Example #1
0
inline void output_value_on_line(const std::string& filename,	//
		Domain_<Float, Float, 2>& domain,  //
		Axes aix, Float v, st idx) {
	//typedef Domain_<Float, Float, 2> Domain;
	typedef Domain_<Float, Float, 2>::pNode pNode;
	typedef Interpolate_<Float, Float, 2> Inter;
	typedef Point_<Float, 2> Point;
	typedef Expression_<Float, Float,2> Exp;

	// build an array
	st n = 300;
	ArrayListV<Float> arr = Linspace(  //
			domain.grid().min(VerticalAxes2D(aix)),  //
			domain.grid().max(VerticalAxes2D(aix)), n);

	// Interpolate
	ArrayListV<Float> arrval(n);
	std::fstream fss;
	fss.open(filename, std::fstream::out);
	for (st i = 0; i < n; ++i) {
		Point p;
		p[aix] = v;
		p[VerticalAxes2D(aix)] = arr[i];
		pNode pn = domain.grid().get_pnode(p.x(), p.y());

		Exp exp = Inter::OnPlane(pn, _X_, _Y_, p.x(), p.y(), 1);
		arrval[i] = exp.substitute(idx);
		fss << arr[i] << " " << arrval[i] << "\n";
	}
	fss.close();
}
int main(){
	int n = 6;
	int m = n;
	Matrix x = Linspace(-4.0, 4.0, m+1, 1);
	Matrix y = Linspace(-4.0, 4.0, n+1, 1);
	Matrix f(x.Size(), y.Size());
	for(int i = 0; i < x.Size(); i++){
		for(int j = 0; j < y.Size(); j++){
			f(i, j) = 1/(1+(x(i)*x(i)) + (y(j)*y(j)));
		}
	}
	Matrix a = Linspace(-4.0, 4.0, 201, 1);
	a.Write("avals.txt");
	Matrix b = Linspace(-4.0, 4.0, 101, 1);
	b.Write("bvals.txt");
	Matrix p6(a.Size(), b.Size());
	for(int i = 0; i < a.Size(); i++){
		for(int j = 0; j < b.Size(); j++){
			p6(i, j) = Lagrange2D(x, y, f, a(i), b(j));
		}
	}
	p6.Write("p6_uni.txt");

	n = 24;
	m = n;
	x = Linspace(-4.0, 4.0, m+1, 1);
	y = Linspace(-4.0, 4.0, n+1, 1);
	f = Matrix(x.Size(), y.Size());
	for(int i = 0; i < x.Size(); i++){
		for(int j = 0; j < y.Size(); j++){
			f(i, j) = 1/(1+(x(i)*x(i)) + (y(j)*y(j)));
		}
	}
	Matrix p24(a.Size(), b.Size());
	for(int i = 0; i < a.Size(); i++){
		for(int j = 0; j < b.Size(); j++){
			p24(i, j) = Lagrange2D(x, y, f, a(i), b(j));
		}
	}
	p24.Write("p24_uni.txt");

	Matrix runge(201, 101);
	for(int i = 0; i < a.Size(); i++){
		for(int j = 0; j < b.Size(); j++){
			runge(i, j) = 1/(1+(a(i)*a(i)) + (b(j)*b(j)));
		}
	}
	//create runge matrix
	runge.Write("Runge.txt");



}
Example #3
0
int main(int argc, char * argv[]){
	double time_min = 0;
	double time_max  = 10;

	F f;
	FD fd;

	f.solveE(2.0, 1.25);
	fd.solveE(2.0, 1.25);

	Matrix t = Linspace(time_min, time_max, 1, 10000);
	Matrix x(t.Size() );
	Matrix y(t.Size() );

	double w = 0;
	double rw = 0;
	
	for(int i = 0; i < t.Size() ; i++){

		f.setT( t(i) );
		fd.setT( t(i) );

		w = newton(f,fd, w, 6, 1e-5, false);
		rw = radialPosition(2.0, 1.25, w);
		x(i) = rw * cos(w);
		y(i) = rw * sin(w);

	}

	t.Write("t.txt");
	x.Write("x.txt");
	y.Write("y.txt");


	return 0;
}
int main(int argc, char** argv){

	//Setup tolerances for experiments
	double rtol, atol;
	rtol = 1e-11;
	atol = 1e-15;


	// Create an array of 400 evenly-spaced T values over the
	// interval[800,1200] K. Output this to disk as the file
	// Temp.txt
	Matrix T_values = Linspace(800, 1200, 400, 1);
	T_values.Write("Temp.txt");

	// Create an array of 600 evenly-spaced t values over the
	// interval[1 sec,48 hours] K. Output this to disk as the file
	// temp.txt
	Matrix t_values = Linspace(1, 172800, 600, 1);
	t_values.Write("time.txt");

	// Create a 400 x 600 array that contains C(0.002,t,T).
	// Output this to disk as the file C2mm.txt

	//carbon(0.002, t_values(300), T_values(45), rtol, atol);

	Matrix C2MM(400, 600);
	for(int i  = 0 ; i < T_values.Size();  i++){
		for(int j = 0; j < t_values.Size(); j++){

			C2MM(i, j) =
			 carbon( 0.002, t_values(j), T_values(i), rtol, atol);
		}
	}
	C2MM.Write("C2mm.txt");

	// Create a 400 x 600 array that contains C(0.004,t,T).
	// Output this to disk as the file C4mm.txt

	Matrix C4MM(400, 600);
	for(int i  = 0 ; i < T_values.Size();  i++){
		for(int j = 0; j < t_values.Size(); j++){

			C4MM(i, j) =
			 carbon( 0.004, t_values(j), T_values(i), rtol, atol);
		}
	}
	C4MM.Write("C4mm.txt");

	// Create an array of length 600 containing C(0.002,t,800)
	// Output to disk as the file C2mm_800K.txt . Repeat this
	// to output the carbon concentrations for 2mm depth at
	// 900K (C2mm_900K.txt), 1000K (C2mm_1000K.txt),
	// 1100K (C2mm_24hour.txt), 1200K (C2mm_1200K.txt)
	Matrix C2mm_800K(600);
	Matrix C2mm_900K(600);
	Matrix C2mm_1000K(600);
	Matrix C2mm_1100K(600);
	Matrix C2mm_1200K(600);

	for(int i =0 ;  i < 600 ; i++){
		C2mm_800K(i) =  carbon(0.002, t_values(i), 800, rtol, atol);
		C2mm_900K(i) =  carbon(0.002, t_values(i), 900, rtol, atol);
		C2mm_1000K(i) =  carbon(0.002, t_values(i), 1000, rtol, atol);
		C2mm_1100K(i) =  carbon(0.002, t_values(i), 1100, rtol, atol);
		C2mm_1200K(i) =  carbon(0.002, t_values(i), 1200, rtol, atol);
	} 

	C2mm_800K.Write("C2mm_800K.txt");
	C2mm_900K.Write("C2mm_900K.txt");
	C2mm_1000K.Write("C2mm_1000K.txt");
	C2mm_1100K.Write("C2mm_24hour.txt");
	C2mm_1200K.Write("C2mm_1200K.txt");

	// Create an array of length 600 containing C(0.004,t,800)
	// Output to disk as the file C4mm_800K.txt . Repeat this
	// to output the carbon concentrations for 2mm depth at
	// 900K (C4mm_900K.txt), 1000K (C4mm_1000K.txt),
	// 1100K (C4mm_1100K.txt), 1200K (C4mm_1200K.txt)

	Matrix C4mm_800K(600);
	Matrix C4mm_900K(600);
	Matrix C4mm_1000K(600);
	Matrix C4mm_1100K(600);
	Matrix C4mm_1200K(600);

	for(int i =0 ;  i < 600 ; i++){
		C4mm_800K(i) =  carbon(0.004, t_values(i), 800, rtol, atol);
		C4mm_900K(i) =  carbon(0.004, t_values(i), 900, rtol, atol);
		C4mm_1000K(i) =  carbon(0.004, t_values(i), 1000, rtol, atol);
		C4mm_1100K(i) =  carbon(0.004, t_values(i), 1100, rtol, atol);
		C4mm_1200K(i) =  carbon(0.004, t_values(i), 1200, rtol, atol);
	}

	C4mm_800K.Write("C4mm_800K.txt");
	C4mm_900K.Write("C4mm_900K.txt");
	C4mm_1000K.Write("C4mm_1000K.txt");
	C4mm_1100K.Write("C4mm_1100K.txt");
	C4mm_1200K.Write("C4mm_1200K.txt");

	return 0;
}
Example #5
0
int main(int argc, const char * argv[]) {
    // insert code here...
    double coeff[13];//array of coefficients for taylor polynomial of cos(x)
    bool neg=false;//if coefficient is supposed  to be negative, then true
    for (int i=0.0; i<13; i++) {//assigns coefficients to array
        if(i%2==0)
        {if(!neg)
        {
            coeff[i]=(double)(1.0/factorial(i));
            neg=true;
        }
            else
            {         coeff[i]=(double)(-1.0/factorial(i));
            neg=false;
            }
        }
        else{
            coeff[i]=0;
        }
        
    }
    
  
    Matrix z=Linspace(-3, 3, 601);//creates matrix with  601 evenly div numbers between -3 and 3
     Matrix p4coeff(1,5,coeff);//matrix with first 4 taylor coefficients
    
    Matrix p4(1,601);//matrix with result for 4th degree polynomial evaluated at z
    for (int i=0;i<601;i++)
    {
        p4(i)=nest(p4coeff,z(i));
    }
    p4.Write("p4.txt");//wriete results to text  file
    
    //same as above for 8th degree polynomial
    Matrix p8coeff(1,9,coeff);
    Matrix p8(1,601);
    for (int i=0;i<601;i++)
    {
        p8(i)=nest(p8coeff,z(i));
    }
    p8.Write("p8.txt");
    
    //same as above for 12th degree polynomial
    Matrix p12coeff(1,13,coeff);
    Matrix p12(1,601);
    for (int i=0;i<601;i++)
    {
        p12(i)=nest(p12coeff,z(i));
    }
    p12.Write("p12.txt");
    
    // all points are evaluated at cos(x)
    Matrix f(1,601);
    for (int i=0;i<601;i++)
    {
        f(i)=cos(z(i));
    }
    f.Write("f.txt");
    
    //calculate relative error for the three taylor polynomials
    Matrix err4(1,601);
    for (int i=0;i<601;i++)
    {
        err4(i)=cos(z(i))-p4(i);
    }
    err4.Abs();
    err4.Write("err4.txt");
    Matrix err8(1,601);
    for (int i=0;i<601;i++)
    {
        err8(i)=cos(z(i))-p8(i);
    }
    err8.Abs();
    err8.Write("err8.txt");
     Matrix err12(1,601);
    for (int i=0;i<601;i++)
    {
        err12(i)=cos(z(i))-p12(i);
    }
    err12.Abs();
    err12.Write("err12.txt");
    z.Write("z.txt");
    }
int main(){
	Matrix a = Linspace(0.0, 5.0, 5, 1);
	for(int i = 0; i < a.Size(); i++)
		std::cout << a(i) << std::endl;
}