self->builder);
    self->builder = NULL;
  };
  return SCM_UNSPECIFIED;
}
Example #8
0
File: hi2.c Project: alexmavr/pzcc
int main (void) {
    LLVMModuleRef module = LLVMModuleCreateWithName("kal");
    LLVMBuilderRef builder = LLVMCreateBuilder();
//	LLVMInitializeNativeTarget();

	LLVMTypeRef funcType = LLVMFunctionType(LLVMVoidType(), NULL, 0, 0);
	LLVMValueRef func = LLVMAddFunction(module, "main", funcType);
	LLVMSetLinkage(func, LLVMExternalLinkage);
	LLVMBasicBlockRef block = LLVMAppendBasicBlock(func, "entry");
	LLVMPositionBuilderAtEnd(builder, block);

	LLVMValueRef cond = LLVMBuildICmp(builder, LLVMIntNE, LLVMConstInt(LLVMInt32Type(), 2, 0), LLVMConstInt(LLVMInt32Type(), 1, 0), "ifcond");

	LLVMValueRef owning_block = LLVMGetBasicBlockParent(LLVMGetInsertBlock(builder));	//TODO: WRONG??
	//LLVMValueRef owning_block = LLVMBasicBlockAsValue(LLVMGetPreviousBasicBlock(LLVMGetInsertBlock(builder)));
	// 2. Generate new blocks for cases.
	LLVMBasicBlockRef then_ref = LLVMAppendBasicBlock(owning_block, "then");
	LLVMBasicBlockRef else_ref = LLVMAppendBasicBlock(owning_block, "else");
	LLVMBasicBlockRef merge_ref = LLVMAppendBasicBlock(owning_block, "ifmerge");

	// 3. Branch conditionally on then or else.
	LLVMBuildCondBr(builder, cond, then_ref, else_ref);

	// 4. Build then branch prologue.
	LLVMPositionBuilderAtEnd(builder, then_ref);

	LLVMValueRef hi1 = LLVMBuildXor(builder, LLVMGetUndef(LLVMInt32Type()), LLVMGetUndef(LLVMInt32Type()), "subtmp");

	// 5. Connect then branch to merge block.
	LLVMBuildBr(builder, merge_ref);

	then_ref = LLVMGetInsertBlock(builder);

	// 6. Build else branch prologue.
	LLVMPositionBuilderAtEnd(builder, else_ref);

	LLVMValueRef hi2 = LLVMBuildXor(builder, LLVMGetUndef(LLVMInt32Type()), LLVMGetUndef(LLVMInt32Type()), "subtmp2");

	// 7. Connect else branch to merge block.
	LLVMBuildBr(builder, merge_ref);

	else_ref = LLVMGetInsertBlock(builder);
	// 8. Position ourselves after the merge block.
	LLVMPositionBuilderAtEnd(builder, merge_ref);
	// 9. Build the phi node.
//	LLVMValueRef phi = LLVMBuildPhi(builder, LLVMDoubleType(), "phi");
	// 10. Add incoming edges.
//	LLVMAddIncoming(phi, &hi1, &then_ref, 1);
//	LLVMAddIncoming(phi, &hi2, &else_ref, 1);

	LLVMDumpModule(module);
	LLVMDisposeBuilder(builder);
	LLVMDisposeModule(module);

	return 0;
}
/**
 * Free gallivm object's LLVM allocations, but not the gallivm object itself.
 */
static void
free_gallivm_state(struct gallivm_state *gallivm)
{
#if HAVE_LLVM >= 0x207 /* XXX or 0x208? */
   /* This leads to crashes w/ some versions of LLVM */
   LLVMModuleRef mod;
   char *error;

   if (gallivm->engine && gallivm->provider)
      LLVMRemoveModuleProvider(gallivm->engine, gallivm->provider,
                               &mod, &error);
#endif

   if (gallivm->passmgr) {
      LLVMDisposePassManager(gallivm->passmgr);
   }

#if 0
   /* XXX this seems to crash with all versions of LLVM */
   if (gallivm->provider)
      LLVMDisposeModuleProvider(gallivm->provider);
#endif

   if (HAVE_LLVM >= 0x207 && gallivm->engine) {
      /* This will already destroy any associated module */
      LLVMDisposeExecutionEngine(gallivm->engine);
   } else {
      LLVMDisposeModule(gallivm->module);
   }

#if !USE_MCJIT
   /* Don't free the TargetData, it's owned by the exec engine */
#else
   if (gallivm->target) {
      LLVMDisposeTargetData(gallivm->target);
   }
#endif

   /* Never free the LLVM context.
    */
#if 0
   if (gallivm->context)
      LLVMContextDispose(gallivm->context);
#endif

   if (gallivm->builder)
      LLVMDisposeBuilder(gallivm->builder);

   gallivm->engine = NULL;
   gallivm->target = NULL;
   gallivm->module = NULL;
   gallivm->provider = NULL;
   gallivm->passmgr = NULL;
   gallivm->context = NULL;
   gallivm->builder = NULL;
}
Example #10
0
File: codegen.c Project: dckc/ponyc
static void codegen_cleanup(compile_t* c)
{
  while(c->frame != NULL)
    pop_frame(c);

  LLVMDisposeBuilder(c->builder);
  LLVMDisposeModule(c->module);
  LLVMContextDispose(c->context);
  LLVMDisposeTargetMachine(c->machine);
  reach_free(c->reachable);
}
Example #11
0
/**
 * Free gallivm object's LLVM allocations, but not the gallivm object itself.
 */
static void
free_gallivm_state(struct gallivm_state *gallivm)
{
#if HAVE_LLVM >= 0x207 /* XXX or 0x208? */
   /* This leads to crashes w/ some versions of LLVM */
   LLVMModuleRef mod;
   char *error;

   if (gallivm->engine && gallivm->provider)
      LLVMRemoveModuleProvider(gallivm->engine, gallivm->provider,
                               &mod, &error);
#endif

#if 0
   /* XXX this seems to crash with all versions of LLVM */
   if (gallivm->provider)
      LLVMDisposeModuleProvider(gallivm->provider);
#endif

   if (gallivm->passmgr)
      LLVMDisposePassManager(gallivm->passmgr);

#if HAVE_LLVM >= 0x207
   if (gallivm->module)
      LLVMDisposeModule(gallivm->module);
#endif

#if 0
   /* Don't free the exec engine, it's a global/singleton */
   if (gallivm->engine)
      LLVMDisposeExecutionEngine(gallivm->engine);
#endif

#if 0
   /* Don't free the TargetData, it's owned by the exec engine */
   LLVMDisposeTargetData(gallivm->target);
#endif

   if (gallivm->context)
      LLVMContextDispose(gallivm->context);

   if (gallivm->builder)
      LLVMDisposeBuilder(gallivm->builder);

   gallivm->engine = NULL;
   gallivm->target = NULL;
   gallivm->module = NULL;
   gallivm->provider = NULL;
   gallivm->passmgr = NULL;
   gallivm->context = NULL;
   gallivm->builder = NULL;
}
Example #12
0
static void codegen_cleanup(compile_t* c)
{
  while(c->frame != NULL)
    pop_frame(c);

  LLVMDIBuilderDestroy(c->di);
  LLVMDisposeBuilder(c->builder);
  LLVMDisposeModule(c->module);
  LLVMContextDispose(c->context);
  LLVMDisposeTargetMachine(c->machine);
  tbaa_metadatas_free(c->tbaa_mds);
  reach_free(c->reach);
}
Example #13
0
/**
 * Like lp_build_alloca, but do not zero-initialize the variable.
 */
LLVMValueRef
lp_build_alloca_undef(struct gallivm_state *gallivm,
                      LLVMTypeRef type,
                      const char *name)
{
   LLVMBuilderRef first_builder = create_builder_at_entry(gallivm);
   LLVMValueRef res;

   res = LLVMBuildAlloca(first_builder, type, name);

   LLVMDisposeBuilder(first_builder);

   return res;
}
Example #14
0
int llvm_set_metadata(void) {
  LLVMBuilderRef b = LLVMCreateBuilder();
  LLVMValueRef values[] = { LLVMConstInt(LLVMInt32Type(), 0, 0) };

  // This used to trigger an assertion
  LLVMSetMetadata(
      LLVMBuildRetVoid(b),
      LLVMGetMDKindID("kind", 4),
      LLVMMDNode(values, 1));

  LLVMDisposeBuilder(b);

  return 0;
}
int test_kal_codegen_binary_expr() {
    LLVMModuleRef module = LLVMModuleCreateWithName("kal");
    LLVMBuilderRef builder = LLVMCreateBuilder();
    kal_ast_node *lhs = kal_ast_number_create(20);
    kal_ast_node *rhs = kal_ast_number_create(30);
    kal_ast_node *node = kal_ast_binary_expr_create(KAL_BINOP_PLUS, lhs, rhs);
    LLVMValueRef value = kal_codegen(node, module, builder);
    mu_assert(LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMDoubleTypeKind, "");
    mu_assert(LLVMIsConstant(value), "");
    LLVMDisposeBuilder(builder);
    LLVMDisposeModule(module);
    kal_ast_node_free(node);
    return 0;
}
Example #16
0
/**
 * Allocate a scalar (or vector) variable.
 *
 * Although not strictly part of control flow, control flow has deep impact in
 * how variables should be allocated.
 *
 * The mem2reg optimization pass is the recommended way to dealing with mutable
 * variables, and SSA. It looks for allocas and if it can handle them, it
 * promotes them, but only looks for alloca instructions in the entry block of
 * the function. Being in the entry block guarantees that the alloca is only
 * executed once, which makes analysis simpler.
 *
 * See also:
 * - http://www.llvm.org/docs/tutorial/OCamlLangImpl7.html#memory
 */
LLVMValueRef
lp_build_alloca(struct gallivm_state *gallivm,
                LLVMTypeRef type,
                const char *name)
{
   LLVMBuilderRef builder = gallivm->builder;
   LLVMBuilderRef first_builder = create_builder_at_entry(gallivm);
   LLVMValueRef res;

   res = LLVMBuildAlloca(first_builder, type, name);
   LLVMBuildStore(builder, LLVMConstNull(type), res);

   LLVMDisposeBuilder(first_builder);

   return res;
}
Example #17
0
static LLVMValueRef
add_conv_test(LLVMModuleRef module,
              struct lp_type src_type, unsigned num_srcs,
              struct lp_type dst_type, unsigned num_dsts)
{
   LLVMTypeRef args[2];
   LLVMValueRef func;
   LLVMValueRef src_ptr;
   LLVMValueRef dst_ptr;
   LLVMBasicBlockRef block;
   LLVMBuilderRef builder;
   LLVMValueRef src[LP_MAX_VECTOR_LENGTH];
   LLVMValueRef dst[LP_MAX_VECTOR_LENGTH];
   unsigned i;

   args[0] = LLVMPointerType(lp_build_vec_type(src_type), 0);
   args[1] = LLVMPointerType(lp_build_vec_type(dst_type), 0);

   func = LLVMAddFunction(module, "test", LLVMFunctionType(LLVMVoidType(), args, 2, 0));
   LLVMSetFunctionCallConv(func, LLVMCCallConv);
   src_ptr = LLVMGetParam(func, 0);
   dst_ptr = LLVMGetParam(func, 1);

   block = LLVMAppendBasicBlock(func, "entry");
   builder = LLVMCreateBuilder();
   LLVMPositionBuilderAtEnd(builder, block);

   for(i = 0; i < num_srcs; ++i) {
      LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
      LLVMValueRef ptr = LLVMBuildGEP(builder, src_ptr, &index, 1, "");
      src[i] = LLVMBuildLoad(builder, ptr, "");
   }

   lp_build_conv(builder, src_type, dst_type, src, num_srcs, dst, num_dsts);

   for(i = 0; i < num_dsts; ++i) {
      LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
      LLVMValueRef ptr = LLVMBuildGEP(builder, dst_ptr, &index, 1, "");
      LLVMBuildStore(builder, dst[i], ptr);
   }

   LLVMBuildRetVoid(builder);;

   LLVMDisposeBuilder(builder);
   return func;
}
int test_kal_codegen_prototype() {
    kal_named_value *val;
    unsigned int arg_count = 3;
    char **args = malloc(sizeof(char*) * arg_count);
    args[0] = "foo";
    args[1] = "bar";
    args[2] = "baz";
    
    LLVMModuleRef module = LLVMModuleCreateWithName("kal");
    LLVMBuilderRef builder = LLVMCreateBuilder();
    kal_ast_node *node = kal_ast_prototype_create("my_func", args, 3);

    kal_codegen_reset();
    LLVMValueRef value = kal_codegen(node, module, builder);

    mu_assert(value != NULL, "");
    mu_assert(LLVMGetNamedFunction(module, "my_func") == value, "");
    mu_assert(LLVMCountParams(value) == 3, "");

    val = kal_codegen_named_value("foo");
    mu_assert(val->value == LLVMGetParam(value, 0), "");
    mu_assert(LLVMGetTypeKind(LLVMTypeOf(LLVMGetParam(value, 0))) == LLVMDoubleTypeKind, "");

    val = kal_codegen_named_value("bar");
    mu_assert(val->value == LLVMGetParam(value, 1), "");
    mu_assert(LLVMGetTypeKind(LLVMTypeOf(LLVMGetParam(value, 1))) == LLVMDoubleTypeKind, "");

    val = kal_codegen_named_value("baz");
    mu_assert(val->value == LLVMGetParam(value, 2), "");
    mu_assert(LLVMGetTypeKind(LLVMTypeOf(LLVMGetParam(value, 2))) == LLVMDoubleTypeKind, "");

    LLVMDisposeBuilder(builder);
    LLVMDisposeModule(module);
    kal_ast_node_free(node);
    return 0;
}
/**
 * Generate the runtime callable function for the whole fragment pipeline.
 * Note that the function which we generate operates on a block of 16
 * pixels at at time.  The block contains 2x2 quads.  Each quad contains
 * 2x2 pixels.
 */
static void
generate_fragment(struct llvmpipe_context *lp,
                  struct lp_fragment_shader *shader,
                  struct lp_fragment_shader_variant *variant,
                  unsigned partial_mask)
{
   struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
   const struct lp_fragment_shader_variant_key *key = &variant->key;
   char func_name[256];
   struct lp_type fs_type;
   struct lp_type blend_type;
   LLVMTypeRef fs_elem_type;
   LLVMTypeRef fs_int_vec_type;
   LLVMTypeRef blend_vec_type;
   LLVMTypeRef arg_types[11];
   LLVMTypeRef func_type;
   LLVMValueRef context_ptr;
   LLVMValueRef x;
   LLVMValueRef y;
   LLVMValueRef a0_ptr;
   LLVMValueRef dadx_ptr;
   LLVMValueRef dady_ptr;
   LLVMValueRef color_ptr_ptr;
   LLVMValueRef depth_ptr;
   LLVMValueRef mask_input;
   LLVMValueRef counter = NULL;
   LLVMBasicBlockRef block;
   LLVMBuilderRef builder;
   struct lp_build_sampler_soa *sampler;
   struct lp_build_interp_soa_context interp;
   LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
   LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
   LLVMValueRef blend_mask;
   LLVMValueRef function;
   LLVMValueRef facing;
   unsigned num_fs;
   unsigned i;
   unsigned chan;
   unsigned cbuf;


   /* TODO: actually pick these based on the fs and color buffer
    * characteristics. */

   memset(&fs_type, 0, sizeof fs_type);
   fs_type.floating = TRUE; /* floating point values */
   fs_type.sign = TRUE;     /* values are signed */
   fs_type.norm = FALSE;    /* values are not limited to [0,1] or [-1,1] */
   fs_type.width = 32;      /* 32-bit float */
   fs_type.length = 4;      /* 4 elements per vector */
   num_fs = 4;              /* number of quads per block */

   memset(&blend_type, 0, sizeof blend_type);
   blend_type.floating = FALSE; /* values are integers */
   blend_type.sign = FALSE;     /* values are unsigned */
   blend_type.norm = TRUE;      /* values are in [0,1] or [-1,1] */
   blend_type.width = 8;        /* 8-bit ubyte values */
   blend_type.length = 16;      /* 16 elements per vector */

   /* 
    * Generate the function prototype. Any change here must be reflected in
    * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
    */

   fs_elem_type = lp_build_elem_type(fs_type);
   fs_int_vec_type = lp_build_int_vec_type(fs_type);

   blend_vec_type = lp_build_vec_type(blend_type);

   util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s", 
		 shader->no, variant->no, partial_mask ? "partial" : "whole");

   arg_types[0] = screen->context_ptr_type;            /* context */
   arg_types[1] = LLVMInt32Type();                     /* x */
   arg_types[2] = LLVMInt32Type();                     /* y */
   arg_types[3] = LLVMFloatType();                     /* facing */
   arg_types[4] = LLVMPointerType(fs_elem_type, 0);    /* a0 */
   arg_types[5] = LLVMPointerType(fs_elem_type, 0);    /* dadx */
   arg_types[6] = LLVMPointerType(fs_elem_type, 0);    /* dady */
   arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0);  /* color */
   arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
   arg_types[9] = LLVMInt32Type();                     /* mask_input */
   arg_types[10] = LLVMPointerType(LLVMInt32Type(), 0);/* counter */

   func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);

   function = LLVMAddFunction(screen->module, func_name, func_type);
   LLVMSetFunctionCallConv(function, LLVMCCallConv);

   variant->function[partial_mask] = function;


   /* XXX: need to propagate noalias down into color param now we are
    * passing a pointer-to-pointer?
    */
   for(i = 0; i < Elements(arg_types); ++i)
      if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
         LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);

   context_ptr  = LLVMGetParam(function, 0);
   x            = LLVMGetParam(function, 1);
   y            = LLVMGetParam(function, 2);
   facing       = LLVMGetParam(function, 3);
   a0_ptr       = LLVMGetParam(function, 4);
   dadx_ptr     = LLVMGetParam(function, 5);
   dady_ptr     = LLVMGetParam(function, 6);
   color_ptr_ptr = LLVMGetParam(function, 7);
   depth_ptr    = LLVMGetParam(function, 8);
   mask_input   = LLVMGetParam(function, 9);

   lp_build_name(context_ptr, "context");
   lp_build_name(x, "x");
   lp_build_name(y, "y");
   lp_build_name(a0_ptr, "a0");
   lp_build_name(dadx_ptr, "dadx");
   lp_build_name(dady_ptr, "dady");
   lp_build_name(color_ptr_ptr, "color_ptr_ptr");
   lp_build_name(depth_ptr, "depth");
   lp_build_name(mask_input, "mask_input");

   if (key->occlusion_count) {
      counter = LLVMGetParam(function, 10);
      lp_build_name(counter, "counter");
   }

   /*
    * Function body
    */

   block = LLVMAppendBasicBlock(function, "entry");
   builder = LLVMCreateBuilder();
   LLVMPositionBuilderAtEnd(builder, block);

   /*
    * The shader input interpolation info is not explicitely baked in the
    * shader key, but everything it derives from (TGSI, and flatshade) is
    * already included in the shader key.
    */
   lp_build_interp_soa_init(&interp, 
                            lp->num_inputs,
                            lp->inputs,
                            builder, fs_type,
                            a0_ptr, dadx_ptr, dady_ptr,
                            x, y);

   /* code generated texture sampling */
   sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);

   /* loop over quads in the block */
   for(i = 0; i < num_fs; ++i) {
      LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
      LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
      LLVMValueRef depth_ptr_i;

      if(i != 0)
         lp_build_interp_soa_update(&interp, i);

      depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");

      generate_fs(lp, shader, key,
                  builder,
                  fs_type,
                  context_ptr,
                  i,
                  &interp,
                  sampler,
                  &fs_mask[i], /* output */
                  out_color,
                  depth_ptr_i,
                  facing,
                  partial_mask,
                  mask_input,
                  counter);

      for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
	 for(chan = 0; chan < NUM_CHANNELS; ++chan)
	    fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
   }

   sampler->destroy(sampler);

   /* Loop over color outputs / color buffers to do blending.
    */
   for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
      LLVMValueRef color_ptr;
      LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
      LLVMValueRef blend_in_color[NUM_CHANNELS];
      unsigned rt;

      /* 
       * Convert the fs's output color and mask to fit to the blending type. 
       */
      for(chan = 0; chan < NUM_CHANNELS; ++chan) {
	 lp_build_conv(builder, fs_type, blend_type,
		       fs_out_color[cbuf][chan], num_fs,
		       &blend_in_color[chan], 1);
	 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
      }

      if (partial_mask || !variant->opaque) {
         lp_build_conv_mask(builder, fs_type, blend_type,
                            fs_mask, num_fs,
                            &blend_mask, 1);
      } else {
         blend_mask = lp_build_const_int_vec(blend_type, ~0);
      }

      color_ptr = LLVMBuildLoad(builder, 
				LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
				"");
      lp_build_name(color_ptr, "color_ptr%d", cbuf);

      /* which blend/colormask state to use */
      rt = key->blend.independent_blend_enable ? cbuf : 0;

      /*
       * Blending.
       */
      generate_blend(&key->blend,
                     rt,
		     builder,
		     blend_type,
		     context_ptr,
		     blend_mask,
		     blend_in_color,
		     color_ptr);
   }

#ifdef PIPE_ARCH_X86
   /* Avoid corrupting the FPU stack on 32bit OSes. */
   lp_build_intrinsic(builder, "llvm.x86.mmx.emms", LLVMVoidType(), NULL, 0);
#endif

   LLVMBuildRetVoid(builder);

   LLVMDisposeBuilder(builder);


   /* Verify the LLVM IR.  If invalid, dump and abort */
#ifdef DEBUG
   if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
      if (1)
         lp_debug_dump_value(function);
      abort();
   }
#endif

   /* Apply optimizations to LLVM IR */
   LLVMRunFunctionPassManager(screen->pass, function);

   if (gallivm_debug & GALLIVM_DEBUG_IR) {
      /* Print the LLVM IR to stderr */
      lp_debug_dump_value(function);
      debug_printf("\n");
   }

   /*
    * Translate the LLVM IR into machine code.
    */
   {
      void *f = LLVMGetPointerToGlobal(screen->engine, function);

      variant->jit_function[partial_mask] = (lp_jit_frag_func)pointer_to_func(f);

      if (gallivm_debug & GALLIVM_DEBUG_ASM) {
         lp_disassemble(f);
      }
      lp_func_delete_body(function);
   }
}
Example #20
0
/**
 * Generate the runtime callable function for the whole fragment pipeline.
 */
static struct lp_fragment_shader_variant *
generate_fragment(struct llvmpipe_context *lp,
                  struct lp_fragment_shader *shader,
                  const struct lp_fragment_shader_variant_key *key)
{
   struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
   struct lp_fragment_shader_variant *variant;
   struct lp_type fs_type;
   struct lp_type blend_type;
   LLVMTypeRef fs_elem_type;
   LLVMTypeRef fs_vec_type;
   LLVMTypeRef fs_int_vec_type;
   LLVMTypeRef blend_vec_type;
   LLVMTypeRef blend_int_vec_type;
   LLVMTypeRef arg_types[9];
   LLVMTypeRef func_type;
   LLVMValueRef context_ptr;
   LLVMValueRef x;
   LLVMValueRef y;
   LLVMValueRef a0_ptr;
   LLVMValueRef dadx_ptr;
   LLVMValueRef dady_ptr;
   LLVMValueRef mask_ptr;
   LLVMValueRef color_ptr;
   LLVMValueRef depth_ptr;
   LLVMBasicBlockRef block;
   LLVMBuilderRef builder;
   LLVMValueRef x0;
   LLVMValueRef y0;
   struct lp_build_sampler_soa *sampler;
   struct lp_build_interp_soa_context interp;
   LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
   LLVMValueRef fs_out_color[NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
   LLVMValueRef blend_mask;
   LLVMValueRef blend_in_color[NUM_CHANNELS];
   unsigned num_fs;
   unsigned i;
   unsigned chan;

#ifdef DEBUG
   tgsi_dump(shader->base.tokens, 0);
   if(key->depth.enabled) {
      debug_printf("depth.format = %s\n", pf_name(key->zsbuf_format));
      debug_printf("depth.func = %s\n", debug_dump_func(key->depth.func, TRUE));
      debug_printf("depth.writemask = %u\n", key->depth.writemask);
   }
   if(key->alpha.enabled) {
      debug_printf("alpha.func = %s\n", debug_dump_func(key->alpha.func, TRUE));
      debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
   }
   if(key->blend.logicop_enable) {
      debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
   }
   else if(key->blend.blend_enable) {
      debug_printf("blend.rgb_func = %s\n",   debug_dump_blend_func  (key->blend.rgb_func, TRUE));
      debug_printf("rgb_src_factor = %s\n",   debug_dump_blend_factor(key->blend.rgb_src_factor, TRUE));
      debug_printf("rgb_dst_factor = %s\n",   debug_dump_blend_factor(key->blend.rgb_dst_factor, TRUE));
      debug_printf("alpha_func = %s\n",       debug_dump_blend_func  (key->blend.alpha_func, TRUE));
      debug_printf("alpha_src_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_src_factor, TRUE));
      debug_printf("alpha_dst_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_dst_factor, TRUE));
   }
   debug_printf("blend.colormask = 0x%x\n", key->blend.colormask);
   for(i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
      if(key->sampler[i].format) {
         debug_printf("sampler[%u] = \n", i);
         debug_printf("  .format = %s\n",
                      pf_name(key->sampler[i].format));
         debug_printf("  .target = %s\n",
                      debug_dump_tex_target(key->sampler[i].target, TRUE));
         debug_printf("  .pot = %u %u %u\n",
                      key->sampler[i].pot_width,
                      key->sampler[i].pot_height,
                      key->sampler[i].pot_depth);
         debug_printf("  .wrap = %s %s %s\n",
                      debug_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
                      debug_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
                      debug_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
         debug_printf("  .min_img_filter = %s\n",
                      debug_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
         debug_printf("  .min_mip_filter = %s\n",
                      debug_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
         debug_printf("  .mag_img_filter = %s\n",
                      debug_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
         if(key->sampler[i].compare_mode)
            debug_printf("  .compare_mode = %s\n", debug_dump_func(key->sampler[i].compare_func, TRUE));
         debug_printf("  .normalized_coords = %u\n", key->sampler[i].normalized_coords);
         debug_printf("  .prefilter = %u\n", key->sampler[i].prefilter);
      }
   }

#endif

   variant = CALLOC_STRUCT(lp_fragment_shader_variant);
   if(!variant)
      return NULL;

   variant->shader = shader;
   memcpy(&variant->key, key, sizeof *key);

   /* TODO: actually pick these based on the fs and color buffer
    * characteristics. */

   memset(&fs_type, 0, sizeof fs_type);
   fs_type.floating = TRUE; /* floating point values */
   fs_type.sign = TRUE;     /* values are signed */
   fs_type.norm = FALSE;    /* values are not limited to [0,1] or [-1,1] */
   fs_type.width = 32;      /* 32-bit float */
   fs_type.length = 4;      /* 4 element per vector */
   num_fs = 4;

   memset(&blend_type, 0, sizeof blend_type);
   blend_type.floating = FALSE; /* values are integers */
   blend_type.sign = FALSE;     /* values are unsigned */
   blend_type.norm = TRUE;      /* values are in [0,1] or [-1,1] */
   blend_type.width = 8;        /* 8-bit ubyte values */
   blend_type.length = 16;      /* 16 elements per vector */

   /* 
    * Generate the function prototype. Any change here must be reflected in
    * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
    */

   fs_elem_type = lp_build_elem_type(fs_type);
   fs_vec_type = lp_build_vec_type(fs_type);
   fs_int_vec_type = lp_build_int_vec_type(fs_type);

   blend_vec_type = lp_build_vec_type(blend_type);
   blend_int_vec_type = lp_build_int_vec_type(blend_type);

   arg_types[0] = screen->context_ptr_type;            /* context */
   arg_types[1] = LLVMInt32Type();                     /* x */
   arg_types[2] = LLVMInt32Type();                     /* y */
   arg_types[3] = LLVMPointerType(fs_elem_type, 0);    /* a0 */
   arg_types[4] = LLVMPointerType(fs_elem_type, 0);    /* dadx */
   arg_types[5] = LLVMPointerType(fs_elem_type, 0);    /* dady */
   arg_types[6] = LLVMPointerType(fs_int_vec_type, 0); /* mask */
   arg_types[7] = LLVMPointerType(blend_vec_type, 0);  /* color */
   arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */

   func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);

   variant->function = LLVMAddFunction(screen->module, "shader", func_type);
   LLVMSetFunctionCallConv(variant->function, LLVMCCallConv);
   for(i = 0; i < Elements(arg_types); ++i)
      if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
         LLVMAddAttribute(LLVMGetParam(variant->function, i), LLVMNoAliasAttribute);

   context_ptr  = LLVMGetParam(variant->function, 0);
   x            = LLVMGetParam(variant->function, 1);
   y            = LLVMGetParam(variant->function, 2);
   a0_ptr       = LLVMGetParam(variant->function, 3);
   dadx_ptr     = LLVMGetParam(variant->function, 4);
   dady_ptr     = LLVMGetParam(variant->function, 5);
   mask_ptr     = LLVMGetParam(variant->function, 6);
   color_ptr    = LLVMGetParam(variant->function, 7);
   depth_ptr    = LLVMGetParam(variant->function, 8);

   lp_build_name(context_ptr, "context");
   lp_build_name(x, "x");
   lp_build_name(y, "y");
   lp_build_name(a0_ptr, "a0");
   lp_build_name(dadx_ptr, "dadx");
   lp_build_name(dady_ptr, "dady");
   lp_build_name(mask_ptr, "mask");
   lp_build_name(color_ptr, "color");
   lp_build_name(depth_ptr, "depth");

   /*
    * Function body
    */

   block = LLVMAppendBasicBlock(variant->function, "entry");
   builder = LLVMCreateBuilder();
   LLVMPositionBuilderAtEnd(builder, block);

   generate_pos0(builder, x, y, &x0, &y0);

   lp_build_interp_soa_init(&interp, shader->base.tokens, builder, fs_type,
                            a0_ptr, dadx_ptr, dady_ptr,
                            x0, y0, 2, 0);

#if 0
   /* C texture sampling */
   sampler = lp_c_sampler_soa_create(context_ptr);
#else
   /* code generated texture sampling */
   sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
#endif

   for(i = 0; i < num_fs; ++i) {
      LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
      LLVMValueRef out_color[NUM_CHANNELS];
      LLVMValueRef depth_ptr_i;

      if(i != 0)
         lp_build_interp_soa_update(&interp);

      fs_mask[i] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, mask_ptr, &index, 1, ""), "");
      depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");

      generate_fs(lp, shader, key,
                  builder,
                  fs_type,
                  context_ptr,
                  i,
                  &interp,
                  sampler,
                  &fs_mask[i],
                  out_color,
                  depth_ptr_i);

      for(chan = 0; chan < NUM_CHANNELS; ++chan)
         fs_out_color[chan][i] = out_color[chan];
   }

   sampler->destroy(sampler);

   /* 
    * Convert the fs's output color and mask to fit to the blending type. 
    */

   for(chan = 0; chan < NUM_CHANNELS; ++chan) {
      lp_build_conv(builder, fs_type, blend_type,
                    fs_out_color[chan], num_fs,
                    &blend_in_color[chan], 1);
      lp_build_name(blend_in_color[chan], "color.%c", "rgba"[chan]);

   }

   lp_build_conv_mask(builder, fs_type, blend_type,
                               fs_mask, num_fs,
                               &blend_mask, 1);

   /*
    * Blending.
    */

   generate_blend(&key->blend,
                  builder,
                  blend_type,
                  context_ptr,
                  blend_mask,
                  blend_in_color,
                  color_ptr);

   LLVMBuildRetVoid(builder);

   LLVMDisposeBuilder(builder);

   /*
    * Translate the LLVM IR into machine code.
    */

   if(LLVMVerifyFunction(variant->function, LLVMPrintMessageAction)) {
      LLVMDumpValue(variant->function);
      abort();
   }

   LLVMRunFunctionPassManager(screen->pass, variant->function);

#ifdef DEBUG
   LLVMDumpValue(variant->function);
   debug_printf("\n");
#endif

   variant->jit_function = (lp_jit_frag_func)LLVMGetPointerToGlobal(screen->engine, variant->function);

#ifdef DEBUG
   lp_disassemble(variant->jit_function);
#endif

   variant->next = shader->variants;
   shader->variants = variant;

   return variant;
}
Example #21
0
Output::~Output()
{
    LLVMDisposeBuilder(m_builder);
}
Example #22
0
static LLVMValueRef get_stritem_len_fn(struct llvm_ctx *ctx)
{
	if(ctx->stritem_len_fn != NULL) return ctx->stritem_len_fn;

	/* returns (i32 len, i32 new_tpos)
	 * params (word *utcbptr, i32 tpos)
	 *
	 * when return value "new_tpos" > tmax + 1, the result is invalid. the function
	 * should also not be called when tpos > tmax + 1.
	 */
	LLVMTypeRef ret_types[2] = { ctx->i32t, ctx->i32t },
		parm_types[2] = { LLVMPointerType(ctx->wordt, 0), ctx->i32t },
		ret_type = LLVMStructTypeInContext(ctx->ctx, ret_types, 2, 0),
		fn_type = LLVMFunctionType(ret_type, parm_types, 2, 0);
	LLVMValueRef fn = LLVMAddFunction(ctx->module, "__muidl_get_stritem_len",
		fn_type);
	LLVMSetVisibility(fn, LLVMHiddenVisibility);
	LLVMSetLinkage(fn, LLVMInternalLinkage);
	V fn_args[2];
	LLVMGetParams(fn, fn_args);
	LLVMAddAttribute(fn_args[0], LLVMNoCaptureAttribute);
	for(int i=0; i<2; i++) {
		LLVMAddAttribute(fn_args[i], LLVMInRegAttribute);
	}
	ctx->stritem_len_fn = fn;

	LLVMBuilderRef old_builder = ctx->builder;
	ctx->builder = LLVMCreateBuilderInContext(ctx->ctx);
	LLVMBasicBlockRef entry_bb = LLVMAppendBasicBlockInContext(ctx->ctx, fn,
			"EntryBlock"),
		loop_bb = LLVMAppendBasicBlockInContext(ctx->ctx, fn, "loop"),
		valid_bb = LLVMAppendBasicBlockInContext(ctx->ctx, fn, "valid"),
		exit_bb = LLVMAppendBasicBlockInContext(ctx->ctx, fn, "exit");

	LLVMPositionBuilderAtEnd(ctx->builder, entry_bb);
	LLVMValueRef old_utcb = ctx->utcb, old_tpos = ctx->tpos;
	ctx->utcb = fn_args[0];
	ctx->tpos = fn_args[1];
	LLVMBuildBr(ctx->builder, loop_bb);

	LLVMPositionBuilderAtEnd(ctx->builder, exit_bb);
	LLVMValueRef exit_len_phi = LLVMBuildPhi(ctx->builder, ctx->i32t,
			"exit.len.phi"),
		exit_tpos_phi = LLVMBuildPhi(ctx->builder, ctx->i32t,
			"exit.tpos.phi");
	LLVMValueRef rvals[2] = { exit_len_phi, exit_tpos_phi };
	LLVMBuildAggregateRet(ctx->builder, rvals, 2);

	LLVMPositionBuilderAtEnd(ctx->builder, loop_bb);
	LLVMValueRef len_phi = LLVMBuildPhi(ctx->builder, ctx->i32t, "len.phi"),
		tpos_phi = LLVMBuildPhi(ctx->builder, ctx->i32t, "tpos.phi");
	LLVMAddIncoming(len_phi, &ctx->zero, &entry_bb, 1);
	LLVMAddIncoming(tpos_phi, &ctx->tpos, &entry_bb, 1);
	ctx->tpos = tpos_phi;
	/* test: if *tpos doesn't look like a string item, conk out. */
	LLVMValueRef infoword = build_utcb_load(ctx, ctx->tpos, "si.info");
	LLVMValueRef is_cond = LLVMBuildICmp(ctx->builder, LLVMIntEQ,
		ctx->zero, LLVMBuildAnd(ctx->builder, infoword,
			CONST_WORD(1 << 4), "infoword.si.mask"),
		"infoword.si.cond");
	/* anything + 100 is sure to be > tmax + 1. */
	LLVMValueRef fucked_tpos = LLVMBuildAdd(ctx->builder, tpos_phi,
		CONST_INT(100), "f****d.tpos");
	branch_set_phi(ctx, exit_len_phi, len_phi);
	branch_set_phi(ctx, exit_tpos_phi, fucked_tpos);
	LLVMBuildCondBr(ctx->builder, is_cond, valid_bb, exit_bb);

	LLVMPositionBuilderAtEnd(ctx->builder, valid_bb);
	LLVMValueRef string_length = LLVMBuildTruncOrBitCast(ctx->builder,
			LLVMBuildLShr(ctx->builder, infoword,
				CONST_INT(10), "si.info.len"),
			ctx->i32t, "si.info.len.int"),
		string_j = LLVMBuildTruncOrBitCast(ctx->builder,
			LLVMBuildAnd(ctx->builder, CONST_WORD(0x1f),
				LLVMBuildLShr(ctx->builder, infoword, CONST_WORD(4),
					"si.info.j.shift"),
				"si.info.j.masked"),
			ctx->i32t, "si.info.j"),
		string_c = LLVMBuildTruncOrBitCast(ctx->builder,
			LLVMBuildAnd(ctx->builder, CONST_WORD(1 << 9),
				infoword, "si.info.c.masked"),
			ctx->i32t, "si.info.c.masked.int"),
		c_cond = LLVMBuildICmp(ctx->builder, LLVMIntNE,
			string_c, CONST_WORD(0), "si.info.c.cond"),
		new_len = LLVMBuildAdd(ctx->builder, len_phi,
			LLVMBuildMul(ctx->builder, string_length,
				LLVMBuildAdd(ctx->builder, string_j,
					CONST_INT(1), "j.plus.one"),
				"len.incr"),
			"len.new"),
		new_tpos = LLVMBuildAdd(ctx->builder, ctx->tpos,
			LLVMBuildSelect(ctx->builder, c_cond,
				LLVMBuildAdd(ctx->builder, CONST_INT(2),
					string_j, "cont.tpos.bump"),
				CONST_INT(2), "tpos.bump"),
			"tpos.new");
	LLVMAddIncoming(len_phi, &new_len, &valid_bb, 1);
	LLVMAddIncoming(tpos_phi, &new_tpos, &valid_bb, 1);
	LLVMAddIncoming(exit_len_phi, &new_len, &valid_bb, 1);
	LLVMAddIncoming(exit_tpos_phi, &new_tpos, &valid_bb, 1);
	LLVMBuildCondBr(ctx->builder, c_cond, loop_bb, exit_bb);

	LLVMDisposeBuilder(ctx->builder);
	ctx->builder = old_builder;
	ctx->utcb = old_utcb;
	ctx->tpos = old_tpos;

	return ctx->stritem_len_fn;
}
Example #23
0
int main(int argc, char** argv) {
	llvm::llvm_shutdown_obj Y;
	llvm::error_code ec;
	std::string se;
	std::string file;

	if (argc < 2) {
		llvm::errs() << "Usage llvm-disasm <file>\n";
		return 1;
	}

	llvm::InitializeAllTargetInfos();
	llvm::InitializeAllTargetMCs();
	llvm::InitializeAllAsmParsers();
	llvm::InitializeAllDisassemblers();

	file = argv[1];

	llvm::OwningPtr<llvm::object::Binary> bin;
	ec = llvm::object::createBinary(file, bin);
	if (ec) {
		llvm::errs() << file << ": " << ec.message() << "\n";
		return 1;
	}

	if (!bin->isELF()) {
		llvm::errs() << file << " isn't an object file\n";
		return 1;
	}

	llvm::object::ObjectFile* obj = llvm::dyn_cast<llvm::object::ObjectFile>(bin.get());
	if (!obj) {
		llvm::errs() << file << ": failed to cast to llvm::ObjectFile\n";
		return 1;
	}

	llvm::Triple tri;
	tri.setArch(llvm::Triple::ArchType(obj->getArch()));
	std::string targetName = tri.str();
	const llvm::Target* target = llvm::TargetRegistry::lookupTarget(targetName, se);
	if (!target) {
		llvm::errs() << file << ": failed to get the target descriptor for " << targetName << "\n";
		return 1;
	}

	STI = target->createMCSubtargetInfo(targetName, "", "");
	if (!STI) {
		llvm::errs() << file << ": " << ": to get the subtarget info!\n";
		return 1;
	}

	disasm = target->createMCDisassembler(*STI);
	if (!disasm) {
		llvm::errs() << file << ": " << ": to get the disassembler!\n";
		return 1;
	}

	MII = target->createMCInstrInfo();
    if (!MII) {
		llvm::errs() << file << ": no instruction info for target\n";
		return 1;
    }

	MRI = target->createMCRegInfo(targetName);
    if (!MRI) {
		llvm::errs() << file << ": no register info for target\n";
		return 1;
    }


	llvmBuilder = LLVMCreateBuilder();

	LLVMModuleRef llvmModule = LLVMModuleCreateWithName("test");
	LLVMTypeRef mainType = LLVMFunctionType(LLVMInt32Type(), NULL, 0, 0);
	LLVMValueRef mainFn = LLVMAddFunction(llvmModule, "main", mainType);
	LLVMBasicBlockRef blk = LLVMAppendBasicBlock(mainFn, "");
	LLVMPositionBuilderAtEnd(llvmBuilder, blk);

	for (llvm::object::section_iterator i = obj->begin_sections(), e = obj->end_sections();
		 i != e; 
		 i.increment(ec)) {

		if (ec) {
			llvm::errs() << "Failed to increment the section iterator!\n";
			return 1;
		}

		bool isText;
		llvm::StringRef secName;

		if (i->getName(secName)) {
			llvm::errs() << file << ": failed to get the section name\n";
			break;
		}

		if (i->isText(isText)) {
			llvm::errs() << file << ": " << secName << ": failed to determine the section type\n";
			break;
		}

		if (!isText) {
			continue;
		}

	
		std::set<llvm::object::SymbolRef> symbols;

		for (llvm::object::symbol_iterator isym = obj->begin_symbols();
										   isym != obj->end_symbols();
										   isym.increment(ec)) {
			bool res;
			llvm::StringRef symName;
			llvm::object::SymbolRef::Type symType;

			if (ec) {
				llvm::errs() << "Failed to increment the symbol iterator!\n";
				return 1;		
			}

			if (isym->getName(symName)) {
				llvm::errs() << file << ": " << secName << ": failed to get the symbol name!\n";
				return 1;
			}

			/*
			uint64_t secSize, secBase, symAddr;

			i->getAddress(secBase);
			i->getSize(secSize);
			isym->getAddress(symAddr);

			
			if (i->containsSymbol(*isym, res)) {
				llvm::errs() << file << ": " << secName << ": " << symName << ": failed to check whether the symbol is in the section!\n";
				return 1;
			}

			if (!res) {
				continue;
			}
			
			if (symAddr < secBase || symAddr >= secBase + secSize) {
				continue;
			}
			*/

			llvm::object::section_iterator i2 = llvm::object::section_iterator(llvm::object::SectionRef());
			isym->getSection(i2);
			if (i2 != i) {
				continue;
			}

			if (isym->getType(symType)) {
				llvm::errs() << file << ": " << secName << ": " << symName << ": failed to get the symbol type!\n";
				return 1;
			}

			if (symType != llvm::object::SymbolRef::ST_Function) {
				continue;
			}

			symbols.insert(*isym);
		}

		for (std::set<llvm::object::SymbolRef>::const_iterator	isym = symbols.begin();
																isym != symbols.end();
																++isym) {
			if (analyzeSymbol(*isym)) {
				return 1;
			}
		}
	}

	LLVMDumpModule(llvmModule);

	LLVMDisposeModule(llvmModule);
	LLVMDisposeBuilder(llvmBuilder);

	return 0;
}
Example #24
0
static LLVMValueRef
add_blend_test(LLVMModuleRef module,
               const struct pipe_blend_state *blend,
               enum vector_mode mode,
               struct lp_type type)
{
   LLVMTypeRef ret_type;
   LLVMTypeRef vec_type;
   LLVMTypeRef args[4];
   LLVMValueRef func;
   LLVMValueRef src_ptr;
   LLVMValueRef dst_ptr;
   LLVMValueRef const_ptr;
   LLVMValueRef res_ptr;
   LLVMBasicBlockRef block;
   LLVMBuilderRef builder;

   ret_type = LLVMInt64Type();
   vec_type = lp_build_vec_type(type);

   args[3] = args[2] = args[1] = args[0] = LLVMPointerType(vec_type, 0);
   func = LLVMAddFunction(module, "test", LLVMFunctionType(LLVMVoidType(), args, 4, 0));
   LLVMSetFunctionCallConv(func, LLVMCCallConv);
   src_ptr = LLVMGetParam(func, 0);
   dst_ptr = LLVMGetParam(func, 1);
   const_ptr = LLVMGetParam(func, 2);
   res_ptr = LLVMGetParam(func, 3);

   block = LLVMAppendBasicBlock(func, "entry");
   builder = LLVMCreateBuilder();
   LLVMPositionBuilderAtEnd(builder, block);

   if (mode == AoS) {
      LLVMValueRef src;
      LLVMValueRef dst;
      LLVMValueRef con;
      LLVMValueRef res;

      src = LLVMBuildLoad(builder, src_ptr, "src");
      dst = LLVMBuildLoad(builder, dst_ptr, "dst");
      con = LLVMBuildLoad(builder, const_ptr, "const");

      res = lp_build_blend_aos(builder, blend, type, src, dst, con, 3);

      lp_build_name(res, "res");

      LLVMBuildStore(builder, res, res_ptr);
   }

   if (mode == SoA) {
      LLVMValueRef src[4];
      LLVMValueRef dst[4];
      LLVMValueRef con[4];
      LLVMValueRef res[4];
      unsigned i;

      for(i = 0; i < 4; ++i) {
         LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
         src[i] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, src_ptr, &index, 1, ""), "");
         dst[i] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
         con[i] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
         lp_build_name(src[i], "src.%c", "rgba"[i]);
         lp_build_name(con[i], "con.%c", "rgba"[i]);
         lp_build_name(dst[i], "dst.%c", "rgba"[i]);
      }

      lp_build_blend_soa(builder, blend, type, src, dst, con, res);

      for(i = 0; i < 4; ++i) {
         LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
         lp_build_name(res[i], "res.%c", "rgba"[i]);
         LLVMBuildStore(builder, res[i], LLVMBuildGEP(builder, res_ptr, &index, 1, ""));
      }
   }

   LLVMBuildRetVoid(builder);;

   LLVMDisposeBuilder(builder);
   return func;
}
Example #25
0
/**
 * Generate the runtime callable function for the whole fragment pipeline.
 * Note that the function which we generate operates on a block of 16
 * pixels at at time.  The block contains 2x2 quads.  Each quad contains
 * 2x2 pixels.
 */
static void
generate_fragment(struct llvmpipe_context *lp,
                  struct lp_fragment_shader *shader,
                  struct lp_fragment_shader_variant *variant,
                  unsigned do_tri_test)
{
   struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
   const struct lp_fragment_shader_variant_key *key = &variant->key;
   struct lp_type fs_type;
   struct lp_type blend_type;
   LLVMTypeRef fs_elem_type;
   LLVMTypeRef fs_vec_type;
   LLVMTypeRef fs_int_vec_type;
   LLVMTypeRef blend_vec_type;
   LLVMTypeRef blend_int_vec_type;
   LLVMTypeRef arg_types[14];
   LLVMTypeRef func_type;
   LLVMTypeRef int32_vec4_type = lp_build_int32_vec4_type();
   LLVMValueRef context_ptr;
   LLVMValueRef x;
   LLVMValueRef y;
   LLVMValueRef a0_ptr;
   LLVMValueRef dadx_ptr;
   LLVMValueRef dady_ptr;
   LLVMValueRef color_ptr_ptr;
   LLVMValueRef depth_ptr;
   LLVMValueRef c0, c1, c2, step0_ptr, step1_ptr, step2_ptr;
   LLVMBasicBlockRef block;
   LLVMBuilderRef builder;
   LLVMValueRef x0;
   LLVMValueRef y0;
   struct lp_build_sampler_soa *sampler;
   struct lp_build_interp_soa_context interp;
   LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
   LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
   LLVMValueRef blend_mask;
   LLVMValueRef blend_in_color[NUM_CHANNELS];
   LLVMValueRef function;
   unsigned num_fs;
   unsigned i;
   unsigned chan;
   unsigned cbuf;


   /* TODO: actually pick these based on the fs and color buffer
    * characteristics. */

   memset(&fs_type, 0, sizeof fs_type);
   fs_type.floating = TRUE; /* floating point values */
   fs_type.sign = TRUE;     /* values are signed */
   fs_type.norm = FALSE;    /* values are not limited to [0,1] or [-1,1] */
   fs_type.width = 32;      /* 32-bit float */
   fs_type.length = 4;      /* 4 elements per vector */
   num_fs = 4;              /* number of quads per block */

   memset(&blend_type, 0, sizeof blend_type);
   blend_type.floating = FALSE; /* values are integers */
   blend_type.sign = FALSE;     /* values are unsigned */
   blend_type.norm = TRUE;      /* values are in [0,1] or [-1,1] */
   blend_type.width = 8;        /* 8-bit ubyte values */
   blend_type.length = 16;      /* 16 elements per vector */

   /* 
    * Generate the function prototype. Any change here must be reflected in
    * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
    */

   fs_elem_type = lp_build_elem_type(fs_type);
   fs_vec_type = lp_build_vec_type(fs_type);
   fs_int_vec_type = lp_build_int_vec_type(fs_type);

   blend_vec_type = lp_build_vec_type(blend_type);
   blend_int_vec_type = lp_build_int_vec_type(blend_type);

   arg_types[0] = screen->context_ptr_type;            /* context */
   arg_types[1] = LLVMInt32Type();                     /* x */
   arg_types[2] = LLVMInt32Type();                     /* y */
   arg_types[3] = LLVMPointerType(fs_elem_type, 0);    /* a0 */
   arg_types[4] = LLVMPointerType(fs_elem_type, 0);    /* dadx */
   arg_types[5] = LLVMPointerType(fs_elem_type, 0);    /* dady */
   arg_types[6] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0);  /* color */
   arg_types[7] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
   arg_types[8] = LLVMInt32Type();                     /* c0 */
   arg_types[9] = LLVMInt32Type();                     /* c1 */
   arg_types[10] = LLVMInt32Type();                    /* c2 */
   /* Note: the step arrays are built as int32[16] but we interpret
    * them here as int32_vec4[4].
    */
   arg_types[11] = LLVMPointerType(int32_vec4_type, 0);/* step0 */
   arg_types[12] = LLVMPointerType(int32_vec4_type, 0);/* step1 */
   arg_types[13] = LLVMPointerType(int32_vec4_type, 0);/* step2 */

   func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);

   function = LLVMAddFunction(screen->module, "shader", func_type);
   LLVMSetFunctionCallConv(function, LLVMCCallConv);

   variant->function[do_tri_test] = function;


   /* XXX: need to propagate noalias down into color param now we are
    * passing a pointer-to-pointer?
    */
   for(i = 0; i < Elements(arg_types); ++i)
      if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
         LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);

   context_ptr  = LLVMGetParam(function, 0);
   x            = LLVMGetParam(function, 1);
   y            = LLVMGetParam(function, 2);
   a0_ptr       = LLVMGetParam(function, 3);
   dadx_ptr     = LLVMGetParam(function, 4);
   dady_ptr     = LLVMGetParam(function, 5);
   color_ptr_ptr = LLVMGetParam(function, 6);
   depth_ptr    = LLVMGetParam(function, 7);
   c0           = LLVMGetParam(function, 8);
   c1           = LLVMGetParam(function, 9);
   c2           = LLVMGetParam(function, 10);
   step0_ptr    = LLVMGetParam(function, 11);
   step1_ptr    = LLVMGetParam(function, 12);
   step2_ptr    = LLVMGetParam(function, 13);

   lp_build_name(context_ptr, "context");
   lp_build_name(x, "x");
   lp_build_name(y, "y");
   lp_build_name(a0_ptr, "a0");
   lp_build_name(dadx_ptr, "dadx");
   lp_build_name(dady_ptr, "dady");
   lp_build_name(color_ptr_ptr, "color_ptr");
   lp_build_name(depth_ptr, "depth");
   lp_build_name(c0, "c0");
   lp_build_name(c1, "c1");
   lp_build_name(c2, "c2");
   lp_build_name(step0_ptr, "step0");
   lp_build_name(step1_ptr, "step1");
   lp_build_name(step2_ptr, "step2");

   /*
    * Function body
    */

   block = LLVMAppendBasicBlock(function, "entry");
   builder = LLVMCreateBuilder();
   LLVMPositionBuilderAtEnd(builder, block);

   generate_pos0(builder, x, y, &x0, &y0);

   lp_build_interp_soa_init(&interp, 
                            shader->base.tokens,
                            key->flatshade,
                            builder, fs_type,
                            a0_ptr, dadx_ptr, dady_ptr,
                            x0, y0);

   /* code generated texture sampling */
   sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);

   /* loop over quads in the block */
   for(i = 0; i < num_fs; ++i) {
      LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
      LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
      LLVMValueRef depth_ptr_i;
      int cbuf;

      if(i != 0)
         lp_build_interp_soa_update(&interp, i);

      depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");

      generate_fs(lp, shader, key,
                  builder,
                  fs_type,
                  context_ptr,
                  i,
                  &interp,
                  sampler,
                  &fs_mask[i], /* output */
                  out_color,
                  depth_ptr_i,
                  do_tri_test,
                  c0, c1, c2,
                  step0_ptr, step1_ptr, step2_ptr);

      for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
	 for(chan = 0; chan < NUM_CHANNELS; ++chan)
	    fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
   }

   sampler->destroy(sampler);

   /* Loop over color outputs / color buffers to do blending.
    */
   for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
      LLVMValueRef color_ptr;
      LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);

      /* 
       * Convert the fs's output color and mask to fit to the blending type. 
       */
      for(chan = 0; chan < NUM_CHANNELS; ++chan) {
	 lp_build_conv(builder, fs_type, blend_type,
		       fs_out_color[cbuf][chan], num_fs,
		       &blend_in_color[chan], 1);
	 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
      }

      lp_build_conv_mask(builder, fs_type, blend_type,
			 fs_mask, num_fs,
			 &blend_mask, 1);

      color_ptr = LLVMBuildLoad(builder, 
				LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
				"");
      lp_build_name(color_ptr, "color_ptr%d", cbuf);

      /*
       * Blending.
       */
      generate_blend(&key->blend,
		     builder,
		     blend_type,
		     context_ptr,
		     blend_mask,
		     blend_in_color,
		     color_ptr);
   }

   LLVMBuildRetVoid(builder);

   LLVMDisposeBuilder(builder);


   /* Verify the LLVM IR.  If invalid, dump and abort */
#ifdef DEBUG
   if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
      if (1)
         LLVMDumpValue(function);
      abort();
   }
#endif

   /* Apply optimizations to LLVM IR */
   if (1)
      LLVMRunFunctionPassManager(screen->pass, function);

   if (LP_DEBUG & DEBUG_JIT) {
      /* Print the LLVM IR to stderr */
      LLVMDumpValue(function);
      debug_printf("\n");
   }

   /*
    * Translate the LLVM IR into machine code.
    */
   variant->jit_function[do_tri_test] = (lp_jit_frag_func)LLVMGetPointerToGlobal(screen->engine, function);

   if (LP_DEBUG & DEBUG_ASM)
      lp_disassemble(variant->jit_function[do_tri_test]);
}