Example #1
0
extern "C" magma_int_t
magma_cbombard(
    magma_c_matrix A, magma_c_matrix b, 
    magma_c_matrix *x, magma_c_solver_par *solver_par,
    magma_queue_t queue )
{
    magma_int_t info = MAGMA_NOTCONVERGED;
    
    // 1=QMR, 2=CGS, 3+BiCGSTAB
    magma_int_t flag = 0;
    
    // prepare solver feedback
    solver_par->solver = Magma_BOMBARD;
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    
    // local variables
    magmaFloatComplex c_zero = MAGMA_C_ZERO, c_one = MAGMA_C_ONE;
                        
    // solver variables
    float nom0, r0, res, Q_res, T_res, C_res, B_res, nomb;
    
    //QMR
    magmaFloatComplex Q_rho = c_one, Q_rho1 = c_one, Q_eta = -c_one , Q_pds = c_one, 
                        Q_thet = c_one, Q_thet1 = c_one, Q_epsilon = c_one, 
                        Q_beta = c_one, Q_delta = c_one, Q_pde = c_one, Q_rde = c_one,
                        Q_gamm = c_one, Q_gamm1 = c_one, Q_psi = c_one;
                        
    //TFQMR
    magmaFloatComplex T_rho = c_one, T_rho_l = c_one, T_eta = c_zero , T_c = c_zero , 
                        T_theta = c_zero , T_tau = c_zero, T_alpha = c_one, T_beta = c_zero,
                        T_sigma = c_zero;
                        
    //CGS
    magmaFloatComplex C_rho, C_rho_l = c_one, C_alpha, C_beta = c_zero;
    
    //BiCGSTAB
    magmaFloatComplex B_alpha, B_beta, B_omega, B_rho_old, B_rho_new;
    
    magma_int_t dofs = A.num_rows* b.num_cols;

    // need to transpose the matrix
    
    // GPU workspace
    // QMR
    magma_c_matrix AT = {Magma_CSR}, Ah1 = {Magma_CSR}, Ah2 = {Magma_CSR},
                    Q_r={Magma_CSR}, r_tld={Magma_CSR}, Q_x={Magma_CSR},
                    Q_v={Magma_CSR}, Q_w={Magma_CSR}, Q_wt={Magma_CSR},
                    Q_d={Magma_CSR}, Q_s={Magma_CSR}, Q_z={Magma_CSR}, Q_q={Magma_CSR}, 
                    Q_p={Magma_CSR}, Q_pt={Magma_CSR}, Q_y={Magma_CSR}, d1={Magma_CSR}, d2={Magma_CSR};
    //TFQMR
    // GPU workspace
    magma_c_matrix  T_r={Magma_CSR}, T_pu_m={Magma_CSR}, T_x={Magma_CSR},
                    T_d={Magma_CSR}, T_w={Magma_CSR}, T_v={Magma_CSR},
                    T_u_mp1={Magma_CSR}, T_u_m={Magma_CSR}, T_Au={Magma_CSR}, 
                    T_Ad={Magma_CSR}, T_Au_new={Magma_CSR};
                    
    // CGS
    magma_c_matrix C_r={Magma_CSR}, C_rt={Magma_CSR}, C_x={Magma_CSR},
                    C_p={Magma_CSR}, C_q={Magma_CSR}, C_u={Magma_CSR}, C_v={Magma_CSR},  C_t={Magma_CSR},
                    C_p_hat={Magma_CSR}, C_q_hat={Magma_CSR}, C_u_hat={Magma_CSR}, C_v_hat={Magma_CSR};
    //BiCGSTAB
    magma_c_matrix B_r={Magma_CSR}, B_x={Magma_CSR}, B_p={Magma_CSR}, B_v={Magma_CSR}, 
                    B_s={Magma_CSR}, B_t={Magma_CSR};

                    
    CHECK( magma_cvinit( &r_tld, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &d1, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &d2, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));

    
    // QMR
    CHECK( magma_cvinit( &Q_r, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &Q_v, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &Q_w, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &Q_wt,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &Q_d, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &Q_s, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &Q_z, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &Q_q, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &Q_p, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &Q_pt,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &Q_y, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &Q_x, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    // TFQMR
    CHECK( magma_cvinit( &T_r, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &T_u_mp1,Magma_DEV, A.num_rows, b.num_cols, c_one, queue ));
    CHECK( magma_cvinit( &T_u_m, Magma_DEV, A.num_rows, b.num_cols, c_one, queue ));
    CHECK( magma_cvinit( &T_pu_m, Magma_DEV, A.num_rows, b.num_cols, c_one, queue ));
    CHECK( magma_cvinit( &T_v, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &T_d, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &T_w, Magma_DEV, A.num_rows, b.num_cols, c_one, queue ));
    CHECK( magma_cvinit( &T_Ad, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &T_Au_new, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &T_Au, Magma_DEV, A.num_rows, b.num_cols, c_one, queue ));
    CHECK( magma_cvinit( &T_x, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    // CGS
    CHECK( magma_cvinit( &C_r, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &C_rt,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &C_x,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &C_p, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &C_p_hat, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &C_q, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &C_q_hat, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &C_u, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &C_u_hat, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &C_v, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &C_v_hat, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &C_t, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    // BiCGSTAB
    CHECK( magma_cvinit( &B_r, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &B_x,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &B_p, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &B_v, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &B_s, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &B_t, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));

    
    // solver setup
    CHECK(  magma_cresidualvec( A, b, *x, &r_tld, &nom0, queue));
    solver_par->init_res = nom0;
    res = nom0;
    
    // QMR
    magma_ccopy( dofs, r_tld.dval, 1, Q_r.dval, 1, queue );   
    magma_ccopy( dofs, r_tld.dval, 1, Q_y.dval, 1, queue );   
    magma_ccopy( dofs, r_tld.dval, 1, Q_v.dval, 1, queue );  
    magma_ccopy( dofs, r_tld.dval, 1, Q_wt.dval, 1, queue );   
    magma_ccopy( dofs, r_tld.dval, 1, Q_z.dval, 1, queue ); 
    magma_ccopy( dofs, x->dval, 1, Q_x.dval, 1, queue ); 
    // transpose the matrix
    // transpose the matrix
    magma_cmtransfer( A, &Ah1, Magma_DEV, Magma_CPU, queue );
    magma_cmconvert( Ah1, &Ah2, A.storage_type, Magma_CSR, queue );
    magma_cmfree(&Ah1, queue );
    magma_cmtransposeconjugate( Ah2, &Ah1, queue );
    magma_cmfree(&Ah2, queue );
    Ah2.blocksize = A.blocksize;
    Ah2.alignment = A.alignment;
    magma_cmconvert( Ah1, &Ah2, Magma_CSR, A.storage_type, queue );
    magma_cmfree(&Ah1, queue );
    magma_cmtransfer( Ah2, &AT, Magma_CPU, Magma_DEV, queue );
    magma_cmfree(&Ah2, queue );
    
    // TFQMR
    solver_par->init_res = nom0;
    magma_ccopy( dofs, r_tld.dval, 1, T_r.dval, 1, queue );   
    magma_ccopy( dofs, T_r.dval, 1, T_w.dval, 1, queue );   
    magma_ccopy( dofs, T_r.dval, 1, T_u_m.dval, 1, queue );  
    magma_ccopy( dofs, T_r.dval, 1, T_u_mp1.dval, 1, queue ); 
    magma_ccopy( dofs, T_u_m.dval, 1, T_pu_m.dval, 1, queue );  
    CHECK( magma_c_spmv( c_one, A, T_pu_m, c_zero, T_v, queue ));
    magma_ccopy( dofs, T_v.dval, 1, T_Au.dval, 1, queue );  
    
    // CGS
    magma_ccopy( dofs, r_tld.dval, 1, C_r.dval, 1, queue );   
    magma_ccopy( dofs, x->dval, 1, C_x.dval, 1, queue ); 
    
    // BiCGSTAB
    magma_ccopy( dofs, r_tld.dval, 1, B_r.dval, 1, queue );   
    magma_ccopy( dofs, x->dval, 1, B_x.dval, 1, queue ); 
    CHECK( magma_c_spmv( c_one, A, B_r, c_zero, B_v, queue ));     

    
    nomb = magma_scnrm2( dofs, b.dval, 1, queue );
    if ( nomb == 0.0 ){
        nomb=1.0;
    }       
    if ( (r0 = nomb * solver_par->rtol) < ATOLERANCE ){
        r0 = ATOLERANCE;
    }
    solver_par->final_res = solver_par->init_res;
    solver_par->iter_res = solver_par->init_res;
    if ( solver_par->verbose > 0 ) {
        solver_par->res_vec[0] = (real_Double_t)nom0;
        solver_par->timing[0] = 0.0;
    }
    if ( nom0 < r0 ) {
        info = MAGMA_SUCCESS;
        goto cleanup;
    }
    
    T_tau = magma_csqrt( magma_cdotc( dofs, T_r.dval, 1, r_tld.dval, 1, queue) );
    T_rho = magma_cdotc( dofs, T_r.dval, 1, r_tld.dval, 1, queue );
    T_rho_l = T_rho;
    

    Q_psi = magma_csqrt( magma_cdotc( dofs, Q_z.dval, 1, Q_z.dval, 1, queue ));
    Q_rho = magma_csqrt( magma_cdotc( dofs, Q_y.dval, 1, Q_y.dval, 1, queue ));
    
    // BiCGSTAB
    B_rho_new = magma_cdotc( dofs, B_r.dval, 1, B_r.dval, 1, queue );            
    B_rho_old = B_omega = B_alpha = MAGMA_C_MAKE( 1.0, 0. );
    
        // v = y / rho
        // y = y / rho
        // w = wt / psi
        // z = z / psi
    magma_cqmr_1(  
    b.num_rows, 
    b.num_cols, 
    Q_rho,
    Q_psi,
    Q_y.dval, 
    Q_z.dval,
    Q_v.dval,
    Q_w.dval,
    queue );
    
    //Chronometry
    real_Double_t tempo1, tempo2;
    tempo1 = magma_sync_wtime( queue );
    
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    // start iteration
    do
    {
        solver_par->numiter++;
        
            //QMR: delta = z' * y;
        Q_delta = magma_cdotc( dofs, Q_z.dval, 1, Q_y.dval, 1, queue );
        
        // TFQMR
        T_alpha = T_rho / magma_cdotc( dofs, T_v.dval, 1, r_tld.dval, 1, queue );
        T_sigma = T_theta * T_theta / T_alpha * T_eta; 
        
        
            //CGS: rho = r' * r_tld
        C_rho = magma_cdotc( dofs, C_r.dval, 1, r_tld.dval, 1, queue );
        
            // BiCGSTAB
        B_rho_old = B_rho_new;    
        B_rho_new = magma_cdotc( dofs, r_tld.dval, 1, B_r.dval, 1, queue );  // rho=<rr,r>
        B_beta = B_rho_new/B_rho_old * B_alpha/B_omega;   // beta=rho/rho_old *alpha/omega

        
        if( solver_par->numiter == 1 ){
                //QMR: p = y;
                //QMR: q = z;
            magma_ccopy( dofs, Q_y.dval, 1, Q_p.dval, 1, queue );
            magma_ccopy( dofs, Q_z.dval, 1, Q_q.dval, 1, queue );
            
                //QMR: u = r;
                //QMR: p = r;
            magma_ccgs_2(  
            b.num_rows, 
            b.num_cols, 
            C_r.dval,
            C_u.dval,
            C_p.dval,
            queue );
        }
        else{
            Q_pde = Q_psi * Q_delta / Q_epsilon;
            Q_rde = Q_rho * MAGMA_C_CONJ(Q_delta/Q_epsilon);
            
            C_beta = C_rho / C_rho_l;  
            
                //QMR p = y - pde * p
                //QMR q = z - rde * q
            magma_cqmr_2(  
            b.num_rows, 
            b.num_cols, 
            Q_pde,
            Q_rde,
            Q_y.dval,
            Q_z.dval,
            Q_p.dval, 
            Q_q.dval, 
            queue );
            
                  //CGS: u = r + beta*q;
                  //CGS: p = u + beta*( q + beta*p );
            magma_ccgs_1(  
            b.num_rows, 
            b.num_cols, 
            C_beta,
            C_r.dval,
            C_q.dval, 
            C_u.dval,
            C_p.dval,
            queue );
        }
        
        // TFQMR
        magma_ctfqmr_1(  
        b.num_rows, 
        b.num_cols, 
        T_alpha,
        T_sigma,
        T_v.dval, 
        T_Au.dval,
        T_u_m.dval,
        T_pu_m.dval,
        T_u_mp1.dval,
        T_w.dval, 
        T_d.dval,
        T_Ad.dval,
        queue );
        
        T_theta = magma_csqrt( magma_cdotc(dofs, T_w.dval, 1, T_w.dval, 1, queue) ) / T_tau;
        T_c = c_one / magma_csqrt( c_one + T_theta*T_theta );
        T_tau = T_tau * T_theta *T_c;
        T_eta = T_c * T_c * T_alpha;
        T_sigma = T_theta * T_theta / T_alpha * T_eta;  
        
        magma_ctfqmr_2(  
        b.num_rows, 
        b.num_cols, 
        T_eta,
        T_d.dval,
        T_Ad.dval,
        T_x.dval, 
        T_r.dval, 
        queue );
        magma_ccopy( dofs, T_u_mp1.dval, 1, T_pu_m.dval, 1, queue );
        
            // BiCGSTAB: p = r + beta * ( p - omega * v )
        magma_cbicgstab_1(  
        b.num_rows, 
        b.num_cols, 
        B_beta,
        B_omega,
        B_r.dval, 
        B_v.dval,
        B_p.dval,
        queue );
        
        //QMR
        CHECK( magma_c_spmv( c_one, A, Q_p, c_zero, Q_pt, queue ));
        //TFQMR
        CHECK( magma_c_spmv( c_one, A, T_pu_m, c_zero, T_Au_new, queue ));
        //CGS
        CHECK( magma_c_spmv( c_one, A, C_p, c_zero, C_v_hat, queue ));
        // BiCGSTAB
        CHECK( magma_c_spmv( c_one, A, B_p, c_zero, B_v, queue ));      // v = Ap
        
        solver_par->spmv_count++;
        
            //QMR: epsilon = q' * pt;
        Q_epsilon = magma_cdotc( dofs, Q_q.dval, 1, Q_pt.dval, 1, queue );
        Q_beta = Q_epsilon / Q_delta;
            //TFQMR
        magma_ccopy( dofs, T_Au_new.dval, 1, T_Au.dval, 1, queue );  
        magma_ccopy( dofs, T_u_mp1.dval, 1, T_u_m.dval, 1, queue ); 
            //CGS: alpha = r_tld' * v_hat
        C_alpha = C_rho / magma_cdotc( dofs, r_tld.dval, 1, C_v_hat.dval, 1, queue );
            //BiCGSTAB
        B_alpha = B_rho_new / magma_cdotc( dofs, r_tld.dval, 1, B_v.dval, 1, queue );

        
            //QMR: v = pt - beta * v
            //QMR: y = v
        magma_cqmr_3(  
        b.num_rows, 
        b.num_cols, 
        Q_beta,
        Q_pt.dval,
        Q_v.dval,
        Q_y.dval,
        queue );
        
        // TFQMR
        magma_ctfqmr_5(  
        b.num_rows, 
        b.num_cols, 
        T_alpha,
        T_sigma,
        T_v.dval, 
        T_Au.dval,
        T_pu_m.dval,
        T_w.dval, 
        T_d.dval,
        T_Ad.dval,
        queue ); 
        
                // TFQMR
        T_sigma = T_theta * T_theta / T_alpha * T_eta;  
        
        T_theta = magma_csqrt( magma_cdotc(dofs, T_w.dval, 1, T_w.dval, 1, queue) ) / T_tau;
        T_c = c_one / magma_csqrt( c_one + T_theta*T_theta );
        T_tau = T_tau * T_theta *T_c;
        T_eta = T_c * T_c * T_alpha;
        
        // TFQMR
        magma_ctfqmr_2(  
        b.num_rows, 
        b.num_cols, 
        T_eta,
        T_d.dval,
        T_Ad.dval,
        T_x.dval, 
        T_r.dval, 
        queue );
        
        T_rho = magma_cdotc( dofs, T_w.dval, 1, r_tld.dval, 1, queue );
        T_beta = T_rho / T_rho_l;
        T_rho_l = T_rho;
        
        magma_ctfqmr_3(  
        b.num_rows, 
        b.num_cols, 
        T_beta,
        T_w.dval,
        T_u_m.dval,
        T_u_mp1.dval, 
        queue );
        magma_ccopy( dofs, T_u_mp1.dval, 1, T_pu_m.dval, 1, queue );  
        
        
            //CGS: q = u - alpha v_hat
            //CGS: t = u + q
        magma_ccgs_3(  
        b.num_rows, 
        b.num_cols, 
        C_alpha,
        C_v_hat.dval,
        C_u.dval, 
        C_q.dval,
        C_t.dval, 
        queue );
        
            // BiCGSTAB: s = r - alpha v
        magma_cbicgstab_2(  
        b.num_rows, 
        b.num_cols, 
        B_alpha,
        B_r.dval,
        B_v.dval,
        B_s.dval, 
        queue );
            
        
        Q_rho1 = Q_rho;      
            //QMR rho = norm(y);
        Q_rho = magma_csqrt( magma_cdotc( dofs, Q_y.dval, 1, Q_y.dval, 1, queue ) );
        
            //QMR wt = A' * q - beta' * w;
        CHECK( magma_c_spmv( c_one, AT, Q_q, c_zero, Q_wt, queue ));
        //TFQMR
        CHECK( magma_c_spmv( c_one, A, T_pu_m, c_zero, T_Au_new, queue ));
            //CGS t = A u_hat
        CHECK( magma_c_spmv( c_one, A, C_t, c_zero, C_rt, queue )); 
            //BiCGSTAB
        CHECK( magma_c_spmv( c_one, A, B_s, c_zero, B_t, queue ));       // t=As
        
        solver_par->spmv_count++;
        
        //BiCGSTAB
        B_omega = magma_cdotc( dofs, B_t.dval, 1, B_s.dval, 1, queue )   // omega = <s,t>/<t,t>
                   / magma_cdotc( dofs, B_t.dval, 1, B_t.dval, 1, queue );

                   
       // QMR
        magma_caxpy( dofs, - MAGMA_C_CONJ( Q_beta ), Q_w.dval, 1, Q_wt.dval, 1, queue );  
                    // no precond: z = wt
        magma_ccopy( dofs, Q_wt.dval, 1, Q_z.dval, 1, queue );
        
        
        //TFQMR
        magma_ctfqmr_4(  
        b.num_rows, 
        b.num_cols, 
        T_beta,
        T_Au_new.dval,
        T_v.dval,
        T_Au.dval, 
        queue );
        
        magma_ccopy( dofs, T_u_mp1.dval, 1, T_u_m.dval, 1, queue ); 
        
            
        // QMR
        Q_thet1 = Q_thet;        
        Q_thet = Q_rho / (Q_gamm * MAGMA_C_MAKE( MAGMA_C_ABS(Q_beta), 0.0 ));
        Q_gamm1 = Q_gamm;        
        
        Q_gamm = c_one / magma_csqrt(c_one + Q_thet*Q_thet);        
        Q_eta = - Q_eta * Q_rho1 * Q_gamm * Q_gamm / (Q_beta * Q_gamm1 * Q_gamm1);

        if ( solver_par->numiter == 1 ) {
                //QMR: d = eta * p + pds * d;
                //QMR: s = eta * pt + pds * d;
                //QMR: x = x + d;
                //QMR: r = r - s;
            magma_cqmr_4(  
            b.num_rows, 
            b.num_cols, 
            Q_eta,
            Q_p.dval,
            Q_pt.dval,
            Q_d.dval, 
            Q_s.dval, 
            Q_x.dval, 
            Q_r.dval, 
            queue );
        }
        else {
            Q_pds = (Q_thet1 * Q_gamm) * (Q_thet1 * Q_gamm);
            
                // d = eta * p + pds * d;
                // s = eta * pt + pds * d;
                // x = x + d;
                // r = r - s;
            magma_cqmr_5(  
            b.num_rows, 
            b.num_cols, 
            Q_eta,
            Q_pds,
            Q_p.dval,
            Q_pt.dval,
            Q_d.dval, 
            Q_s.dval, 
            Q_x.dval, 
            Q_r.dval, 
            queue );
        }
        
        
        // CGS: r = r -alpha*A u_hat
        // CGS: x = x + alpha u_hat
        magma_ccgs_4(  
        b.num_rows, 
        b.num_cols, 
        C_alpha,
        C_t.dval,
        C_rt.dval,
        C_x.dval, 
        C_r.dval,
        queue );
        C_rho_l = C_rho;  
        
            // BiCGSTAB: x = x + alpha * p + omega * s
            // BiCGSTAB: r = s - omega * t
        magma_cbicgstab_3(  
        b.num_rows, 
        b.num_cols, 
        B_alpha,
        B_omega,
        B_p.dval,
        B_s.dval,
        B_t.dval,
        B_x.dval,
        B_r.dval,
        queue );
        
            //QMR: psi = norm(z);
        Q_psi = magma_csqrt( magma_cdotc( dofs, Q_z.dval, 1, Q_z.dval, 1, queue ) );
        
            //QMR: v = y / rho
            //QMR: y = y / rho
            //QMR: w = wt / psi
            //QMR: z = z / psi
        magma_cqmr_1(  
        b.num_rows, 
        b.num_cols, 
        Q_rho,
        Q_psi,
        Q_y.dval, 
        Q_z.dval,
        Q_v.dval,
        Q_w.dval,
        queue );
        
        
        
        
        Q_res = magma_scnrm2( dofs, Q_r.dval, 1, queue );
        T_res = magma_scnrm2( dofs, T_r.dval, 1, queue );
        C_res = magma_scnrm2( dofs, C_r.dval, 1, queue );
        B_res = magma_scnrm2( dofs, B_r.dval, 1, queue );

        
            // printf(" %e   %e   %e\n", Q_res, C_res, B_res);
        if( Q_res < res ){
            res = Q_res;
            flag = 1;
        }
        if( T_res < res ){
            res = Q_res;
            flag = 2;
        }
        if( C_res < res ){
            res = C_res;
            flag = 3;
        }
        if( B_res < res ){
            res = B_res;
            flag = 4;
        }

        if ( solver_par->verbose > 0 ) {
            tempo2 = magma_sync_wtime( queue );
            if ( (solver_par->numiter)%solver_par->verbose == c_zero ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }

        if ( res/nomb <= solver_par->rtol || res <= solver_par->atol ){
            info = MAGMA_SUCCESS;
            break;
        }
        if( magma_c_isnan_inf( Q_beta ) && magma_c_isnan_inf( C_beta ) && magma_c_isnan_inf( B_beta ) ){
            info = MAGMA_DIVERGENCE;
            break;
        } 
    }
    while ( solver_par->numiter+1 <= solver_par->maxiter );
        
    // copy back the best solver
    switch ( flag ) {
        case 1:
            printf("%% QMR fastest solver.\n");
            magma_ccopy( dofs, Q_x.dval, 1, x->dval, 1, queue ); 
            break;
       case 2:
            printf("%% TFQMR fastest solver.\n");
            magma_ccopy( dofs, T_x.dval, 1, x->dval, 1, queue ); 
            break;
       case 3:
            printf("%% CGS fastest solver.\n");
            magma_ccopy( dofs, C_x.dval, 1, x->dval, 1, queue ); 
            break;
       case 4:
            printf("%% BiCGSTAB fastest solver.\n");
            magma_ccopy( dofs, B_x.dval, 1, x->dval, 1, queue ); 
            break;
    }


    
    tempo2 = magma_sync_wtime( queue );
    solver_par->runtime = (real_Double_t) tempo2-tempo1;
    float residual;
    CHECK(  magma_cresidualvec( A, b, *x, &r_tld, &residual, queue));
    solver_par->iter_res = res;
    solver_par->final_res = residual;

    if ( solver_par->numiter < solver_par->maxiter  && info == MAGMA_SUCCESS ) {
        info = MAGMA_SUCCESS;
    } else if ( solver_par->init_res > solver_par->final_res ) {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose == c_zero ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_SLOW_CONVERGENCE;
        if( solver_par->iter_res < solver_par->rtol*solver_par->init_res ||
            solver_par->iter_res < solver_par->atol ) {
            info = MAGMA_SUCCESS;
        }
    }
    else {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose == c_zero ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_DIVERGENCE;
    }
    
cleanup:
    magma_cmfree(&r_tld, queue );
    magma_cmfree(&d1, queue );
    magma_cmfree(&d2, queue );
    magma_cmfree(&AT,  queue );
    
    // QMR
    magma_cmfree(&Q_r,  queue );
    magma_cmfree(&Q_v,  queue );
    magma_cmfree(&Q_w,  queue );
    magma_cmfree(&Q_wt, queue );
    magma_cmfree(&Q_d,  queue );
    magma_cmfree(&Q_s,  queue );
    magma_cmfree(&Q_z,  queue );
    magma_cmfree(&Q_q,  queue );
    magma_cmfree(&Q_p,  queue );
    magma_cmfree(&Q_pt, queue );
    magma_cmfree(&Q_y,  queue );
    magma_cmfree(&Q_x,  queue );
    magma_cmfree(&Ah1, queue );
    magma_cmfree(&Ah2, queue );
    // TFQMR
    magma_cmfree(&T_r, queue );
    magma_cmfree(&T_x,  queue );
    magma_cmfree(&T_d, queue );
    magma_cmfree(&T_w, queue );
    magma_cmfree(&T_v, queue );
    magma_cmfree(&T_u_m, queue );
    magma_cmfree(&T_u_mp1, queue );
    magma_cmfree(&T_pu_m, queue );
    magma_cmfree(&T_d, queue );
    magma_cmfree(&T_Au, queue );
    magma_cmfree(&T_Au_new, queue );
    magma_cmfree(&T_Ad, queue );
    // CGS
    magma_cmfree(&C_r,  queue );
    magma_cmfree(&C_rt, queue );
    magma_cmfree(&C_x,  queue );
    magma_cmfree(&C_p,  queue );
    magma_cmfree(&C_q,  queue );
    magma_cmfree(&C_u,  queue );
    magma_cmfree(&C_v,  queue );
    magma_cmfree(&C_t,  queue );
    magma_cmfree(&C_p_hat, queue );
    magma_cmfree(&C_q_hat, queue );
    magma_cmfree(&C_u_hat, queue );
    magma_cmfree(&C_v_hat, queue );
    // BiCGSTAB
    magma_cmfree(&B_r, queue );
    magma_cmfree(&B_x, queue );
    magma_cmfree(&B_p, queue );
    magma_cmfree(&B_v, queue );
    magma_cmfree(&B_s, queue );
    magma_cmfree(&B_t, queue );
    
    solver_par->info = info;
    return info;
}   /* magma_cbombard */
Example #2
0
/**
    Purpose
    -------
    CGETF2_NOPIV computes an LU factorization of a general m-by-n
    matrix A without pivoting.

    The factorization has the form
       A = L * U
    where L is lower triangular with unit diagonal elements (lower
    trapezoidal if m > n), and U is upper triangular (upper
    trapezoidal if m < n).

    This is the right-looking Level 2 BLAS version of the algorithm.

    Arguments
    ---------
    @param[in]
    m       INTEGER
            The number of rows of the matrix A.  M >= 0.

    @param[in]
    n       INTEGER
            The number of columns of the matrix A.  N >= 0.

    @param[in,out]
    A       COMPLEX array, dimension (LDA,N)
            On entry, the m by n matrix to be factored.
            On exit, the factors L and U from the factorization
            A = P*L*U; the unit diagonal elements of L are not stored.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,M).

    @param[out]
    info    INTEGER
      -     = 0: successful exit
      -     < 0: if INFO = -k, the k-th argument had an illegal value
      -     > 0: if INFO = k, U(k,k) is exactly zero. The factorization
                 has been completed, but the factor U is exactly
                 singular, and division by zero will occur if it is used
                 to solve a system of equations.

    @ingroup magma_cgesv_aux
    ********************************************************************/
extern "C" magma_int_t
magma_cgetf2_nopiv(
    magma_int_t m, magma_int_t n,
    magmaFloatComplex *A, magma_int_t lda, magma_int_t *info)
{
    #define A(i_,j_) (A + (i_) + (j_)*lda)
    
    magmaFloatComplex c_one     = MAGMA_C_ONE;
    magmaFloatComplex c_zero    = MAGMA_C_ZERO;
    magmaFloatComplex c_neg_one = MAGMA_C_NEG_ONE;
    magma_int_t ione = 1;

    magma_int_t min_mn, i__2, i__3;
    magmaFloatComplex z__1;
    magma_int_t i, j;
    float sfmin;

    A -= 1 + lda;

    /* Function Body */
    *info = 0;
    if (m < 0) {
        *info = -1;
    } else if (n < 0) {
        *info = -2;
    } else if (lda < max(1,m)) {
        *info = -4;
    }
    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }

    /* Quick return if possible */
    if (m == 0 || n == 0)
        return *info;

    /* Compute machine safe minimum */
    sfmin = lapackf77_slamch("S");

    min_mn = min(m,n);
    for (j = 1; j <= min_mn; ++j) {
        /* Test for singularity. */
        if ( ! MAGMA_C_EQUAL( *A(j,j), c_zero)) {
            /* Compute elements J+1:M of J-th column. */
            if (j < m) {
                if (MAGMA_C_ABS( *A(j,j) ) >= sfmin) {
                    i__2 = m - j;
                    z__1 = MAGMA_C_DIV(c_one, *A(j,j));
                    blasf77_cscal(&i__2, &z__1, A(j+1,j), &ione);
                }
                else {
                    i__2 = m - j;
                    for (i = 1; i <= i__2; ++i) {
                        *A(j+i,j) = MAGMA_C_DIV( *A(j+i,j), *A(j,j) );
                    }
                }
            }
        }
        else if (*info == 0) {
            *info = j;
        }

        if (j < min_mn) {
            /* Update trailing submatrix. */
            i__2 = m - j;
            i__3 = n - j;
            blasf77_cgeru( &i__2, &i__3, &c_neg_one,
                           A(j+1,j),   &ione,
                           A(j,j+1),   &lda,
                           A(j+1,j+1), &lda);
        }
    }

    return *info;
} /* magma_cgetf2_nopiv */
Example #3
0
extern "C" magma_int_t
magma_ccg_merge(
    magma_c_matrix A, magma_c_matrix b, magma_c_matrix *x,
    magma_c_solver_par *solver_par,
    magma_queue_t queue )
{
    magma_int_t info = MAGMA_NOTCONVERGED;
    
    // prepare solver feedback
    solver_par->solver = Magma_CGMERGE;
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    
    // solver variables
    magmaFloatComplex alpha, beta, gamma, rho, tmp1, *skp_h={0};
    float nom, nom0, betanom, den, nomb;

    // some useful variables
    magmaFloatComplex c_zero = MAGMA_C_ZERO, c_one = MAGMA_C_ONE;
    magma_int_t dofs = A.num_rows*b.num_cols;

    magma_c_matrix r={Magma_CSR}, d={Magma_CSR}, z={Magma_CSR}, B={Magma_CSR}, C={Magma_CSR};
    magmaFloatComplex *d1=NULL, *d2=NULL, *skp=NULL;

    // GPU workspace
    CHECK( magma_cvinit( &r, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &d, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &z, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    
    CHECK( magma_cmalloc( &d1, dofs*(1) ));
    CHECK( magma_cmalloc( &d2, dofs*(1) ));
    // array for the parameters
    CHECK( magma_cmalloc( &skp, 6 ));
    // skp = [alpha|beta|gamma|rho|tmp1|tmp2]
    
    // solver setup
    magma_cscal( dofs, c_zero, x->dval, 1, queue );                      // x = 0
    //CHECK(  magma_cresidualvec( A, b, *x, &r, nom0, queue));
    magma_ccopy( dofs, b.dval, 1, r.dval, 1, queue );                    // r = b
    magma_ccopy( dofs, r.dval, 1, d.dval, 1, queue );                    // d = r
    nom0 = betanom = magma_scnrm2( dofs, r.dval, 1, queue );
    nom = nom0 * nom0;                                           // nom = r' * r
    CHECK( magma_c_spmv( c_one, A, d, c_zero, z, queue ));              // z = A d
    den = MAGMA_C_ABS( magma_cdotc( dofs, d.dval, 1, z.dval, 1, queue ) ); // den = d'* z
    solver_par->init_res = nom0;
    
    nomb = magma_scnrm2( dofs, b.dval, 1, queue );
    if ( nomb == 0.0 ){
        nomb=1.0;
    }       
    
    // array on host for the parameters
    CHECK( magma_cmalloc_cpu( &skp_h, 6 ));
    
    alpha = rho = gamma = tmp1 = c_one;
    beta =  magma_cdotc( dofs, r.dval, 1, r.dval, 1, queue );
    skp_h[0]=alpha;
    skp_h[1]=beta;
    skp_h[2]=gamma;
    skp_h[3]=rho;
    skp_h[4]=tmp1;
    skp_h[5]=MAGMA_C_MAKE(nom, 0.0);

    magma_csetvector( 6, skp_h, 1, skp, 1, queue );

    if( nom0 < solver_par->atol ||
        nom0/nomb < solver_par->rtol ){
        info = MAGMA_SUCCESS;
        goto cleanup;
    }
    solver_par->final_res = solver_par->init_res;
    solver_par->iter_res = solver_par->init_res;
    if ( solver_par->verbose > 0 ) {
        solver_par->res_vec[0] = (real_Double_t) nom0;
        solver_par->timing[0] = 0.0;
    }
    // check positive definite
    if (den <= 0.0) {
        info = MAGMA_NONSPD; 
        goto cleanup;
    }
    
    //Chronometry
    real_Double_t tempo1, tempo2;
    tempo1 = magma_sync_wtime( queue );

    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    // start iteration
    do
    {
        solver_par->numiter++;

        // computes SpMV and dot product
        CHECK( magma_ccgmerge_spmv1(  A, d1, d2, d.dval, z.dval, skp, queue ));
        solver_par->spmv_count++;
        // updates x, r, computes scalars and updates d
        CHECK( magma_ccgmerge_xrbeta( dofs, d1, d2, x->dval, r.dval, d.dval, z.dval, skp, queue ));

        // check stopping criterion (asynchronous copy)
        magma_cgetvector( 1 , skp+1, 1, skp_h+1, 1, queue );
        betanom = sqrt(MAGMA_C_ABS(skp_h[1]));

        if ( solver_par->verbose > 0 ) {
            tempo2 = magma_sync_wtime( queue );
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) betanom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }

        if (  betanom  < solver_par->atol || 
              betanom/nomb < solver_par->rtol ) {
            break;
        }
    }
    while ( solver_par->numiter+1 <= solver_par->maxiter );
    
    tempo2 = magma_sync_wtime( queue );
    solver_par->runtime = (real_Double_t) tempo2-tempo1;
    float residual;
    CHECK(  magma_cresidualvec( A, b, *x, &r, &residual, queue));
    solver_par->iter_res = betanom;
    solver_par->final_res = residual;

    if ( solver_par->numiter < solver_par->maxiter ) {
        info = MAGMA_SUCCESS;
    } else if ( solver_par->init_res > solver_par->final_res ) {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) betanom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_SLOW_CONVERGENCE;
        if( solver_par->iter_res < solver_par->atol ||
            solver_par->iter_res/solver_par->init_res < solver_par->rtol ){
            info = MAGMA_SUCCESS;
        }
    }
    else {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose==0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) betanom;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        solver_par->info = MAGMA_DIVERGENCE;
    }
    
cleanup:
    magma_cmfree(&r, queue );
    magma_cmfree(&z, queue );
    magma_cmfree(&d, queue );
    magma_cmfree(&B, queue );
    magma_cmfree(&C, queue );

    magma_free( d1 );
    magma_free( d2 );
    magma_free( skp );
    magma_free_cpu( skp_h );

    solver_par->info = info;
    return info;
}   /* magma_ccg_merge */
Example #4
0
/***************************************************************************//**
    Purpose
    -------
    CLAQPS computes a step of QR factorization with column pivoting
    of a complex M-by-N matrix A by using Blas-3.  It tries to factorize
    NB columns from A starting from the row OFFSET+1, and updates all
    of the matrix with Blas-3 xGEMM.

    In some cases, due to catastrophic cancellations, it cannot
    factorize NB columns.  Hence, the actual number of factorized
    columns is returned in KB.

    Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized.

    Arguments
    ---------
    @param[in]
    m       INTEGER
            The number of rows of the matrix A. M >= 0.

    @param[in]
    n       INTEGER
            The number of columns of the matrix A. N >= 0

    @param[in]
    offset  INTEGER
            The number of rows of A that have been factorized in
            previous steps.

    @param[in]
    nb      INTEGER
            The number of columns to factorize.

    @param[out]
    kb      INTEGER
            The number of columns actually factorized.

    @param[in,out]
    A       COMPLEX array, dimension (LDA,N)
            On entry, the M-by-N matrix A.
            On exit, block A(OFFSET+1:M,1:KB) is the triangular
            factor obtained and block A(1:OFFSET,1:N) has been
            accordingly pivoted, but no factorized.
            The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has
            been updated.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A. LDA >= max(1,M).
    
    @param[in,out]
    dA      COMPLEX array, dimension (LDA,N)
            Copy of A on the GPU.
            Portions of  A are updated on the CPU;
            portions of dA are updated on the GPU. See code for details.

    @param[in]
    ldda    INTEGER
            The leading dimension of the array dA. LDDA >= max(1,M).

    @param[in,out]
    jpvt    INTEGER array, dimension (N)
            JPVT(I) = K <==> Column K of the full matrix A has been
            permuted into position I in AP.

    @param[out]
    tau     COMPLEX array, dimension (KB)
            The scalar factors of the elementary reflectors.

    @param[in,out]
    vn1     REAL array, dimension (N)
            The vector with the partial column norms.

    @param[in,out]
    vn2     REAL array, dimension (N)
            The vector with the exact column norms.

    @param[in,out]
    auxv    COMPLEX array, dimension (NB)
            Auxiliar vector.

    @param[in,out]
    F       COMPLEX array, dimension (LDF,NB)
            Matrix F' = L*Y'*A.

    @param[in]
    ldf     INTEGER
            The leading dimension of the array F. LDF >= max(1,N).

    @param[in,out]
    dF      COMPLEX array, dimension (LDDF,NB)
            Copy of F on the GPU. See code for details.

    @param[in]
    lddf    INTEGER
            The leading dimension of the array dF. LDDF >= max(1,N).

    @ingroup magma_laqps
*******************************************************************************/
extern "C" magma_int_t
magma_claqps(
    magma_int_t m, magma_int_t n, magma_int_t offset,
    magma_int_t nb, magma_int_t *kb,
    magmaFloatComplex     *A, magma_int_t lda,
    magmaFloatComplex_ptr dA, magma_int_t ldda,
    magma_int_t *jpvt, magmaFloatComplex *tau, float *vn1, float *vn2,
    magmaFloatComplex *auxv,
    magmaFloatComplex     *F, magma_int_t ldf,
    magmaFloatComplex_ptr dF, magma_int_t lddf)
{
#define  A(i, j) (A  + (i) + (j)*(lda ))
#define dA(i, j) (dA + (i) + (j)*(ldda))
#define  F(i, j) (F  + (i) + (j)*(ldf ))
#define dF(i, j) (dF + (i) + (j)*(lddf))

    magmaFloatComplex c_zero    = MAGMA_C_MAKE( 0.,0.);
    magmaFloatComplex c_one     = MAGMA_C_MAKE( 1.,0.);
    magmaFloatComplex c_neg_one = MAGMA_C_MAKE(-1.,0.);
    magma_int_t ione = 1;
    
    magma_int_t i__1, i__2;
    float d__1;
    magmaFloatComplex z__1;
    
    magma_int_t j, k, rk;
    magmaFloatComplex Akk;
    magma_int_t pvt;
    float temp, temp2, tol3z;
    magma_int_t itemp;

    magma_int_t lsticc;
    magma_int_t lastrk;

    lastrk = min( m, n + offset );
    tol3z = magma_ssqrt( lapackf77_slamch("Epsilon"));

    magma_queue_t queue;
    magma_device_t cdev;
    magma_getdevice( &cdev );
    magma_queue_create( cdev, &queue );

    lsticc = 0;
    k = 0;
    while( k < nb && lsticc == 0 ) {
        rk = offset + k;
        
        /* Determine ith pivot column and swap if necessary */
        // subtract 1 from Fortran isamax; pvt, k are 0-based.
        i__1 = n-k;
        pvt = k + blasf77_isamax( &i__1, &vn1[k], &ione ) - 1;
        
        if (pvt != k) {
            if (pvt >= nb) {
                /* 1. Start copy from GPU                           */
                magma_cgetmatrix_async( m - offset - nb, 1,
                                        dA(offset + nb, pvt), ldda,
                                        A (offset + nb, pvt), lda, queue );
            }

            /* F gets swapped so F must be sent at the end to GPU   */
            i__1 = k;
            blasf77_cswap( &i__1, F(pvt,0), &ldf, F(k,0), &ldf );
            itemp     = jpvt[pvt];
            jpvt[pvt] = jpvt[k];
            jpvt[k]   = itemp;
            vn1[pvt] = vn1[k];
            vn2[pvt] = vn2[k];

            if (pvt < nb) {
                /* no need of transfer if pivot is within the panel */
                blasf77_cswap( &m, A(0, pvt), &ione, A(0, k), &ione );
            }
            else {
                /* 1. Finish copy from GPU                          */
                magma_queue_sync( queue );

                /* 2. Swap as usual on CPU                          */
                blasf77_cswap(&m, A(0, pvt), &ione, A(0, k), &ione);

                /* 3. Restore the GPU                               */
                magma_csetmatrix_async( m - offset - nb, 1,
                                        A (offset + nb, pvt), lda,
                                        dA(offset + nb, pvt), ldda, queue );
            }
        }

        /* Apply previous Householder reflectors to column K:
           A(RK:M,K) := A(RK:M,K) - A(RK:M,1:K-1)*F(K,1:K-1)'.
           Optimization: multiply with beta=0; wait for vector and subtract */
        if (k > 0) {
            #ifdef COMPLEX
            for (j = 0; j < k; ++j) {
                *F(k,j) = MAGMA_C_CONJ( *F(k,j) );
            }
            #endif

            i__1 = m - rk;
            i__2 = k;
            blasf77_cgemv( MagmaNoTransStr, &i__1, &i__2,
                           &c_neg_one, A(rk, 0), &lda,
                                       F(k,  0), &ldf,
                           &c_one,     A(rk, k), &ione );

            #ifdef COMPLEX
            for (j = 0; j < k; ++j) {
                *F(k,j) = MAGMA_C_CONJ( *F(k,j) );
            }
            #endif
        }
        
        /*  Generate elementary reflector H(k). */
        if (rk < m-1) {
            i__1 = m - rk;
            lapackf77_clarfg( &i__1, A(rk, k), A(rk + 1, k), &ione, &tau[k] );
        } else {
            lapackf77_clarfg( &ione, A(rk, k), A(rk, k), &ione, &tau[k] );
        }
        
        Akk = *A(rk, k);
        *A(rk, k) = c_one;

        /* Compute Kth column of F:
           Compute  F(K+1:N,K) := tau(K)*A(RK:M,K+1:N)'*A(RK:M,K) on the GPU */
        if (k < n-1) {
            i__1 = m - rk;
            i__2 = n - k - 1;
        
            /* Send the vector to the GPU */
            magma_csetmatrix( i__1, 1, A(rk, k), lda, dA(rk,k), ldda, queue );
        
            /* Multiply on GPU */
            // was CALL CGEMV( 'Conjugate transpose', M-RK+1, N-K,
            //                 TAU( K ), A( RK,  K+1 ), LDA,
            //                           A( RK,  K   ), 1,
            //                 CZERO,    F( K+1, K   ), 1 )
            magma_int_t i__3 = nb-k-1;
            magma_int_t i__4 = i__2 - i__3;
            magma_int_t i__5 = nb-k;
            magma_cgemv( MagmaConjTrans, i__1 - i__5, i__2 - i__3,
                         tau[k], dA(rk +i__5, k+1+i__3), ldda,
                                 dA(rk +i__5, k       ), ione,
                         c_zero, dF(k+1+i__3, k       ), ione, queue );
            
            magma_cgetmatrix_async( i__2-i__3, 1,
                                    dF(k + 1 +i__3, k), i__2,
                                    F (k + 1 +i__3, k), i__2, queue );
            
            blasf77_cgemv( MagmaConjTransStr, &i__1, &i__3,
                           &tau[k], A(rk,  k+1), &lda,
                                    A(rk,  k  ), &ione,
                           &c_zero, F(k+1, k  ), &ione );
            
            magma_queue_sync( queue );
            blasf77_cgemv( MagmaConjTransStr, &i__5, &i__4,
                           &tau[k], A(rk, k+1+i__3), &lda,
                                    A(rk, k       ), &ione,
                           &c_one,  F(k+1+i__3, k ), &ione );
        }
        
        /* Padding F(1:K,K) with zeros. */
        for (j = 0; j < k; ++j) {
            *F(j, k) = c_zero;
        }
        
        /* Incremental updating of F:
           F(1:N,K) := F(1:N,K) - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)'*A(RK:M,K). */
        if (k > 0) {
            i__1 = m - rk;
            i__2 = k;
            z__1 = MAGMA_C_NEGATE( tau[k] );
            blasf77_cgemv( MagmaConjTransStr, &i__1, &i__2,
                           &z__1,   A(rk, 0), &lda,
                                    A(rk, k), &ione,
                           &c_zero, auxv, &ione );
            
            i__1 = k;
            blasf77_cgemv( MagmaNoTransStr, &n, &i__1,
                           &c_one, F(0,0), &ldf,
                                   auxv,   &ione,
                           &c_one, F(0,k), &ione );
        }
        
        /* Optimization: On the last iteration start sending F back to the GPU */
        
        /* Update the current row of A:
           A(RK,K+1:N) := A(RK,K+1:N) - A(RK,1:K)*F(K+1:N,1:K)'.               */
        if (k < n-1) {
            i__1 = n - k - 1;
            i__2 = k + 1;
            blasf77_cgemm( MagmaNoTransStr, MagmaConjTransStr, &ione, &i__1, &i__2,
                           &c_neg_one, A(rk, 0  ), &lda,
                                       F(k+1,0  ), &ldf,
                           &c_one,     A(rk, k+1), &lda );
        }
        
        /* Update partial column norms. */
        if (rk < lastrk) {
            for (j = k + 1; j < n; ++j) {
                if (vn1[j] != 0.) {
                    /* NOTE: The following 4 lines follow from the analysis in
                       Lapack Working Note 176. */
                    temp = MAGMA_C_ABS( *A(rk,j) ) / vn1[j];
                    temp = max( 0., ((1. + temp) * (1. - temp)) );
        
                    d__1 = vn1[j] / vn2[j];
                    temp2 = temp * (d__1 * d__1);
        
                    if (temp2 <= tol3z) {
                        vn2[j] = (float) lsticc;
                        lsticc = j;
                    } else {
                        vn1[j] *= magma_ssqrt(temp);
                    }
                }
            }
        }
        
        *A(rk, k) = Akk;
        
        ++k;
    }
    // leave k as the last column done
    --k;
    *kb = k + 1;
    rk = offset + *kb - 1;

    /* Apply the block reflector to the rest of the matrix:
       A(OFFSET+KB+1:M,KB+1:N) := A(OFFSET+KB+1:M,KB+1:N) - A(OFFSET+KB+1:M,1:KB)*F(KB+1:N,1:KB)'  */
    if (*kb < min(n, m - offset)) {
        i__1 = m - rk - 1;
        i__2 = n - *kb;
        
        /* Send F to the GPU */
        magma_csetmatrix( i__2, *kb,
                          F (*kb, 0), ldf,
                          dF(*kb, 0), i__2, queue );

        magma_cgemm( MagmaNoTrans, MagmaConjTrans, i__1, i__2, *kb,
                     c_neg_one, dA(rk+1, 0  ), ldda,
                                dF(*kb,  0  ), i__2,
                     c_one,     dA(rk+1, *kb), ldda, queue );
    }
    
    /* Recomputation of difficult columns. */
    while( lsticc > 0 ) {
        itemp = (magma_int_t)(vn2[lsticc] >= 0. ? floor(vn2[lsticc] + .5) : -floor(.5 - vn2[lsticc]));
        i__1 = m - rk - 1;
        if (lsticc <= nb) {
            vn1[lsticc] = magma_cblas_scnrm2( i__1, A(rk+1,lsticc), ione );
        }
        else {
            /* Where is the data, CPU or GPU ? */
            float r1, r2;
            
            r1 = magma_cblas_scnrm2( nb-k, A(rk+1,lsticc), ione );
            r2 = magma_scnrm2( m-offset-nb, dA(offset + nb + 1, lsticc), ione, queue );
            
            //vn1[lsticc] = magma_scnrm2( i__1, dA(rk + 1, lsticc), ione, queue );
            vn1[lsticc] = magma_ssqrt(r1*r1 + r2*r2);
        }
        
        /* NOTE: The computation of VN1( LSTICC ) relies on the fact that
           SNRM2 does not fail on vectors with norm below the value of SQRT(SLAMCH('S')) */
        vn2[lsticc] = vn1[lsticc];
        lsticc = itemp;
    }
    
    magma_queue_destroy( queue );

    return MAGMA_SUCCESS;
} /* magma_claqps */
Example #5
0
extern "C" magma_int_t
magma_cpcgs_merge(
    magma_c_matrix A, magma_c_matrix b, magma_c_matrix *x,
    magma_c_solver_par *solver_par,
    magma_c_preconditioner *precond_par,
    magma_queue_t queue )
{
    magma_int_t info = MAGMA_NOTCONVERGED;
    
    // prepare solver feedback
    solver_par->solver = Magma_PCGS;
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    
    // local variables
    magmaFloatComplex c_zero = MAGMA_C_ZERO, c_one = MAGMA_C_ONE;
    // solver variables
    float nom0, r0,  res, nomb;
    magmaFloatComplex rho, rho_l = c_one, alpha, beta;
    
    magma_int_t dofs = A.num_rows* b.num_cols;

    // GPU workspace
    magma_c_matrix r={Magma_CSR}, rt={Magma_CSR}, r_tld={Magma_CSR},
                    p={Magma_CSR}, q={Magma_CSR}, u={Magma_CSR}, v={Magma_CSR},  t={Magma_CSR},
                    p_hat={Magma_CSR}, q_hat={Magma_CSR}, u_hat={Magma_CSR}, v_hat={Magma_CSR};
    CHECK( magma_cvinit( &r, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &rt,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &r_tld,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &p, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &p_hat, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &q, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &q_hat, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &u, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &u_hat, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &v, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &v_hat, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &t, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));

    // solver setup
    CHECK(  magma_cresidualvec( A, b, *x, &r, &nom0, queue));
    magma_ccopy( dofs, r.dval, 1, r_tld.dval, 1, queue );   

    solver_par->init_res = nom0;
            
    nomb = magma_scnrm2( dofs, b.dval, 1, queue );
    if ( nomb == 0.0 ){
        nomb=1.0;
    }       
    if ( (r0 = nomb * solver_par->rtol) < ATOLERANCE ){
        r0 = ATOLERANCE;
    }
    solver_par->final_res = solver_par->init_res;
    solver_par->iter_res = solver_par->init_res;
    if ( solver_par->verbose > 0 ) {
        solver_par->res_vec[0] = (real_Double_t)nom0;
        solver_par->timing[0] = 0.0;
    }
    if ( nom0 < r0 ) {
        info = MAGMA_SUCCESS;
        goto cleanup;
    }

    //Chronometry
    real_Double_t tempo1, tempo2, tempop1, tempop2;
    tempo1 = magma_sync_wtime( queue );
    
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    // start iteration
    do
    {
        solver_par->numiter++;
        
        rho = magma_cdotc( dofs, r.dval, 1, r_tld.dval, 1, queue );
                                                            // rho = < r,r_tld>    
        if ( MAGMA_C_ABS(rho) == 0.0 ) {
            goto cleanup;
        }
        
        if ( solver_par->numiter > 1 ) {                        // direction vectors
            beta = rho / rho_l;            
            magma_ccgs_1(  
            r.num_rows, 
            r.num_cols, 
            beta,
            r.dval,
            q.dval, 
            u.dval,
            p.dval,
            queue );
          //u = r + beta*q;
          //p = u + beta*( q + beta*p );
        }
        else{
            magma_ccgs_2(  
            r.num_rows, 
            r.num_cols, 
            r.dval,
            u.dval,
            p.dval,
            queue );
            // u = r
            // p = r
        }
        // preconditioner
        tempop1 = magma_sync_wtime( queue );
        CHECK( magma_c_applyprecond_left( MagmaNoTrans, A, p, &rt, precond_par, queue ));
        CHECK( magma_c_applyprecond_right( MagmaNoTrans, A, rt, &p_hat, precond_par, queue ));
        tempop2 = magma_sync_wtime( queue );
        precond_par->runtime += tempop2-tempop1;
        
        CHECK( magma_c_spmv( c_one, A, p_hat, c_zero, v_hat, queue ));   // v = A p
        solver_par->spmv_count++;
        alpha = rho / magma_cdotc( dofs, r_tld.dval, 1, v_hat.dval, 1, queue );
        
        magma_ccgs_3(  
        r.num_rows, 
        r.num_cols, 
        alpha,
        v_hat.dval,
        u.dval, 
        q.dval,
        t.dval, 
        queue );
        // q = u - alpha v_hat
        // t = u + q
        
        // preconditioner
        tempop1 = magma_sync_wtime( queue );
        CHECK( magma_c_applyprecond_left( MagmaNoTrans, A, t, &rt, precond_par, queue ));
        CHECK( magma_c_applyprecond_right( MagmaNoTrans, A, rt, &u_hat, precond_par, queue ));
        tempop2 = magma_sync_wtime( queue );
        precond_par->runtime += tempop2-tempop1;
        
        CHECK( magma_c_spmv( c_one, A, u_hat, c_zero, t, queue ));   // t = A u_hat
        solver_par->spmv_count++;
        magma_ccgs_4(  
        r.num_rows, 
        r.num_cols, 
        alpha,
        u_hat.dval,
        t.dval,
        x->dval, 
        r.dval,
        queue );
        // r = r -alpha*A u_hat
        // x = x + alpha u_hat
        
        res = magma_scnrm2( dofs, r.dval, 1, queue );
        if ( solver_par->verbose > 0 ) {
            tempo2 = magma_sync_wtime( queue );
            if ( (solver_par->numiter)%solver_par->verbose == 0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }

        if ( res/nomb <= solver_par->rtol || res <= solver_par->atol ){
            break;
        }
        rho_l = rho;
    }
    while ( solver_par->numiter+1 <= solver_par->maxiter );
    
    tempo2 = magma_sync_wtime( queue );
    solver_par->runtime = (real_Double_t) tempo2-tempo1;
    float residual;
    CHECK(  magma_cresidualvec( A, b, *x, &r, &residual, queue));
    solver_par->iter_res = res;
    solver_par->final_res = residual;

    if ( solver_par->numiter < solver_par->maxiter ) {
        info = MAGMA_SUCCESS;
    } else if ( solver_par->init_res > solver_par->final_res ) {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose == 0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_SLOW_CONVERGENCE;
        if( solver_par->iter_res < solver_par->rtol*solver_par->init_res ||
            solver_par->iter_res < solver_par->atol ) {
            info = MAGMA_SUCCESS;
        }
    }
    else {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose == 0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_DIVERGENCE;
    }
    
cleanup:
    magma_cmfree(&r, queue );
    magma_cmfree(&rt, queue );
    magma_cmfree(&r_tld, queue );
    magma_cmfree(&p, queue );
    magma_cmfree(&q, queue );
    magma_cmfree(&u, queue );
    magma_cmfree(&v, queue );
    magma_cmfree(&t, queue );
    magma_cmfree(&p_hat, queue );
    magma_cmfree(&q_hat, queue );
    magma_cmfree(&u_hat, queue );
    magma_cmfree(&v_hat, queue );

    solver_par->info = info;
    return info;
}   /* magma_cpcgs_merge */
Example #6
0
extern "C" magma_int_t
magma_cpcg(
    magma_c_matrix A, magma_c_matrix b, magma_c_matrix *x,
    magma_c_solver_par *solver_par,
    magma_c_preconditioner *precond_par,
    magma_queue_t queue )
{
    magma_int_t info = MAGMA_NOTCONVERGED;
    
    // prepare solver feedback
    solver_par->solver = Magma_PCG;
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    
    // solver variables
    magmaFloatComplex alpha, beta;
    float nom0, r0,  res, nomb;
    magmaFloatComplex den, gammanew, gammaold = MAGMA_C_MAKE(1.0,0.0);
    // local variables
    magmaFloatComplex c_zero = MAGMA_C_ZERO, c_one = MAGMA_C_ONE;
    
    magma_int_t dofs = A.num_rows* b.num_cols;

    // GPU workspace
    magma_c_matrix r={Magma_CSR}, rt={Magma_CSR}, p={Magma_CSR}, q={Magma_CSR}, h={Magma_CSR};
    CHECK( magma_cvinit( &r, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &rt,Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &p, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &q, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    CHECK( magma_cvinit( &h, Magma_DEV, A.num_rows, b.num_cols, c_zero, queue ));
    

    // solver setup
    CHECK(  magma_cresidualvec( A, b, *x, &r, &nom0, queue));

    // preconditioner
    CHECK( magma_c_applyprecond_left( MagmaNoTrans, A, r, &rt, precond_par, queue ));
    CHECK( magma_c_applyprecond_right( MagmaNoTrans, A, rt, &h, precond_par, queue ));

    magma_ccopy( dofs, h.dval, 1, p.dval, 1, queue );                    // p = h
    CHECK( magma_c_spmv( c_one, A, p, c_zero, q, queue ));             // q = A p
    den =  magma_cdotc( dofs, p.dval, 1, q.dval, 1, queue ); // den = p dot q
    solver_par->init_res = nom0;
            
    nomb = magma_scnrm2( dofs, b.dval, 1, queue );
    if ( nomb == 0.0 ){
        nomb=1.0;
    }       
    if ( (r0 = nomb * solver_par->rtol) < ATOLERANCE ){
        r0 = ATOLERANCE;
    }
    solver_par->final_res = solver_par->init_res;
    solver_par->iter_res = solver_par->init_res;
    if ( solver_par->verbose > 0 ) {
        solver_par->res_vec[0] = (real_Double_t)nom0;
        solver_par->timing[0] = 0.0;
    }
    if ( nomb < r0 ) {
        info = MAGMA_SUCCESS;
        goto cleanup;
    }
    // check positive definite
    if ( MAGMA_C_ABS(den) <= 0.0 ) {
        info = MAGMA_NONSPD;
        goto cleanup;
    }

    //Chronometry
    real_Double_t tempo1, tempo2;
    tempo1 = magma_sync_wtime( queue );
    
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    // start iteration
    do
    {
        solver_par->numiter++;

        // preconditioner
        CHECK( magma_c_applyprecond_left( MagmaNoTrans, A, r, &rt, precond_par, queue ));
        CHECK( magma_c_applyprecond_right( MagmaNoTrans, A, rt, &h, precond_par, queue ));
        
        gammanew = magma_cdotc( dofs, r.dval, 1, h.dval, 1, queue );
                                                            // gn = < r,h>

        if ( solver_par->numiter == 1 ) {
            magma_ccopy( dofs, h.dval, 1, p.dval, 1, queue );                    // p = h
        } else {
            beta = (gammanew/gammaold);       // beta = gn/go
            magma_cscal( dofs, beta, p.dval, 1, queue );            // p = beta*p
            magma_caxpy( dofs, c_one, h.dval, 1, p.dval, 1, queue ); // p = p + h
        }

        CHECK( magma_c_spmv( c_one, A, p, c_zero, q, queue ));   // q = A p
        den = magma_cdotc( dofs, p.dval, 1, q.dval, 1, queue );
                // den = p dot q

        alpha = gammanew / den;
        magma_caxpy( dofs,  alpha, p.dval, 1, x->dval, 1, queue );     // x = x + alpha p
        magma_caxpy( dofs, -alpha, q.dval, 1, r.dval, 1, queue );      // r = r - alpha q
        gammaold = gammanew;

        res = magma_scnrm2( dofs, r.dval, 1, queue );
        if ( solver_par->verbose > 0 ) {
            tempo2 = magma_sync_wtime( queue );
            if ( (solver_par->numiter)%solver_par->verbose == 0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }

        if ( res/nomb <= solver_par->rtol || res <= solver_par->atol ){
            break;
        }
    }
    while ( solver_par->numiter+1 <= solver_par->maxiter );
    
    tempo2 = magma_sync_wtime( queue );
    solver_par->runtime = (real_Double_t) tempo2-tempo1;
    float residual;
    CHECK(  magma_cresidualvec( A, b, *x, &r, &residual, queue));
    solver_par->iter_res = res;
    solver_par->final_res = residual;

    if ( solver_par->numiter < solver_par->maxiter ) {
        info = MAGMA_SUCCESS;
    } else if ( solver_par->init_res > solver_par->final_res ) {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose == 0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_SLOW_CONVERGENCE;
        if( solver_par->iter_res < solver_par->rtol*solver_par->init_res ||
            solver_par->iter_res < solver_par->atol ) {
            info = MAGMA_SUCCESS;
        }
    }
    else {
        if ( solver_par->verbose > 0 ) {
            if ( (solver_par->numiter)%solver_par->verbose == 0 ) {
                solver_par->res_vec[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) res;
                solver_par->timing[(solver_par->numiter)/solver_par->verbose]
                        = (real_Double_t) tempo2-tempo1;
            }
        }
        info = MAGMA_DIVERGENCE;
    }
    
cleanup:
    magma_cmfree(&r, queue );
    magma_cmfree(&rt, queue );
    magma_cmfree(&p, queue );
    magma_cmfree(&q, queue );
    magma_cmfree(&h, queue );

    solver_par->info = info;
    return info;
}   /* magma_ccg */
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing cgeqrf
*/
int main( int argc, char** argv)
{
    TESTING_INIT();

    real_Double_t    gflops, gpu_perf, gpu_time, cpu_perf, cpu_time;
    float           error, work[1];

    magmaFloatComplex  c_neg_one = MAGMA_C_NEG_ONE;
    magmaFloatComplex *h_A, *h_T, *h_R, *tau, *h_work, tmp[1];
    magmaFloatComplex *d_A,  *d_T, *ddA, *dtau;
    magmaFloatComplex *d_A2, *d_T2, *ddA2, *dtau2;
    float *dwork, *dwork2;

    magma_int_t M, N, lda, ldda, lwork, n2, info, min_mn;
    magma_int_t ione     = 1;
    magma_int_t ISEED[4] = {0,0,0,1};
    magma_int_t status = 0;

    #define BLOCK_SIZE 64

    magma_opts opts;
    parse_opts( argc, argv, &opts );
    
    float tol = 10. * opts.tolerance * lapackf77_slamch("E");
    
    magma_queue_t stream[2];
    magma_queue_create( &stream[0] );
    magma_queue_create( &stream[1] );

    printf("version %d\n", (int) opts.version );
    printf("  M     N     CPU GFlop/s (ms)    GPU GFlop/s (ms)   ||R||_F/||A||_F  ||R_T||\n");
    printf("=============================================================================\n");
    for( int itest = 0; itest < opts.ntest; ++itest ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            M     = opts.msize[itest];
            N     = opts.nsize[itest];

            if (N > 128) {
                printf("%5d %5d   skipping because cgeqr2x requires N <= 128\n",
                        (int) M, (int) N);
                continue;
            }
            if (M < N) {
                printf("%5d %5d   skipping because cgeqr2x requires M >= N\n",
                        (int) M, (int) N);
                continue;
            }

            min_mn = min(M, N);
            lda    = M;
            n2     = lda*N;
            ldda   = ((M+31)/32)*32;
            gflops = (FLOPS_CGEQRF( M, N ) + FLOPS_CGEQRT( M, N )) / 1e9;

            /* Allocate memory for the matrix */
            TESTING_MALLOC_CPU( tau,   magmaFloatComplex, min_mn );
            TESTING_MALLOC_CPU( h_A,   magmaFloatComplex, n2     );
            TESTING_MALLOC_CPU( h_T,   magmaFloatComplex, N*N    );
        
            TESTING_MALLOC_PIN( h_R,   magmaFloatComplex, n2     );
        
            TESTING_MALLOC_DEV( d_A,   magmaFloatComplex, ldda*N );
            TESTING_MALLOC_DEV( d_T,   magmaFloatComplex, N*N    );
            TESTING_MALLOC_DEV( ddA,   magmaFloatComplex, N*N    );
            TESTING_MALLOC_DEV( dtau,  magmaFloatComplex, min_mn );
        
            TESTING_MALLOC_DEV( d_A2,  magmaFloatComplex, ldda*N );
            TESTING_MALLOC_DEV( d_T2,  magmaFloatComplex, N*N    );
            TESTING_MALLOC_DEV( ddA2,  magmaFloatComplex, N*N    );
            TESTING_MALLOC_DEV( dtau2, magmaFloatComplex, min_mn );
        
            TESTING_MALLOC_DEV( dwork,  float, max(5*min_mn, (BLOCK_SIZE*2+2)*min_mn) );
            TESTING_MALLOC_DEV( dwork2, float, max(5*min_mn, (BLOCK_SIZE*2+2)*min_mn) );
            
            // todo replace with magma_claset
            cudaMemset(ddA, 0, N*N*sizeof(magmaFloatComplex));
            cudaMemset(d_T, 0, N*N*sizeof(magmaFloatComplex));
        
            cudaMemset(ddA2, 0, N*N*sizeof(magmaFloatComplex));
            cudaMemset(d_T2, 0, N*N*sizeof(magmaFloatComplex));
        
            lwork = -1;
            lapackf77_cgeqrf(&M, &N, NULL, &M, NULL, tmp, &lwork, &info);
            lwork = (magma_int_t)MAGMA_C_REAL( tmp[0] );
            lwork = max(lwork, N*N);
        
            TESTING_MALLOC_CPU( h_work, magmaFloatComplex, lwork );

            /* Initialize the matrix */
            lapackf77_clarnv( &ione, ISEED, &n2, h_A );
            lapackf77_clacpy( MagmaUpperLowerStr, &M, &N, h_A, &lda, h_R, &lda );
            magma_csetmatrix( M, N, h_R, lda,  d_A, ldda );
            magma_csetmatrix( M, N, h_R, lda, d_A2, ldda );
    
            /* ====================================================================
               Performs operation using MAGMA
               =================================================================== */
            gpu_time = magma_sync_wtime(0);
    
            if (opts.version == 1)
                magma_cgeqr2x_gpu(M, N, d_A, ldda, dtau, d_T, ddA, dwork, &info);
            else if (opts.version == 2)
                magma_cgeqr2x2_gpu(M, N, d_A, ldda, dtau, d_T, ddA, dwork, &info);
            else if (opts.version == 3)
                magma_cgeqr2x3_gpu(M, N, d_A, ldda, dtau, d_T, ddA, dwork, &info);
            else {
                printf( "call magma_cgeqr2x4_gpu\n" );
                /*
                  Going through NULL stream is faster
                  Going through any stream is slower
                  Doing two streams in parallel is slower than doing them sequentially
                  Queuing happens on the NULL stream - user defined buffers are smaller?
                */
                magma_cgeqr2x4_gpu(M, N, d_A, ldda, dtau, d_T, ddA, dwork, &info, NULL);
                //magma_cgeqr2x4_gpu(M, N, d_A, ldda, dtau, d_T, ddA, dwork, &info, stream[1]);
                //magma_cgeqr2x4_gpu(M, N, d_A2, ldda, dtau2, d_T2, ddA2, dwork2, &info, stream[0]);
                //magma_cgeqr2x4_gpu(M, N, d_A2, ldda, dtau2, d_T2, ddA2, dwork2, &info, NULL);
                //gflops *= 2;
            }
            gpu_time = magma_sync_wtime(0) - gpu_time;
            gpu_perf = gflops / gpu_time;

            if (info != 0) {
                printf("magma_cgeqr2x_gpu version %d returned error %d: %s.\n",
                       (int) opts.version, (int) info, magma_strerror( info ));
            } 
            else {
                if ( opts.check ) {
                    /* =====================================================================
                       Performs operation using LAPACK
                       =================================================================== */
                    cpu_time = magma_wtime();
                    lapackf77_cgeqrf(&M, &N, h_A, &lda, tau, h_work, &lwork, &info);
                    lapackf77_clarft( MagmaForwardStr, MagmaColumnwiseStr,
                                     &M, &N, h_A, &lda, tau, h_work, &N);
                    //magma_cgeqr2(&M, &N, h_A, &lda, tau, h_work, &info);
                    cpu_time = magma_wtime() - cpu_time;
                    cpu_perf = gflops / cpu_time;
                    if (info != 0)
                        printf("lapackf77_cgeqrf returned error %d: %s.\n",
                               (int) info, magma_strerror( info ));
                
                    /* =====================================================================
                       Check the result compared to LAPACK
                       =================================================================== */
                    magma_cgetmatrix( M, N, d_A, ldda, h_R, M );
                    magma_cgetmatrix( N, N, ddA, N,    h_T, N );
    
                    // Restore the upper triangular part of A before the check
                    for(int col=0; col < N; col++){
                        for(int row=0; row <= col; row++)
                            h_R[row + col*M] = h_T[row + col*N];
                    }
                
                    error = lapackf77_clange("M", &M, &N, h_A, &lda, work);
                    blasf77_caxpy(&n2, &c_neg_one, h_A, &ione, h_R, &ione);
                    error = lapackf77_clange("M", &M, &N, h_R, &lda, work) / (N * error);
     
                    // Check if T is the same
                    magma_cgetmatrix( N, N, d_T, N, h_T, N );
    
                    float terr = 0.;
                    for(int col=0; col < N; col++)
                        for(int row=0; row <= col; row++)
                            terr += (  MAGMA_C_ABS(h_work[row + col*N] - h_T[row + col*N])*
                                       MAGMA_C_ABS(h_work[row + col*N] - h_T[row + col*N])  );
                    terr = magma_ssqrt(terr);
    
                    printf("%5d %5d   %7.2f (%7.2f)   %7.2f (%7.2f)     %8.2e     %8.2e   %s\n",
                           (int) M, (int) N, cpu_perf, 1000.*cpu_time, gpu_perf, 1000.*gpu_time,
                           error, terr, (error < tol ? "ok" : "failed") );
                    status += ! (error < tol);
                }
                else {
                    printf("%5d %5d     ---   (  ---  )   %7.2f (%7.2f)     ---  \n",
                           (int) M, (int) N, gpu_perf, 1000.*gpu_time);
                }
            }
            
            TESTING_FREE_CPU( tau    );
            TESTING_FREE_CPU( h_A    );
            TESTING_FREE_CPU( h_T    );
            TESTING_FREE_CPU( h_work );
            
            TESTING_FREE_PIN( h_R    );
        
            TESTING_FREE_DEV( d_A   );
            TESTING_FREE_DEV( d_T   );
            TESTING_FREE_DEV( ddA   );
            TESTING_FREE_DEV( dtau  );
            TESTING_FREE_DEV( dwork );
        
            TESTING_FREE_DEV( d_A2   );
            TESTING_FREE_DEV( d_T2   );
            TESTING_FREE_DEV( ddA2   );
            TESTING_FREE_DEV( dtau2  );
            TESTING_FREE_DEV( dwork2 );
            fflush( stdout );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
    }
    
    magma_queue_destroy( stream[0] );
    magma_queue_destroy( stream[1] );

    TESTING_FINALIZE();
    return status;
}
Example #8
0
extern "C" magma_int_t
magma_cmslice(
    magma_int_t num_slices,
    magma_int_t slice,
    magma_c_matrix A, 
    magma_c_matrix *B,
    magma_c_matrix *ALOC,
    magma_c_matrix *ANLOC,
    magma_index_t *comm_i,
    magmaFloatComplex *comm_v,
    magma_int_t *start,
    magma_int_t *end,
    magma_queue_t queue )
{
    magma_int_t info = 0;
    
    if( A.num_rows != A.num_cols ){
        printf("%%  error: only supported for square matrices.\n");
        info = MAGMA_ERR_NOT_SUPPORTED;
        goto cleanup;
    }
    
    if ( A.memory_location == Magma_CPU
            && A.storage_type == Magma_CSR ){
        CHECK( magma_cmconvert( A, B, Magma_CSR, Magma_CSR, queue ) );
        magma_free_cpu( B->col );
        magma_free_cpu( B->val );
        CHECK( magma_cmconvert( A, ALOC, Magma_CSR, Magma_CSR, queue ) );
        magma_free_cpu( ALOC->col );
        magma_free_cpu( ALOC->row );
        magma_free_cpu( ALOC->val );
        CHECK( magma_cmconvert( A, ANLOC, Magma_CSR, Magma_CSR, queue ) );
        magma_free_cpu( ANLOC->col );
        magma_free_cpu( ANLOC->row );
        magma_free_cpu( ANLOC->val );
        
        magma_int_t i,j,k, nnz, nnz_loc=0, loc_row = 0, nnz_nloc = 0;
        magma_index_t col;
        magma_int_t size = magma_ceildiv( A.num_rows, num_slices ); 
        magma_int_t lstart = slice*size;
        magma_int_t lend = min( (slice+1)*size, A.num_rows );
        // correct size for last slice
        size = lend-lstart;
        CHECK( magma_index_malloc_cpu( &ALOC->row, size+1 ) );
        CHECK( magma_index_malloc_cpu( &ANLOC->row, size+1 ) );
        
        // count elements for slice - identity for rest
        nnz = A.row[ lend ] - A.row[ lstart ] + ( A.num_rows - size );
        CHECK( magma_index_malloc_cpu( &B->col, nnz ) );
        CHECK( magma_cmalloc_cpu( &B->val, nnz ) );         
        
        // for the communication plan
        for( i=0; i<A.num_rows; i++ ) {
            comm_i[i] = 0;
            comm_v[i] = MAGMA_C_ZERO;
        }
        
        k=0;
        B->row[i] = 0;
        ALOC->row[0] = 0;
        ANLOC->row[0] = 0;
        // identity above slice
        for( i=0; i<lstart; i++ ) {
            B->row[i+1]   = B->row[i]+1;
            B->val[k] = MAGMA_C_ONE;
            B->col[k] = i;
            k++;
        }
        
        // slice        
        for( i=lstart; i<lend; i++ ) {
            B->row[i+1]   = B->row[i] + (A.row[i+1]-A.row[i]);
            for( j=A.row[i]; j<A.row[i+1]; j++ ){
                B->val[k] = A.val[j];
                col = A.col[j];
                B->col[k] = col;
                // communication plan
                if( col<lstart || col>=lend ){
                    comm_i[ col ] = 1;
                    comm_v[ col ] = comm_v[ col ] 
                            + MAGMA_C_MAKE( MAGMA_C_ABS( A.val[j] ), 0.0 );
                    nnz_nloc++;
                } else {
                    nnz_loc++;   
                }
                k++;
            }
            loc_row++;
            ALOC->row[ loc_row ] = nnz_loc;
            ANLOC->row[ loc_row ] = nnz_nloc;
        }
        CHECK( magma_index_malloc_cpu( &ALOC->col, nnz_loc ) );
        CHECK( magma_cmalloc_cpu( &ALOC->val, nnz_loc ) ); 
        ALOC->num_rows = size;
        ALOC->num_cols = size;
        ALOC->nnz = nnz_loc;
        
        CHECK( magma_index_malloc_cpu( &ANLOC->col, nnz_nloc ) );
        CHECK( magma_cmalloc_cpu( &ANLOC->val, nnz_nloc ) ); 
        ANLOC->num_rows = size;
        ANLOC->num_cols = A.num_cols;
        ANLOC->nnz = nnz_nloc;
        
        nnz_loc = 0;
        nnz_nloc = 0;
        // local/nonlocal matrix        
        for( i=lstart; i<lend; i++ ) {
            for( j=A.row[i]; j<A.row[i+1]; j++ ){
                col = A.col[j];
                // insert only in local part in ALOC, nonlocal in ANLOC
                if( col<lstart || col>=lend ){
                    ANLOC->val[ nnz_nloc ] = A.val[j];
                    ANLOC->col[ nnz_nloc ] = col;  
                    nnz_nloc++;
                } else {
                    ALOC->val[ nnz_loc ] = A.val[j];
                    ALOC->col[ nnz_loc ] = col-lstart;  
                    nnz_loc++;
                }
            }
        }
        
        // identity below slice
        for( i=lend; i<A.num_rows; i++ ) {
            B->row[i+1] = B->row[i]+1;
            B->val[k] = MAGMA_C_ONE;
            B->col[k] = i;
            k++;
        }
        B->nnz = k;
        *start = lstart;
        *end = lend;
        
    }
    else {
        printf("error: mslice only supported for CSR matrices on the CPU: %d %d.\n", 
                int(A.memory_location), int(A.storage_type) );
        info = MAGMA_ERR_NOT_SUPPORTED;
    }
cleanup:
    return info;
}