Example #1
0
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing ssygvdx
*/
int main( int argc, char** argv)
{
    TESTING_INIT();

    real_Double_t   gpu_time /*cpu_time*/;
    float *h_A, *h_R, *h_B, *h_S, *h_work;
    float *w1, *w2, vl=0, vu=0;
    float result[2] = {0};
    magma_int_t *iwork;
    magma_int_t N, n2, info, il, iu, m1, m2, nb, lwork, liwork;
    float c_zero    = MAGMA_S_ZERO;
    float c_one     = MAGMA_S_ONE;
    float c_neg_one = MAGMA_S_NEG_ONE;
#if defined(PRECISION_z) || defined(PRECISION_c)
    float *rwork;
    magma_int_t lrwork;
#endif
    //float d_one         =  1.;
    //float d_ten         = 10.;
    magma_int_t ione     = 1;
    magma_int_t ISEED[4] = {0,0,0,1};

    magma_opts opts;
    parse_opts( argc, argv, &opts );
    
    float tol    = opts.tolerance * lapackf77_slamch("E");
    float tolulp = opts.tolerance * lapackf77_slamch("P");
    
    if ( opts.check && opts.jobz == MagmaNoVec ) {
        fprintf( stderr, "checking results requires vectors; setting jobz=V (option -JV)\n" );
        opts.jobz = MagmaVec;
    }
    
    printf("    N     M   GPU Time (sec)\n");
    printf("============================\n");
    for( int i = 0; i < opts.ntest; ++i ) {
        for( int iter = 0; iter < opts.niter; ++iter ) {
            N = opts.nsize[i];
            n2     = N*N;
            nb     = magma_get_ssytrd_nb(N);
#if defined(PRECISION_z) || defined(PRECISION_c)
            lwork  = 2*N*nb + N*N;
            lrwork = 1 + 5*N +2*N*N;
#else
            lwork  = 1 + 6*N*nb + 2* N*N;
#endif
            liwork = 3 + 5*N;

            if ( opts.fraction == 0 ) {
                il = N / 10;
                iu = N / 5+il;
            }
            else {
                il = 1;
                iu = (int) (opts.fraction*N);
                if (iu < 1) iu = 1;
            }

            TESTING_MALLOC(    h_A,    float, n2     );
            TESTING_MALLOC(    h_B,    float, n2     );
            TESTING_MALLOC(    w1,     float,          N      );
            TESTING_MALLOC(    w2,     float,          N      );
            TESTING_MALLOC(    iwork,  magma_int_t,     liwork );
            TESTING_HOSTALLOC( h_R,    float, n2     );
            TESTING_HOSTALLOC( h_S,    float, n2     );
            TESTING_HOSTALLOC( h_work, float, lwork  );
#if defined(PRECISION_z) || defined(PRECISION_c)
            TESTING_HOSTALLOC( rwork,          float, lrwork);
#endif
            
            /* Initialize the matrix */
            lapackf77_slarnv( &ione, ISEED, &n2, h_A );
            lapackf77_slarnv( &ione, ISEED, &n2, h_B );
            /* increase the diagonal */
            for(int i=0; i<N; i++) {
                MAGMA_S_SET2REAL( h_B[i*N+i], ( MAGMA_S_REAL(h_B[i*N+i]) + 1.*N ) );
                MAGMA_S_SET2REAL( h_A[i*N+i], MAGMA_S_REAL(h_A[i*N+i]) );
            }


            // ==================================================================
            // Warmup using MAGMA
            // ==================================================================
            if(opts.warmup){
                lapackf77_slacpy( MagmaUpperLowerStr, &N, &N, h_A, &N, h_R, &N );
                lapackf77_slacpy( MagmaUpperLowerStr, &N, &N, h_B, &N, h_S, &N );
                
                magma_ssygvdx( opts.itype, opts.jobz, 'I', opts.uplo,
                               N, h_R, N, h_S, N, vl, vu, il, iu, &m1, w1,
                               h_work, lwork,
#if defined(PRECISION_z) || defined(PRECISION_c)
                               rwork, lrwork,
#endif      
                               iwork, liwork,
                               &info );
                if (info != 0)
                    printf("magma_ssygvdx returned error %d: %s.\n",
                           (int) info, magma_strerror( info ));
            }
            /* ====================================================================
               Performs operation using MAGMA
               =================================================================== */
            lapackf77_slacpy( MagmaUpperLowerStr, &N, &N, h_A, &N, h_R, &N );
            lapackf77_slacpy( MagmaUpperLowerStr, &N, &N, h_B, &N, h_S, &N );

            gpu_time = magma_wtime();
            magma_ssygvdx( opts.itype, opts.jobz, 'I', opts.uplo,
                           N, h_R, N, h_S, N, vl, vu, il, iu, &m1, w1,
                           h_work, lwork,
#if defined(PRECISION_z) || defined(PRECISION_c)
                           rwork, lrwork,
#endif
                           iwork, liwork,
                           &info );
            gpu_time = magma_wtime() - gpu_time;
            if (info != 0)
                printf("magma_ssygvdx returned error %d: %s.\n",
                       (int) info, magma_strerror( info ));
            
            if ( opts.check ) {
                /* =====================================================================
                   Check the results following the LAPACK's [zc]hegvdx routine.
                   A x = lambda B x is solved
                   and the following 3 tests computed:
                   (1)    | A Z - B Z D | / ( |A||Z| N )  (itype = 1)
                          | A B Z - Z D | / ( |A||Z| N )  (itype = 2)
                          | B A Z - Z D | / ( |A||Z| N )  (itype = 3)
                   (2)    | S(with V) - S(w/o V) | / | S |
                   =================================================================== */
#if defined(PRECISION_d) || defined(PRECISION_s)
                float *rwork = h_work + N*N;
#endif
                float temp1, temp2;
                
                result[0] = 1.;
                result[0] /= lapackf77_slansy("1", &opts.uplo, &N, h_A, &N, rwork);
                result[0] /= lapackf77_slange("1", &N, &m1, h_R, &N, rwork);
                
                if (opts.itype == 1) {
                    blasf77_ssymm("L", &opts.uplo, &N, &m1, &c_one, h_A, &N, h_R, &N, &c_zero, h_work, &N);
                    for(int i=0; i < m1; ++i)
                        blasf77_sscal(&N, &w1[i], &h_R[i*N], &ione);
                    blasf77_ssymm("L", &opts.uplo, &N, &m1, &c_neg_one, h_B, &N, h_R, &N, &c_one, h_work, &N);
                    result[0] *= lapackf77_slange("1", &N, &m1, h_work, &N, rwork)/N;
                }
                else if (opts.itype == 2) {
                    blasf77_ssymm("L", &opts.uplo, &N, &m1, &c_one, h_B, &N, h_R, &N, &c_zero, h_work, &N);
                    for(int i=0; i < m1; ++i)
                        blasf77_sscal(&N, &w1[i], &h_R[i*N], &ione);
                    blasf77_ssymm("L", &opts.uplo, &N, &m1, &c_one, h_A, &N, h_work, &N, &c_neg_one, h_R, &N);
                    result[0] *= lapackf77_slange("1", &N, &m1, h_R, &N, rwork)/N;
                }
                else if (opts.itype == 3) {
                    blasf77_ssymm("L", &opts.uplo, &N, &m1, &c_one, h_A, &N, h_R, &N, &c_zero, h_work, &N);
                    for(int i=0; i < m1; ++i)
                        blasf77_sscal(&N, &w1[i], &h_R[i*N], &ione);
                    blasf77_ssymm("L", &opts.uplo, &N, &m1, &c_one, h_B, &N, h_work, &N, &c_neg_one, h_R, &N);
                    result[0] *= lapackf77_slange("1", &N, &m1, h_R, &N, rwork)/N;
                }
                
                lapackf77_slacpy( MagmaUpperLowerStr, &N, &N, h_A, &N, h_R, &N );
                lapackf77_slacpy( MagmaUpperLowerStr, &N, &N, h_B, &N, h_S, &N );
                
                magma_ssygvdx( opts.itype, 'N', 'I', opts.uplo,
                               N, h_R, N, h_S, N, vl, vu, il, iu, &m2, w2,
                               h_work, lwork,
#if defined(PRECISION_z) || defined(PRECISION_c)
                               rwork, lrwork,
#endif
                               iwork, liwork,
                               &info );
                if (info != 0)
                    printf("magma_ssygvdx returned error %d: %s.\n",
                           (int) info, magma_strerror( info ));
                
                temp1 = temp2 = 0;
                for(int j=0; j < m2; j++) {
                    temp1 = max(temp1, absv(w1[j]));
                    temp1 = max(temp1, absv(w2[j]));
                    temp2 = max(temp2, absv(w1[j]-w2[j]));
                }
                result[1] = temp2 / (((float)m2)*temp1);
            }
            
            /* =====================================================================
               Print execution time
               =================================================================== */
            printf("%5d %5d   %7.2f\n",
                   (int) N, (int) m1, gpu_time);
            if ( opts.check ) {
                printf("Testing the eigenvalues and eigenvectors for correctness:\n");
                if (opts.itype==1)
                    printf("(1)    | A Z - B Z D | / (|A| |Z| N) = %8.2e%s\n", result[0], (result[0] < tol ? "" : "  failed"));
                else if (opts.itype==2)
                    printf("(1)    | A B Z - Z D | / (|A| |Z| N) = %8.2e%s\n", result[0], (result[0] < tol ? "" : "  failed"));
                else if (opts.itype==3)
                    printf("(1)    | B A Z - Z D | / (|A| |Z| N) = %8.2e%s\n", result[0], (result[0] < tol ? "" : "  failed"));
                printf(    "(2)    | D(w/ Z) - D(w/o Z) | / |D|  = %8.2e%s\n\n", result[1], (result[1] < tolulp ? "" : "  failed"));
            }
            
            TESTING_FREE( h_A   );
            TESTING_FREE( h_B   );
            TESTING_FREE( w1    );
            TESTING_FREE( w2    );
#if defined(PRECISION_z) || defined(PRECISION_c)
            TESTING_HOSTFREE( rwork);
#endif
            TESTING_FREE( iwork );
            TESTING_HOSTFREE( h_work );
            TESTING_HOSTFREE( h_R    );
            TESTING_HOSTFREE( h_S    );
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
    }

    TESTING_FINALIZE();
    return 0;
}
Example #2
0
extern "C" magma_int_t
magma_sormtr(char side, char uplo, char trans,
             magma_int_t m, magma_int_t n,
             float *a,    magma_int_t lda,
             float *tau,
             float *c,    magma_int_t ldc,
             float *work, magma_int_t lwork,
             magma_int_t *info)
{
    /*  -- MAGMA (version 1.4.0) --
           Univ. of Tennessee, Knoxville
           Univ. of California, Berkeley
           Univ. of Colorado, Denver
           August 2013

        Purpose
        =======
        SORMTR overwrites the general real M-by-N matrix C with

                        SIDE = 'L'     SIDE = 'R'
        TRANS = 'N':      Q * C          C * Q
        TRANS = 'T':      Q**T * C       C * Q**T

        where Q is a real orthogonal matrix of order nq, with nq = m if
        SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
        nq-1 elementary reflectors, as returned by SSYTRD:

        if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);

        if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).

        Arguments
        =========
        SIDE    (input) CHARACTER*1
                = 'L': apply Q or Q**T from the Left;
                = 'R': apply Q or Q**T from the Right.

        UPLO    (input) CHARACTER*1
                = 'U': Upper triangle of A contains elementary reflectors
                       from SSYTRD;
                = 'L': Lower triangle of A contains elementary reflectors
                       from SSYTRD.

        TRANS   (input) CHARACTER*1
                = 'N':  No transpose, apply Q;
                = 'T':  Transpose, apply Q**T.

        M       (input) INTEGER
                The number of rows of the matrix C. M >= 0.

        N       (input) INTEGER
                The number of columns of the matrix C. N >= 0.

        A       (input) REAL array, dimension
                                     (LDA,M) if SIDE = 'L'
                                     (LDA,N) if SIDE = 'R'
                The vectors which define the elementary reflectors, as
                returned by SSYTRD.

        LDA     (input) INTEGER
                The leading dimension of the array A.
                LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.

        TAU     (input) REAL array, dimension
                                     (M-1) if SIDE = 'L'
                                     (N-1) if SIDE = 'R'
                TAU(i) must contain the scalar factor of the elementary
                reflector H(i), as returned by SSYTRD.

        C       (input/output) REAL array, dimension (LDC,N)
                On entry, the M-by-N matrix C.
                On exit, C is overwritten by Q*C or Q**T * C or C * Q**T or C*Q.

        LDC     (input) INTEGER
                The leading dimension of the array C. LDC >= max(1,M).

        WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))
                On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

        LWORK   (input) INTEGER
                The dimension of the array WORK.
                If SIDE = 'L', LWORK >= max(1,N);
                if SIDE = 'R', LWORK >= max(1,M).
                For optimum performance LWORK >= N*NB if SIDE = 'L', and
                LWORK >= M*NB if SIDE = 'R', where NB is the optimal
                blocksize.

                If LWORK = -1, then a workspace query is assumed; the routine
                only calculates the optimal size of the WORK array, returns
                this value as the first entry of the WORK array, and no error
                message related to LWORK is issued.

        INFO    (output) INTEGER
                = 0:  successful exit
                < 0:  if INFO = -i, the i-th argument had an illegal value
        =====================================================================    */

    float c_one = MAGMA_S_ONE;

    char side_[2]  = {side, 0};
    char uplo_[2]  = {uplo, 0};
    char trans_[2] = {trans, 0};
    magma_int_t  i__2;
    magma_int_t i1, i2, nb, mi, ni, nq, nw;
    int left, upper, lquery;
    magma_int_t iinfo;
    magma_int_t lwkopt;

    *info = 0;
    left   = lapackf77_lsame(side_, "L");
    upper  = lapackf77_lsame(uplo_, "U");
    lquery = lwork == -1;

    /* NQ is the order of Q and NW is the minimum dimension of WORK */
    if (left) {
        nq = m;
        nw = n;
    } else {
        nq = n;
        nw = m;
    }
    if (! left && ! lapackf77_lsame(side_, "R")) {
        *info = -1;
    } else if (! upper && ! lapackf77_lsame(uplo_, "L")) {
        *info = -2;
    } else if (! lapackf77_lsame(trans_, "N") &&
               ! lapackf77_lsame(trans_, "C")) {
        *info = -3;
    } else if (m < 0) {
        *info = -4;
    } else if (n < 0) {
        *info = -5;
    } else if (lda < max(1,nq)) {
        *info = -7;
    } else if (ldc < max(1,m)) {
        *info = -10;
    } else if (lwork < max(1,nw) && ! lquery) {
        *info = -12;
    }

    nb = 32;
    lwkopt = max(1,nw) * nb;
    if (*info == 0) {
        MAGMA_S_SET2REAL( work[0], lwkopt );
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (m == 0 || n == 0 || nq == 1) {
        work[0] = c_one;
        return *info;
    }

    if (left) {
        mi = m - 1;
        ni = n;
    } else {
        mi = m;
        ni = n - 1;
    }

    if (upper)
    {
        /* Q was determined by a call to SSYTRD with UPLO = 'U' */
        i__2 = nq - 1;
        //lapackf77_sormql(side_, trans_, &mi, &ni, &i__2, &a[lda], &lda,
        //                 tau, c, &ldc, work, &lwork, &iinfo);
        magma_sormql(side, trans, mi, ni, i__2, &a[lda], lda, tau,
                     c, ldc, work, lwork, &iinfo);
    }
    else
    {
        /* Q was determined by a call to SSYTRD with UPLO = 'L' */
        if (left) {
            i1 = 1;
            i2 = 0;
        } else {
            i1 = 0;
            i2 = 1;
        }
        i__2 = nq - 1;
        magma_sormqr(side, trans, mi, ni, i__2, &a[1], lda, tau,
                     &c[i1 + i2 * ldc], ldc, work, lwork, &iinfo);
    }

    MAGMA_S_SET2REAL( work[0], lwkopt );

    return *info;
} /* magma_sormtr */
Example #3
0
extern "C" magma_err_t
magma_ssytrd(char uplo, magma_int_t n, 
             float *a, magma_int_t lda, 
             float *d, float *e, float *tau,
             float *work, magma_int_t lwork, 
             magma_int_t *info, magma_queue_t queue)
{
/*  -- clMAGMA (version 1.0.0) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       April 2012

    Purpose   
    =======   
    SSYTRD reduces a real symmetric matrix A to real symmetric   
    tridiagonal form T by an orthogonal similarity transformation:   
    Q**T * A * Q = T.   

    Arguments   
    =========   
    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    A       (input/output) REAL array, dimension (LDA,N)   
            On entry, the symmetric matrix A.  If UPLO = 'U', the leading   
            N-by-N upper triangular part of A contains the upper   
            triangular part of the matrix A, and the strictly lower   
            triangular part of A is not referenced.  If UPLO = 'L', the   
            leading N-by-N lower triangular part of A contains the lower   
            triangular part of the matrix A, and the strictly upper   
            triangular part of A is not referenced.   
            On exit, if UPLO = 'U', the diagonal and first superdiagonal   
            of A are overwritten by the corresponding elements of the   
            tridiagonal matrix T, and the elements above the first   
            superdiagonal, with the array TAU, represent the orthogonal   
            matrix Q as a product of elementary reflectors; if UPLO   
            = 'L', the diagonal and first subdiagonal of A are over-   
            written by the corresponding elements of the tridiagonal   
            matrix T, and the elements below the first subdiagonal, with   
            the array TAU, represent the orthogonal matrix Q as a product   
            of elementary reflectors. See Further Details.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    D       (output) REAL array, dimension (N)   
            The diagonal elements of the tridiagonal matrix T:   
            D(i) = A(i,i).   

    E       (output) REAL array, dimension (N-1)   
            The off-diagonal elements of the tridiagonal matrix T:   
            E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.   

    TAU     (output) REAL array, dimension (N-1)   
            The scalar factors of the elementary reflectors (see Further   
            Details).   

    WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.  LWORK >= 1.   
            For optimum performance LWORK >= N*NB, where NB is the   
            optimal blocksize.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    Further Details   
    ===============   
    If UPLO = 'U', the matrix Q is represented as a product of elementary   
    reflectors   

       Q = H(n-1) . . . H(2) H(1).   

    Each H(i) has the form   

       H(i) = I - tau * v * v'

    where tau is a real scalar, and v is a real vector with   
    v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in   
    A(1:i-1,i+1), and tau in TAU(i).   

    If UPLO = 'L', the matrix Q is represented as a product of elementary   
    reflectors   

       Q = H(1) H(2) . . . H(n-1).   

    Each H(i) has the form   

       H(i) = I - tau * v * v'   

    where tau is a real scalar, and v is a real vector with   
    v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),   
    and tau in TAU(i).

    The contents of A on exit are illustrated by the following examples   
    with n = 5:   

    if UPLO = 'U':                       if UPLO = 'L':   

      (  d   e   v2  v3  v4 )              (  d                  )   
      (      d   e   v3  v4 )              (  e   d              )   
      (          d   e   v4 )              (  v1  e   d          )   
      (              d   e  )              (  v1  v2  e   d      )   
      (                  d  )              (  v1  v2  v3  e   d  )   

    where d and e denote diagonal and off-diagonal elements of T, and vi   
    denotes an element of the vector defining H(i).   
    =====================================================================    */  

    char uplo_[2] = {uplo, 0};

    magma_int_t ldda = lda;
    magma_int_t nb = magma_get_ssytrd_nb(n); 

    float c_neg_one = MAGMA_S_NEG_ONE;
    float c_one     = MAGMA_S_ONE;
    float          d_one     = MAGMA_D_ONE;
    
    magma_int_t kk, nx;
    magma_int_t i, j, i_n;
    magma_int_t iinfo;
    magma_int_t ldwork, lddwork, lwkopt;
    magma_int_t lquery;

    *info = 0;
    int upper = lapackf77_lsame(uplo_, "U");
    lquery = lwork == -1;
    if (! upper && ! lapackf77_lsame(uplo_, "L")) {
        *info = -1;
    } else if (n < 0) {
        *info = -2;
    } else if (lda < max(1,n)) {
        *info = -4;
    } else if (lwork < nb*n && ! lquery) {
        *info = -9;
    }

    if (*info == 0) {
      /* Determine the block size. */
      ldwork = lddwork = n;
      lwkopt = n * nb;
// ACD
//      MAGMA_S_SET2REAL( work[0], lwkopt );
      MAGMA_S_SET2REAL( work[0], (float) lwkopt );
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery)
      return *info;

    /* Quick return if possible */
    if (n == 0) {
        work[0] = c_one;
        return *info;
    }

    magmaFloat_ptr da;
	size_t da_offset = 0;
    if (MAGMA_SUCCESS != magma_malloc( &da, (n*ldda + 2*n*nb )*sizeof(float))) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }

	magmaFloat_ptr dwork = da;
    size_t dwork_offset = da_offset + (n)*ldda;

    if (n < 2048)
      nx = n;
    else
      nx = 512;

    if (upper) {

        /* Copy the matrix to the GPU */ 
        magma_ssetmatrix( n, n, A(0, 0), 0, lda, dA(0, 0), ldda, queue );

        /*  Reduce the upper triangle of A.   
            Columns 1:kk are handled by the unblocked method. */
        kk = n - (n - nx + nb - 1) / nb * nb;

        for (i = n - nb; i >= kk; i -= nb) 
          {
            /* Reduce columns i:i+nb-1 to tridiagonal form and form the   
               matrix W which is needed to update the unreduced part of   
               the matrix */
            
            /*   Get the current panel (no need for the 1st iteration) */
            if (i!=n-nb)
              magma_sgetmatrix( i+nb, nb, dA(0, i), ldda, A(0, i), 0, lda, queue );
            
            magma_slatrd(uplo, i+nb, nb, A(0, 0), lda, e, tau, 
                         work, ldwork, dA(0, 0), ldda, dwork, dwork_offset, lddwork, queue);

            /* Update the unreduced submatrix A(0:i-2,0:i-2), using an   
               update of the form:  A := A - V*W' - W*V' */
            magma_ssetmatrix( i + nb, nb, work, 0, ldwork, dwork, dwork_offset, lddwork, queue );

            magma_ssyr2k(magma_uplo_const(uplo), MagmaNoTrans, i, nb, c_neg_one, 
                         dA(0, i), ldda, dwork, dwork_offset,  
                         lddwork, d_one, dA(0, 0), ldda, queue);
            
            /* Copy superdiagonal elements back into A, and diagonal   
               elements into D */
            for (j = i; j < i+nb; ++j) {
                MAGMA_S_SET2REAL( *A(j-1, j), e[j - 1] );
                d[j] = MAGMA_S_REAL( *A(j, j) );
            }

          }
      
        magma_sgetmatrix( kk, kk, dA(0, 0), ldda, A(0, 0), 0, lda, queue );
      
        /*  Use unblocked code to reduce the last or only block */
        lapackf77_ssytd2(uplo_, &kk, A(0, 0), &lda, d, e, tau, &iinfo);
    } 
    else 
      {
        /* Copy the matrix to the GPU */
        if (1<=n-nx)
          magma_ssetmatrix( n, n, A(0,0), 0, lda, dA(0,0), ldda, queue );

        #ifdef FAST_SYMV
        // TODO this leaks memory from da, above
        magmaFloat_ptr dwork2;
        if (MAGMA_SUCCESS != magma_malloc( &dwork2, (n*n)*sizeof(float) )) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }
		size_t dwork2_offset = 0;
        #endif
        /* Reduce the lower triangle of A */
        for (i = 0; i < n-nx; i += nb) 
          {
            /* Reduce columns i:i+nb-1 to tridiagonal form and form the
               matrix W which is needed to update the unreduced part of
               the matrix */

            /*   Get the current panel (no need for the 1st iteration) */
            if (i!=0)
              magma_sgetmatrix( n-i, nb, dA(i, i), ldda, A(i, i), 0, lda, queue );
            #ifdef FAST_SYMV
			// unported
            magma_slatrd2(uplo, n-i, nb, A(i, i), lda, &e[i], 
                         &tau[i], work, ldwork, 
                         dA(i, i), ldda,
                         dwork, lddwork, dwork2, n*n);
            #else
            magma_slatrd(uplo, n-i, nb, A(i, i), lda, &e[i], 
                         &tau[i], work, ldwork, 
                         dA(i, i), ldda,
                         dwork, dwork_offset, lddwork, queue);
            #endif
            /* Update the unreduced submatrix A(i+ib:n,i+ib:n), using   
               an update of the form:  A := A - V*W' - W*V' */
            magma_ssetmatrix( n-i, nb, work, 0, ldwork, dwork, dwork_offset, lddwork, queue );

            magma_ssyr2k(MagmaLower, MagmaNoTrans, n-i-nb, nb, c_neg_one, 
                         dA(i+nb, i), ldda, 
                         dwork, (dwork_offset+nb), lddwork, d_one, 
                         dA(i+nb, i+nb), ldda, queue);
            
            /* Copy subdiagonal elements back into A, and diagonal   
               elements into D */
            for (j = i; j < i+nb; ++j) {
                MAGMA_S_SET2REAL( *A(j+1, j), e[j] );
                d[j] = MAGMA_S_REAL( *A(j, j) );
            }
          }

        #ifdef FAST_SYMV
        magma_free( dwork2 );
        #endif

        /* Use unblocked code to reduce the last or only block */
        if (1<=n-nx)
          magma_sgetmatrix( n-i, n-i, dA(i, i), ldda, A(i, i), 0, lda, queue );
        i_n = n-i;
        lapackf77_ssytrd(uplo_, &i_n, A(i, i), &lda, &d[i], &e[i],
                         &tau[i], work, &lwork, &iinfo);
        
      }
    
    magma_free( da );
// ACD
//    MAGMA_S_SET2REAL( work[0], lwkopt );
    MAGMA_S_SET2REAL( work[0], (float) lwkopt );

    return *info;
} /* magma_ssytrd */
Example #4
0
extern "C" magma_int_t
magma_sormqr(magma_side_t side, magma_trans_t trans, 
             magma_int_t m, magma_int_t n, magma_int_t k, 
             float *a,    magma_int_t lda, 
             float *tau, 
             float *c,    magma_int_t ldc,
             float *work, magma_int_t lwork, 
             magma_int_t *info, magma_queue_t queue)
{
/*  -- MAGMA (version 1.0.0) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       September 2012

    Purpose   
    =======   
    SORMQR overwrites the general real M-by-N matrix C with   

                    SIDE = 'L'     SIDE = 'R'   
    TRANS = 'N':      Q * C          C * Q   
    TRANS = 'T':      Q**T * C       C * Q**T   

    where Q is a real orthogonal matrix defined as the product of k   
    elementary reflectors   

          Q = H(1) H(2) . . . H(k)   

    as returned by SGEQRF. Q is of order M if SIDE = 'L' and of order N   
    if SIDE = 'R'.   

    Arguments   
    =========   
    SIDE    (input) CHARACTER*1   
            = 'L': apply Q or Q**T from the Left;   
            = 'R': apply Q or Q**T from the Right.   

    TRANS   (input) CHARACTER*1   
            = 'N':  No transpose, apply Q;   
            = 'T':  Transpose, apply Q**T.   

    M       (input) INTEGER   
            The number of rows of the matrix C. M >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrix C. N >= 0.   

    K       (input) INTEGER   
            The number of elementary reflectors whose product defines   
            the matrix Q.   
            If SIDE = 'L', M >= K >= 0;   
            if SIDE = 'R', N >= K >= 0.   

    A       (input) REAL array, dimension (LDA,K)   
            The i-th column must contain the vector which defines the   
            elementary reflector H(i), for i = 1,2,...,k, as returned by   
            SGEQRF in the first k columns of its array argument A.   
            A is modified by the routine but restored on exit.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.   
            If SIDE = 'L', LDA >= max(1,M);   
            if SIDE = 'R', LDA >= max(1,N).   

    TAU     (input) REAL array, dimension (K)   
            TAU(i) must contain the scalar factor of the elementary   
            reflector H(i), as returned by SGEQRF.   

    C       (input/output) REAL array, dimension (LDC,N)   
            On entry, the M-by-N matrix C.   
            On exit, C is overwritten by Q*C or Q**T * C or C * Q**T or C*Q.   

    LDC     (input) INTEGER   
            The leading dimension of the array C. LDC >= max(1,M).   

    WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))   
            On exit, if INFO = 0, WORK(0) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.   
            If SIDE = 'L', LWORK >= max(1,N);   
            if SIDE = 'R', LWORK >= max(1,M).   
            For optimum performance LWORK >= N*NB if SIDE = 'L', and   
            LWORK >= M*NB if SIDE = 'R', where NB is the optimal   
            blocksize.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
    =====================================================================   */
    
    float c_one = MAGMA_S_ONE;

    magma_side_t side_ = side;
    magma_trans_t trans_ = trans;

    /* Allocate work space on the GPU */
    magmaFloat_ptr dwork, dc;
    magma_malloc( &dc, (m)*(n)*sizeof(float) );
    magma_malloc( &dwork, (m + n + 64)*64*sizeof(float) );
    
    /* Copy matrix C from the CPU to the GPU */
    magma_ssetmatrix( m, n, c, 0, ldc, dc, 0, m, queue );
    //dc -= (1 + m);
	size_t dc_offset = -(1+m);

    magma_int_t a_offset, c_offset, i__4, lddwork;
    magma_int_t i__;
    float t[2*4160]        /* was [65][64] */;
    magma_int_t i1, i2, i3, ib, ic, jc, nb, mi, ni, nq, nw;
    int left, notran, lquery;
    magma_int_t iinfo, lwkopt;

    a_offset = 1 + lda;
    a -= a_offset;
    --tau;
    c_offset = 1 + ldc;
    c -= c_offset;

    *info = 0;
    left = lapackf77_lsame(lapack_const(side_), "L");
    notran = lapackf77_lsame(lapack_const(trans_), "N");
    lquery = (lwork == -1);

    /* NQ is the order of Q and NW is the minimum dimension of WORK */
    if (left) {
        nq = m;
        nw = n;
    } else {
        nq = n;
        nw = m;
    }
    if (! left && ! lapackf77_lsame(lapack_const(side_), "R")) {
        *info = -1;
    } else if (! notran && ! lapackf77_lsame(lapack_const(trans_), "T")) {
        *info = -2;
    } else if (m < 0) {
        *info = -3;
    } else if (n < 0) {
        *info = -4;
    } else if (k < 0 || k > nq) {
        *info = -5;
    } else if (lda < max(1,nq)) {
        *info = -7;
    } else if (ldc < max(1,m)) {
        *info = -10;
    } else if (lwork < max(1,nw) && ! lquery) {
        *info = -12;
    }

    if (*info == 0) 
      {
        /* Determine the block size.  NB may be at most NBMAX, where NBMAX   
           is used to define the local array T.    */
        nb = 64;
        lwkopt = max(1,nw) * nb;
// ACD
//        MAGMA_S_SET2REAL( work[0], lwkopt );
        MAGMA_S_SET2REAL( work[0], (float) lwkopt );
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
      return *info;
    }

    /* Quick return if possible */
    if (m == 0 || n == 0 || k == 0) {
        work[0] = c_one;
        return *info;
    }

    if (nb >= k) 
      {
        /* Use CPU code */
        lapackf77_sormqr(lapack_const(side_), lapack_const(trans_), &m, &n, &k, &a[a_offset], &lda, &tau[1],
                         &c[c_offset], &ldc, work, &lwork, &iinfo);
      } 
    else 
      {
        /* Use hybrid CPU-GPU code */
        if ( ( left && (! notran) ) ||  ( (! left) && notran ) ) {
            i1 = 1;
            i2 = k;
            i3 = nb;
        } else {
            i1 = (k - 1) / nb * nb + 1;
            i2 = 1;
            i3 = -nb;
        }

        if (left) {
            ni = n;
            jc = 1;
        } else {
            mi = m;
            ic = 1;
        }
        
        for (i__ = i1; i3 < 0 ? i__ >= i2 : i__ <= i2; i__ += i3) 
          {
            ib = min(nb, k - i__ + 1);

            /* Form the triangular factor of the block reflector   
               H = H(i) H(i+1) . . . H(i+ib-1) */
            i__4 = nq - i__ + 1;
            lapackf77_slarft("F", "C", &i__4, &ib, &a[i__ + i__ * lda], &lda, 
                             &tau[i__], t, &ib);

            /* 1) Put 0s in the upper triangular part of A;
               2) copy the panel from A to the GPU, and
               3) restore A                                      */
            spanel_to_q(MagmaUpper, ib, &a[i__ + i__ * lda], lda, t+ib*ib);
            magma_ssetmatrix( i__4, ib, &a[i__ + i__ * lda], 0, lda, dwork, 0, i__4, queue );
            sq_to_panel(MagmaUpper, ib, &a[i__ + i__ * lda], lda, t+ib*ib);

            if (left) 
              {
                /* H or H' is applied to C(i:m,1:n) */
                mi = m - i__ + 1;
                ic = i__;
              } 
            else 
              {
                /* H or H' is applied to C(1:m,i:n) */
                ni = n - i__ + 1;
                jc = i__;
              }
            
            if (left)
              lddwork = ni;
            else
              lddwork = mi;

            /* Apply H or H'; First copy T to the GPU */
            magma_ssetmatrix( ib, ib, t, 0, ib, dwork, i__4*ib, ib, queue );
            magma_slarfb_gpu( side, trans, MagmaForward, MagmaColumnwise,
                              mi, ni, ib,
                              dwork, 0, i__4, dwork, i__4*ib, ib,
                              dc, dc_offset+(ic + jc * m), m, 
                              dwork, (i__4*ib + ib*ib), lddwork, queue);
          }

        magma_sgetmatrix( m, n, dc, dc_offset+(1+m), m, &c[c_offset], 0, ldc, queue );
      }
// ACD
//    MAGMA_S_SET2REAL( work[0], lwkopt );
    MAGMA_S_SET2REAL( work[0], (float) lwkopt );

    //dc += (1 + m);
    magma_free( dc );
    magma_free( dwork );

    return *info;
} /* magma_sormqr */
int main( int argc, char** argv)
{
    real_Double_t gflops, gpu_perf, cpu_perf, gpu_time, cpu_time;
    float *h_A, *h_R;
    magmaFloat_ptr d_lA[MagmaMaxGPUs];
    magma_int_t N = 0, n2, lda, ldda;
    magma_int_t size[10] =
        { 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000 };
    
    magma_int_t i, j, k, info;
    float mz_one = MAGMA_S_NEG_ONE;
    magma_int_t ione     = 1;
    magma_int_t ISEED[4] = {0,0,0,1};
    float      work[1], matnorm, diffnorm;
   
    magma_int_t num_gpus0 = 1, num_gpus, flag = 0;
    int nb, mb, n_local, nk;

    magma_uplo_t uplo = MagmaLower;

    if (argc != 1){
        for(i = 1; i<argc; i++){
            if (strcmp("-N", argv[i])==0){
                N = atoi(argv[++i]);
                if (N>0) {
                    size[0] = size[9] = N;
                    flag = 1;
                }else exit(1);
            }
            if(strcmp("-NGPU", argv[i])==0)
                num_gpus0 = atoi(argv[++i]);
            if(strcmp("-UPLO", argv[i])==0){
                if(strcmp("L", argv[++i])==0){
                    uplo = MagmaLower;
                }else{
                    uplo = MagmaUpper;
                }            
            }
        }
    }
    else {
        printf("\nUsage: \n");
        printf("  testing_spotrf_mgpu -N %d -NGPU %d -UPLO -L\n\n", 1024, num_gpus0);
    }

    /* looking for max. ldda */
    ldda = 0;
    n2 = 0;
    for(i=0;i<10;i++){
        N = size[i];
        nb = magma_get_spotrf_nb(N);
        mb = nb;
        if(num_gpus0 > N/nb){
            num_gpus = N/nb;
            if(N%nb != 0) num_gpus ++;
        }else{
            num_gpus = num_gpus0;
        }
        n_local = nb*(1+N/(nb*num_gpus))*mb*((N+mb-1)/mb);
        if(n_local > ldda) ldda = n_local;
        if(n2 < N*N) n2 = N*N;
        if(flag != 0) break;
    }

     /* Allocate host memory for the matrix */
    TESTING_MALLOC_PIN( h_A, float, n2 );
    TESTING_MALLOC_PIN( h_R, float, n2 );

    /* Initialize */
    magma_queue_t  queues[MagmaMaxGPUs * 2];
    //magma_queue_t  queues[MagmaMaxGPUs];
    magma_device_t devices[ MagmaMaxGPUs ];
    int num = 0;
    magma_err_t err;
    magma_init();
    err = magma_get_devices( devices, MagmaMaxGPUs, &num );
    if ( err != 0 || num < 1 ) {
        fprintf( stderr, "magma_get_devices failed: %d\n", err );
        exit(-1);
    }
    for(i=0;i<num_gpus;i++){
        err = magma_queue_create( devices[i], &queues[2*i] );
        if ( err != 0 ) {
            fprintf( stderr, "magma_queue_create failed: %d\n", err );
            exit(-1);
        }
        err = magma_queue_create( devices[i], &queues[2*i+1] );
        if ( err != 0 ) {
            fprintf( stderr, "magma_queue_create failed: %d\n", err );
            exit(-1);
        }
    }

    printf("each buffer size: %d\n", ldda);
    /* allocate local matrix on Buffers */
    for(i=0; i<num_gpus0; i++){
        TESTING_MALLOC_DEV( d_lA[i], float, ldda );
    }

    
    printf("\n\n");
    printf("Using GPUs: %d\n", num_gpus0);
    if(uplo == MagmaUpper){
        printf("\n  testing_spotrf_mgpu -N %d -NGPU %d -UPLO U\n\n", N, num_gpus0);
    }else{
        printf("\n  testing_spotrf_mgpu -N %d -NGPU %d -UPLO L\n\n", N, num_gpus0);
    }
            printf("  N    CPU GFlop/s (sec)    GPU GFlop/s (sec)    ||R_magma-R_lapack||_F / ||R_lapack||_F\n");
    printf("========================================================================================\n");
    for(i=0; i<10; i++){
        N   = size[i];
        lda = N;
        n2  = lda*N;
        ldda = ((N+31)/32)*32;
        gflops = FLOPS( (float)N ) * 1e-9;
        
        /* Initialize the matrix */
        lapackf77_slarnv( &ione, ISEED, &n2, h_A );
        /* Symmetrize and increase the diagonal */
        for( int i = 0; i < N; ++i ) {
            MAGMA_S_SET2REAL( h_A(i,i), MAGMA_S_REAL(h_A(i,i)) + N );
            for( int j = 0; j < i; ++j ) {
          h_A(i, j) = MAGMA_S_CNJG( h_A(j,i) );
            }
        }
        lapackf77_slacpy( MagmaFullStr, &N, &N, h_A, &lda, h_R, &lda );

        /* Warm up to measure the performance */
        nb = magma_get_spotrf_nb(N);
        if(num_gpus0 > N/nb){
            num_gpus = N/nb;
            if(N%nb != 0) num_gpus ++;
            printf("too many GPUs for the matrix size, using %d GPUs\n", (int)num_gpus);
        }else{
            num_gpus = num_gpus0;
        }
        /* distribute matrix to gpus */
        if(uplo == MagmaUpper){
            // Upper
            ldda = ((N+mb-1)/mb)*mb;    
            for(j=0;j<N;j+=nb){
                k = (j/nb)%num_gpus;
                nk = min(nb, N-j);
                magma_ssetmatrix(N, nk, 
                                 &h_A[j*lda], 0, lda,
                                 d_lA[k], j/(nb*num_gpus)*nb*ldda, ldda, 
                                 queues[2*k]);
            }
        }else{
            // Lower
            ldda = (1+N/(nb*num_gpus))*nb;
            for(j=0;j<N;j+=nb){
                k = (j/nb)%num_gpus;
                nk = min(nb, N-j);
                magma_ssetmatrix(nk, N, &h_A[j], 0, lda,
                                    d_lA[k], (j/(nb*num_gpus)*nb), ldda,
                                    queues[2*k]);
            }
        }

        magma_spotrf_mgpu( num_gpus, uplo, N, d_lA, 0, ldda, &info, queues );
        /* ====================================================================
           Performs operation using MAGMA
           =================================================================== */
        /* distribute matrix to gpus */
        if(uplo == MagmaUpper){
            // Upper
            ldda = ((N+mb-1)/mb)*mb;    
            for(j=0;j<N;j+=nb){
                k = (j/nb)%num_gpus;
                nk = min(nb, N-j);
                magma_ssetmatrix(N, nk, 
                                 &h_A[j*lda], 0, lda,
                                 d_lA[k], j/(nb*num_gpus)*nb*ldda, ldda, 
                                 queues[2*k]);
            }
        }else{
            // Lower
            ldda = (1+N/(nb*num_gpus))*nb;
            for(j=0;j<N;j+=nb){
                k = (j/nb)%num_gpus;
                nk = min(nb, N-j);
                magma_ssetmatrix(nk, N, &h_A[j], 0, lda,
                                    d_lA[k], (j/(nb*num_gpus)*nb), ldda,
                                    queues[2*k]);
            }
        }
    
        gpu_time = magma_wtime();
        magma_spotrf_mgpu( num_gpus, uplo, N, d_lA, 0, ldda, &info, queues );
        gpu_time = magma_wtime() - gpu_time;
        if (info != 0)
            printf( "magma_spotrf had error %d.\n", info );

        gpu_perf = gflops / gpu_time;
       
        /* gather matrix from gpus */
        if(uplo==MagmaUpper){
            // Upper
            for(j=0;j<N;j+=nb){
                k = (j/nb)%num_gpus;
                nk = min(nb, N-j);
                magma_sgetmatrix(N, nk,
                                 d_lA[k], j/(nb*num_gpus)*nb*ldda, ldda,
                                 &h_R[j*lda], 0, lda, queues[2*k]);
            }
        }else{
            // Lower
            for(j=0; j<N; j+=nb){
                k = (j/nb)%num_gpus;
                nk = min(nb, N-j);
                magma_sgetmatrix( nk, N, 
                            d_lA[k], (j/(nb*num_gpus)*nb), ldda, 
                            &h_R[j], 0, lda, queues[2*k] );
            }
        }

        /* =====================================================================
           Performs operation using LAPACK
           =================================================================== */
        cpu_time = magma_wtime();
        if(uplo == MagmaLower){
            lapackf77_spotrf( MagmaLowerStr, &N, h_A, &lda, &info );
        }else{
            lapackf77_spotrf( MagmaUpperStr, &N, h_A, &lda, &info );
        }
        cpu_time = magma_wtime() - cpu_time;
        if (info != 0)
            printf( "lapackf77_spotrf had error %d.\n", info );
        
        cpu_perf = gflops / cpu_time;
        /* =====================================================================
           Check the result compared to LAPACK
           |R_magma - R_lapack| / |R_lapack|
           =================================================================== */
        matnorm = lapackf77_slange("f", &N, &N, h_A, &lda, work);
        blasf77_saxpy(&n2, &mz_one, h_A, &ione, h_R, &ione);
        diffnorm = lapackf77_slange("f", &N, &N, h_R, &lda, work);
        printf( "%5d     %6.2f (%6.2f)     %6.2f (%6.2f)         %e\n",
                N, cpu_perf, cpu_time, gpu_perf, gpu_time, diffnorm / matnorm );
        
        if (flag != 0)
            break;
    }

    /* clean up */
    TESTING_FREE_PIN( h_A );
    TESTING_FREE_PIN( h_R );
    for(i=0;i<num_gpus;i++){
        TESTING_FREE_DEV( d_lA[i] );
        magma_queue_destroy( queues[2*i]   );
        magma_queue_destroy( queues[2*i+1] );
    }
    magma_finalize();
}
Example #6
0
extern "C" magma_err_t
magma_slatrd(char uplo, magma_int_t n, magma_int_t nb,
             float *a,  magma_int_t lda,
             float *e, float *tau,
             float *w,  magma_int_t ldw,
             magmaFloat_ptr da, size_t da_offset, magma_int_t ldda,
             magmaFloat_ptr dw, size_t dw_offset, magma_int_t lddw, magma_queue_t queue)
{
/*  -- clMAGMA (version 1.1.0) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       @date January 2014

    Purpose
    =======
    SLATRD reduces NB rows and columns of a real symmetric matrix A to
    symmetric tridiagonal form by an orthogonal similarity
    transformation Q' * A * Q, and returns the matrices V and W which are
    needed to apply the transformation to the unreduced part of A.

    If UPLO = 'U', SLATRD reduces the last NB rows and columns of a
    matrix, of which the upper triangle is supplied;
    if UPLO = 'L', SLATRD reduces the first NB rows and columns of a
    matrix, of which the lower triangle is supplied.

    This is an auxiliary routine called by SSYTRD.

    Arguments
    =========
    UPLO    (input) CHARACTER*1
            Specifies whether the upper or lower triangular part of the
            symmetric matrix A is stored:
            = 'U': Upper triangular
            = 'L': Lower triangular

    N       (input) INTEGER
            The order of the matrix A.

    NB      (input) INTEGER
            The number of rows and columns to be reduced.

    A       (input/output) REAL array, dimension (LDA,N)
            On entry, the symmetric matrix A.  If UPLO = 'U', the leading
            n-by-n upper triangular part of A contains the upper
            triangular part of the matrix A, and the strictly lower
            triangular part of A is not referenced.  If UPLO = 'L', the
            leading n-by-n lower triangular part of A contains the lower
            triangular part of the matrix A, and the strictly upper
            triangular part of A is not referenced.
            On exit:
            if UPLO = 'U', the last NB columns have been reduced to
              tridiagonal form, with the diagonal elements overwriting
              the diagonal elements of A; the elements above the diagonal
              with the array TAU, represent the orthogonal matrix Q as a
              product of elementary reflectors;
            if UPLO = 'L', the first NB columns have been reduced to
              tridiagonal form, with the diagonal elements overwriting
              the diagonal elements of A; the elements below the diagonal
              with the array TAU, represent the  orthogonal matrix Q as a
              product of elementary reflectors.
            See Further Details.

    LDA     (input) INTEGER
            The leading dimension of the array A.  LDA >= (1,N).

    E       (output) REAL array, dimension (N-1)
            If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal
            elements of the last NB columns of the reduced matrix;
            if UPLO = 'L', E(1:nb) contains the subdiagonal elements of
            the first NB columns of the reduced matrix.

    TAU     (output) REAL array, dimension (N-1)
            The scalar factors of the elementary reflectors, stored in
            TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'.
            See Further Details.

    W       (output) REAL array, dimension (LDW,NB)
            The n-by-nb matrix W required to update the unreduced part
            of A.

    LDW     (input) INTEGER
            The leading dimension of the array W. LDW >= max(1,N).

    Further Details
    ===============
    If UPLO = 'U', the matrix Q is represented as a product of elementary
    reflectors

       Q = H(n) H(n-1) . . . H(n-nb+1).

    Each H(i) has the form

       H(i) = I - tau * v * v'

    where tau is a real scalar, and v is a real vector with
    v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),
    and tau in TAU(i-1).

    If UPLO = 'L', the matrix Q is represented as a product of elementary
    reflectors

       Q = H(1) H(2) . . . H(nb).

    Each H(i) has the form

       H(i) = I - tau * v * v'

    where tau is a real scalar, and v is a real vector with
    v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
    and tau in TAU(i).

    The elements of the vectors v together form the n-by-nb matrix V
    which is needed, with W, to apply the transformation to the unreduced
    part of the matrix, using a symmetric rank-2k update of the form:
    A := A - V*W' - W*V'.

    The contents of A on exit are illustrated by the following examples
    with n = 5 and nb = 2:

    if UPLO = 'U':                       if UPLO = 'L':

      (  a   a   a   v4  v5 )              (  d                  )
      (      a   a   v4  v5 )              (  1   d              )
      (          a   1   v5 )              (  v1  1   a          )
      (              d   1  )              (  v1  v2  a   a      )
      (                  d  )              (  v1  v2  a   a   a  )

    where d denotes a diagonal element of the reduced matrix, a denotes
    an element of the original matrix that is unchanged, and vi denotes
    an element of the vector defining H(i).
    =====================================================================    */
  
    char uplo_[2]  = {uplo, 0};

    magma_int_t i;
  
    float c_neg_one = MAGMA_S_NEG_ONE;
    float c_one     = MAGMA_S_ONE;
    float c_zero    = MAGMA_S_ZERO;

    float value = MAGMA_S_ZERO;
    
    magma_int_t ione = 1;

    magma_int_t i_n, i_1, iw;
  
    float alpha;

    float *f;
    magma_smalloc_cpu( &f, n );

    if (n <= 0) {
      return 0;
    }

    magma_event_t event = NULL;

    if (lapackf77_lsame(uplo_, "U")) {

      /* Reduce last NB columns of upper triangle */
      for (i = n-1; i >= n - nb ; --i) {
        i_1 = i + 1;
        i_n = n - i - 1;
        
        iw = i - n + nb;
        if (i < n-1) {
          /* Update A(1:i,i) */
          #if defined(PRECISION_z) || defined(PRECISION_c)
              lapackf77_slacgv(&i_n, W(i, iw+1), &ldw);
          #endif
          blasf77_sgemv("No transpose", &i_1, &i_n, &c_neg_one, A(0, i+1), &lda,
                        W(i, iw+1), &ldw, &c_one, A(0, i), &ione);
          #if defined(PRECISION_z) || defined(PRECISION_c)
              lapackf77_slacgv(&i_n, W(i, iw+1), &ldw);
              lapackf77_slacgv(&i_n, A(i, i+1), &lda);
          #endif
          blasf77_sgemv("No transpose", &i_1, &i_n, &c_neg_one, W(0, iw+1), &ldw,
                        A(i, i+1), &lda, &c_one, A(0, i), &ione);
          #if defined(PRECISION_z) || defined(PRECISION_c)
              lapackf77_slacgv(&i_n, A(i, i+1), &lda);
          #endif
        }
        if (i > 0) {
          /* Generate elementary reflector H(i) to annihilate A(1:i-2,i) */
          
          alpha = *A(i-1, i);
          
          lapackf77_slarfg(&i, &alpha, A(0, i), &ione, &tau[i - 1]);
          
          e[i-1] = MAGMA_S_REAL( alpha );
          MAGMA_S_SET2REAL(*A(i-1, i), 1.);
          
          /* Compute W(1:i-1,i) */
          // 1. Send the block reflector  A(0:n-i-1,i) to the GPU
          magma_ssetvector( i, A(0, i), 0, 1, dA(0, i), 1, queue );
          
          magma_ssymv(MagmaUpper, i, c_one, dA(0, 0), ldda,
                      dA(0, i), ione, c_zero, dW(0, iw), ione, queue);
          
          // 2. Start putting the result back (asynchronously)
          magma_sgetmatrix_async( i, 1,
                                  dW(0, iw),         lddw,
                                  W(0, iw)/*test*/, 0, ldw, queue, &event );
          
          if (i < n-1) {

            blasf77_sgemv(MagmaTransStr, &i, &i_n, &c_one, W(0, iw+1), &ldw,
                          A(0, i), &ione, &c_zero, W(i+1, iw), &ione);
          }
          
            // 3. Here is where we need it // TODO find the right place
            magma_event_sync(event);

          if (i < n-1) {
          
            blasf77_sgemv("No transpose", &i, &i_n, &c_neg_one, A(0, i+1), &lda,
                          W(i+1, iw), &ione, &c_one, W(0, iw), &ione);

            blasf77_sgemv(MagmaTransStr, &i, &i_n, &c_one, A(0, i+1), &lda,
                          A(0, i), &ione, &c_zero, W(i+1, iw), &ione);

            blasf77_sgemv("No transpose", &i, &i_n, &c_neg_one, W(0, iw+1), &ldw,
                          W(i+1, iw), &ione, &c_one, W(0, iw), &ione);
          }

          blasf77_sscal(&i, &tau[i - 1], W(0, iw), &ione);

          #if defined(PRECISION_z) || defined(PRECISION_c)
          cblas_sdot_sub( i, W(0,iw), ione, A(0,i), ione, &value );
          #else
          value = cblas_sdot( i, W(0,iw), ione, A(0,i), ione );
          #endif
          alpha = tau[i - 1] * -0.5f * value;
          blasf77_saxpy(&i, &alpha, A(0, i), &ione,
                        W(0, iw), &ione);
        }
      }

    } else {

      /*  Reduce first NB columns of lower triangle */
      for (i = 0; i < nb; ++i)
        {

          /* Update A(i:n,i) */
          i_n = n - i;
          #if defined(PRECISION_z) || defined(PRECISION_c)
              lapackf77_slacgv(&i, W(i, 0), &ldw);
          #endif
          blasf77_sgemv("No transpose", &i_n, &i, &c_neg_one, A(i, 0), &lda,
                        W(i, 0), &ldw, &c_one, A(i, i), &ione);
          #if defined(PRECISION_z) || defined(PRECISION_c)
              lapackf77_slacgv(&i, W(i, 0), &ldw);
              lapackf77_slacgv(&i, A(i ,0), &lda);
          #endif
          blasf77_sgemv("No transpose", &i_n, &i, &c_neg_one, W(i, 0), &ldw,
                        A(i, 0), &lda, &c_one, A(i, i), &ione);
          #if defined(PRECISION_z) || defined(PRECISION_c)
              lapackf77_slacgv(&i, A(i, 0), &lda);
          #endif

          if (i < n-1)
            {
              /* Generate elementary reflector H(i) to annihilate A(i+2:n,i) */
              i_n = n - i - 1;
              alpha = *A(i+1, i);
              lapackf77_slarfg(&i_n, &alpha, A(min(i+2,n-1), i), &ione, &tau[i]);
              e[i] = MAGMA_S_REAL( alpha );
              MAGMA_S_SET2REAL(*A(i+1, i), 1.);

              /* Compute W(i+1:n,i) */
              // 1. Send the block reflector  A(i+1:n,i) to the GPU
              magma_ssetvector( i_n, A(i+1, i), 0, 1, dA(i+1, i), 1, queue );
          
              magma_ssymv(MagmaLower, i_n, c_one, dA(i+1, i+1), ldda, dA(i+1, i), ione, c_zero,
                          dW(i+1, i), ione, queue);
          
              // 2. Start putting the result back (asynchronously)
              magma_sgetmatrix_async( i_n, 1,
                                      dW(i+1, i), lddw,
                                      W(i+1, i), 0, ldw, queue, &event );

              blasf77_sgemv(MagmaTransStr, &i_n, &i, &c_one, W(i+1, 0), &ldw,
                            A(i+1, i), &ione, &c_zero, W(0, i), &ione);

              blasf77_sgemv("No transpose", &i_n, &i, &c_neg_one, A(i+1, 0), &lda,
                            W(0, i), &ione, &c_zero, f, &ione);
              
              blasf77_sgemv(MagmaTransStr, &i_n, &i, &c_one, A(i+1, 0), &lda,
                            A(i+1, i), &ione, &c_zero, W(0, i), &ione);

              // 3. Here is where we need it
              magma_event_sync(event);

              if (i!=0)
                blasf77_saxpy(&i_n, &c_one, f, &ione, W(i+1, i), &ione);
     
              blasf77_sgemv("No transpose", &i_n, &i, &c_neg_one, W(i+1, 0), &ldw,
                            W(0, i), &ione, &c_one, W(i+1, i), &ione);
              blasf77_sscal(&i_n, &tau[i], W(i+1,i), &ione);
              
              #if defined(PRECISION_z) || defined(PRECISION_c)
              cblas_sdot_sub( i_n, W(i+1,i), ione, A(i+1,i), ione, &value );
              #else
              value = cblas_sdot( i_n, W(i+1,i), ione, A(i+1,i), ione );
              #endif
              alpha = tau[i] * -0.5f * value;
              blasf77_saxpy(&i_n, &alpha, A(i+1, i), &ione, W(i+1,i), &ione);
            }
        }
    }

    magma_free_cpu(f);

    return 0;
} /* slatrd_ */
Example #7
0
extern "C" magma_int_t 
magma_sgehrd(magma_int_t n, magma_int_t ilo, magma_int_t ihi, 
             float *a, magma_int_t lda,
             float *tau, 
             float *work, magma_int_t lwork,
             float *dT,
             magma_int_t *info)
{
/*  -- MAGMA (version 1.3.0) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       November 2012

    Purpose   
    =======   
    SGEHRD reduces a REAL general matrix A to upper Hessenberg form H by   
    an orthogonal similarity transformation:  Q' * A * Q = H . This version 
    stores the triangular matrices used in the factorization so that they can
    be applied directly (i.e., without being recomputed) later. As a result,
    the application of Q is much faster.  

    Arguments   
    =========   
    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    ILO     (input) INTEGER   
    IHI     (input) INTEGER   
            It is assumed that A is already upper triangular in rows   
            and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally   
            set by a previous call to SGEBAL; otherwise they should be   
            set to 1 and N respectively. See Further Details.   
            1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.   

    A       (input/output) REAL array, dimension (LDA,N)   
            On entry, the N-by-N general matrix to be reduced.   
            On exit, the upper triangle and the first subdiagonal of A   
            are overwritten with the upper Hessenberg matrix H, and the   
            elements below the first subdiagonal, with the array TAU,   
            represent the orthogonal matrix Q as a product of elementary   
            reflectors. See Further Details.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    TAU     (output) REAL array, dimension (N-1)   
            The scalar factors of the elementary reflectors (see Further   
            Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to   
            zero.   

    WORK    (workspace/output) REAL array, dimension (LWORK)   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The length of the array WORK.  LWORK >= max(1,N).   
            For optimum performance LWORK >= N*NB, where NB is the   
            optimal blocksize.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    dT      (output)  REAL array on the GPU, dimension N*NB,
            where NB is the optimal blocksize. It stores the NB*NB blocks 
            of the triangular T matrices, used the the reduction.

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   

    Further Details   
    ===============   
    The matrix Q is represented as a product of (ihi-ilo) elementary   
    reflectors   

       Q = H(ilo) H(ilo+1) . . . H(ihi-1).   

    Each H(i) has the form   

       H(i) = I - tau * v * v'   

    where tau is a real scalar, and v is a real vector with   
    v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on   
    exit in A(i+2:ihi,i), and tau in TAU(i).   

    The contents of A are illustrated by the following example, with   
    n = 7, ilo = 2 and ihi = 6:   

    on entry,                        on exit,   

    ( a   a   a   a   a   a   a )    (  a   a   h   h   h   h   a )   
    (     a   a   a   a   a   a )    (      a   h   h   h   h   a )   
    (     a   a   a   a   a   a )    (      h   h   h   h   h   h )   
    (     a   a   a   a   a   a )    (      v2  h   h   h   h   h )   
    (     a   a   a   a   a   a )    (      v2  v3  h   h   h   h )   
    (     a   a   a   a   a   a )    (      v2  v3  v4  h   h   h )   
    (                         a )    (                          a )   

    where a denotes an element of the original matrix A, h denotes a   
    modified element of the upper Hessenberg matrix H, and vi denotes an   
    element of the vector defining H(i).   

    This implementation follows the hybrid algorithm and notations described in

    S. Tomov and J. Dongarra, "Accelerating the reduction to upper Hessenberg
    form through hybrid GPU-based computing," University of Tennessee Computer
    Science Technical Report, UT-CS-09-642 (also LAPACK Working Note 219),
    May 24, 2009.

    =====================================================================    */


    float c_one = MAGMA_S_ONE;
    float c_zero = MAGMA_S_ZERO;

    magma_int_t nb = magma_get_sgehrd_nb(n);
    magma_int_t N = n, ldda = n;

    magma_int_t ib;
    magma_int_t nh, iws;
    magma_int_t nbmin, iinfo;
    magma_int_t ldwork;
    magma_int_t lquery;

    --tau;

    *info = 0;
    MAGMA_S_SET2REAL( work[0], (float) n * nb );

    lquery = lwork == -1;
    if (n < 0) {
        *info = -1;
    } else if (ilo < 1 || ilo > max(1,n)) {
        *info = -2;
    } else if (ihi < min(ilo,n) || ihi > n) {
        *info = -3;
    } else if (lda < max(1,n)) {
        *info = -5;
    } else if (lwork < max(1,n) && ! lquery) {
        *info = -8;
    }
    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery)
      return *info;

    /* Quick return if possible */
    nh = ihi - ilo + 1;
    if (nh <= 1) {
      work[0] = c_one;
      return *info;
    }

    float *da;
    if (MAGMA_SUCCESS != magma_smalloc( &da, N*ldda + 2*N*nb + nb*nb )) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }
    
    float *d_A    = da;
    float *d_work = da + (N+nb)*ldda;

    magma_int_t i__;

    float *t, *d_t;
    magma_smalloc_cpu( &t, nb*nb );
    if ( t == NULL ) {
        magma_free( da );
        *info = MAGMA_ERR_HOST_ALLOC;
        return *info;
    }
    d_t = d_work + nb * ldda;

    szero_nbxnb_block(nb, d_A+N*ldda, ldda);

    /* Set elements 1:ILO-1 and IHI:N-1 of TAU to zero */
    for (i__ = 1; i__ < ilo; ++i__)
      tau[i__] = c_zero;
   
    for (i__ = max(1,ihi); i__ < n; ++i__)
      tau[i__] = c_zero;

    for(i__=0; i__< nb*nb; i__+=4)
      t[i__] = t[i__+1] = t[i__+2] = t[i__+3] = c_zero;

    nbmin = 2;
    iws = 1;
    if (nb > 1 && nb < nh) {

      /*  Determine when to cross over from blocked to unblocked code   
          (last block is always handled by unblocked code)              */
      if (nb < nh) {

        /* Determine if workspace is large enough for blocked code      */
        iws = n * nb;
        if (lwork < iws) {

          /*    Not enough workspace to use optimal NB:  determine the   
                minimum value of NB, and reduce NB or force use of   
                unblocked code                                          */
          nbmin = nb;
          if (lwork >= n * nbmin)
            nb = lwork / n;
          else 
            nb = 1;
        }
      }
    }
    ldwork = n;

    if (nb < nbmin || nb >= nh) {
      /* Use unblocked code below */
      i__ = ilo;
    } else {

      /* Use blocked code */

      /* Copy the matrix to the GPU */
      magma_ssetmatrix( N, N-ilo+1, a+(ilo-1)*(lda), lda, d_A, ldda );

      for (i__ = ilo; i__ < ihi - nb; i__ += nb) {
        /* Computing MIN */
        ib = min(nb, ihi - i__);

        /*   Reduce columns i:i+ib-1 to Hessenberg form, returning the   
             matrices V and T of the block reflector H = I - V*T*V'   
             which performs the reduction, and also the matrix Y = A*V*T */

        /*   Get the current panel (no need for the 1st iteration) */
        magma_sgetmatrix( ihi-i__+1, ib,
                          d_A + (i__ - ilo)*ldda + i__ - 1, ldda,
                          a   + (i__ -  1 )*lda  + i__ - 1, lda );      
        
        magma_slahr2(ihi, i__, ib, 
                     d_A + (i__ - ilo)*ldda, 
                     d_A + N*ldda + 1,
                     a   + (i__ -   1 )*(lda) , lda, 
                     &tau[i__], t, nb, work, ldwork);

        /* Copy T from the CPU to D_T on the GPU */
        d_t = dT + (i__ - ilo)*nb;
        magma_ssetmatrix( nb, nb, t, nb, d_t, nb );

        magma_slahru(n, ihi, i__ - 1, ib, 
                     a   + (i__ -  1 )*(lda), lda,
                     d_A + (i__ - ilo)*ldda, 
                     d_A + (i__ - ilo)*ldda + i__ - 1,
                     d_A + N*ldda, d_t, d_work);
      }
    }

    /* Use unblocked code to reduce the rest of the matrix */
    if (!(nb < nbmin || nb >= nh))
        magma_sgetmatrix( n, n-i__+1,
                          d_A+ (i__-ilo)*ldda, ldda,
                          a  + (i__-1)*(lda),  lda );
    lapackf77_sgehd2(&n, &i__, &ihi, a, &lda, &tau[1], work, &iinfo);
    MAGMA_S_SET2REAL( work[0], (float) iws );
    
    magma_free( da );
    magma_free_cpu(t);
 
    return *info;
} /* magma_sgehrd */
/* ////////////////////////////////////////////////////////////////////////////
   -- Testing ssygvdx
*/
int main( int argc, char** argv)
{

    TESTING_INIT();

    real_Double_t gpu_time;

    float *h_A, *h_R, *h_work;

#if defined(PRECISION_z) || defined(PRECISION_c)
    float *rwork;
    magma_int_t lrwork;
#endif

    /* Matrix size */
    float *w1, *w2;
    magma_int_t *iwork;
    magma_int_t N, n2, info, lwork, liwork;
    magma_int_t ione     = 1;
    magma_int_t ISEED[4] = {0,0,0,1};;
    magma_int_t info_ortho     = 0;
    magma_int_t info_solution  = 0;
    magma_int_t info_reduction = 0;

    magma_timestr_t start, end;

    magma_opts opts;
    parse_opts( argc, argv, &opts );

    magma_int_t ngpu = opts.ngpu;
    char jobz = opts.jobz;
    magma_int_t checkres = opts.check;

    char range = 'A';
    char uplo = opts.uplo;
    magma_int_t itype = opts.itype;
    float f = opts.fraction;

    if (f != 1)
        range='I';

    if ( checkres && jobz == MagmaNoVec ) {
        fprintf( stderr, "checking results requires vectors; setting jobz=V (option -JV)\n" );
        jobz = MagmaVec;
    }

    printf("using: itype = %d, jobz = %c, range = %c, uplo = %c, checkres = %d, fraction = %6.4f\n",
           (int) itype, jobz, range, uplo, (int) checkres, f);

    printf("  N     M     GPU Time(s) \n");
    printf("==========================\n");
    magma_int_t threads = magma_get_numthreads();
    for( magma_int_t i = 0; i < opts.ntest; ++i ) {
        for( magma_int_t iter = 0; iter < opts.niter; ++iter ) {
            N = opts.nsize[i];
            n2     = N*N;
#if defined(PRECISION_z) || defined(PRECISION_c)
            lwork  = magma_sbulge_get_lq2(N, threads) + 2*N + N*N;
            lrwork = 1 + 5*N +2*N*N;
#else
            lwork  = magma_sbulge_get_lq2(N, threads) + 1 + 6*N + 2*N*N;
#endif
            liwork = 3 + 5*N;

            /* Allocate host memory for the matrix */
            TESTING_MALLOC(   h_A, float, n2);
            TESTING_MALLOC(    w1, float         ,  N);
            TESTING_MALLOC(    w2, float         ,  N);
            TESTING_HOSTALLOC(h_R, float, n2);
            TESTING_HOSTALLOC(h_work, float,  lwork);
#if defined(PRECISION_z) || defined(PRECISION_c)
            TESTING_HOSTALLOC( rwork,          float, lrwork);
#endif
            TESTING_MALLOC(    iwork,     magma_int_t, liwork);


            /* Initialize the matrix */
            lapackf77_slarnv( &ione, ISEED, &n2, h_A );
            /* Make diagonal real */
            for(int i=0; i<N; i++) {
                MAGMA_S_SET2REAL( h_A[i*N+i], MAGMA_S_REAL(h_A[i*N+i]) );
            }


            magma_int_t m1 = 0;
            float vl = 0;
            float vu = 0;
            magma_int_t il = 0;
            magma_int_t iu = 0;
            if (range == 'I'){
                il = 1;
                iu = (int) (f*N);
            }

            if(opts.warmup){
                // ==================================================================
                // Warmup using MAGMA
                // ==================================================================
                lapackf77_slacpy( MagmaUpperLowerStr, &N, &N, h_A, &N, h_R, &N );
                if(ngpu==1){
                    printf("calling ssyevdx_2stage 1 GPU\n");
                    magma_ssyevdx_2stage(jobz, range, uplo, N, 
                                    h_R, N, 
                                    vl, vu, il, iu, 
                                    &m1, w1, 
                                    h_work, lwork, 
#if defined(PRECISION_z) || defined(PRECISION_c)
                                    rwork, lrwork, 
#endif         
                                    iwork, liwork, 
                                    &info);
               
                }else{
                    printf("calling ssyevdx_2stage_m %d GPU\n", (int) ngpu);
                    magma_ssyevdx_2stage_m(ngpu, jobz, range, uplo, N, 
                                    h_R, N, 
                                    vl, vu, il, iu, 
                                    &m1, w1, 
                                    h_work, lwork, 
#if defined(PRECISION_z) || defined(PRECISION_c)
                                    rwork, lrwork, 
#endif         
                                    iwork, liwork, 
                                    &info);
                }
            }


            // ===================================================================
            // Performs operation using MAGMA
            // ===================================================================
            lapackf77_slacpy( MagmaUpperLowerStr, &N, &N, h_A, &N, h_R, &N );
            start = get_current_time();
            if(ngpu==1){
                printf("calling ssyevdx_2stage 1 GPU\n");
                magma_ssyevdx_2stage(jobz, range, uplo, N, 
                                h_R, N, 
                                vl, vu, il, iu, 
                                &m1, w1, 
                                h_work, lwork, 
#if defined(PRECISION_z) || defined(PRECISION_c)
                                rwork, lrwork, 
#endif     
                                iwork, liwork, 
                                &info);
           
            }else{
                printf("calling ssyevdx_2stage_m %d GPU\n", (int) ngpu);
                magma_ssyevdx_2stage_m(ngpu, jobz, range, uplo, N, 
                                h_R, N, 
                                vl, vu, il, iu, 
                                &m1, w1, 
                                h_work, lwork, 
#if defined(PRECISION_z) || defined(PRECISION_c)
                                rwork, lrwork, 
#endif     
                                iwork, liwork, 
                                &info);
            }
            end = get_current_time();
            gpu_time = GetTimerValue(start,end)/1000.;

            if ( checkres ) {
                float eps   = lapackf77_slamch("E");
                printf("\n");
                printf("------ TESTS FOR MAGMA SSYEVD ROUTINE -------  \n");
                printf("        Size of the Matrix %d by %d\n", (int) N, (int) N);
                printf("\n");
                printf(" The matrix A is randomly generated for each test.\n");
                printf("============\n");
                printf(" The relative machine precision (eps) is %8.2e\n",eps);
                printf(" Computational tests pass if scaled residuals are less than 60.\n");
              
                /* Check the orthogonality, reduction and the eigen solutions */
                if (jobz == MagmaVec) {
                    info_ortho = check_orthogonality(N, N, h_R, N, eps);
                    info_reduction = check_reduction(uplo, N, 1, h_A, w1, N, h_R, eps);
                }
                printf("------ CALLING LAPACK SSYEVD TO COMPUTE only eigenvalue and verify elementswise -------  \n");
                lapackf77_ssyevd("N", "L", &N, 
                                h_A, &N, w2, 
                                h_work, &lwork, 
#if defined(PRECISION_z) || defined(PRECISION_c)
                                rwork, &lrwork, 
#endif     
                                iwork, &liwork, 
                                &info);
                info_solution = check_solution(N, w2, w1, eps);
              
                if ( (info_solution == 0) & (info_ortho == 0) & (info_reduction == 0) ) {
                    printf("***************************************************\n");
                    printf(" ---- TESTING SSYEVD ...................... PASSED !\n");
                    printf("***************************************************\n");
                }
                else {
                    printf("************************************************\n");
                    printf(" - TESTING SSYEVD ... FAILED !\n");
                    printf("************************************************\n");
                }
            }


            /* =====================================================================
             Print execution time
             =================================================================== */
            printf("%5d %5d     %6.2f\n",
                   (int) N, (int) m1, gpu_time);

            TESTING_FREE(       h_A);
            TESTING_FREE(        w1);
            TESTING_FREE(        w2);
#if defined(PRECISION_z) || defined(PRECISION_c)
            TESTING_HOSTFREE( rwork);
#endif
            TESTING_FREE(     iwork);
            TESTING_HOSTFREE(h_work);
            TESTING_HOSTFREE(   h_R);
        }
        if ( opts.niter > 1 ) {
            printf( "\n" );
        }
    }

    /* Shutdown */
    TESTING_FINALIZE();

    return 0;
}
Example #9
0
extern "C" magma_int_t
magma_ssytrd_sy2sb( char uplo, magma_int_t n, magma_int_t nb,
                    float *a, magma_int_t lda, 
                    float *tau,
                    float *work, magma_int_t lwork,
                    float *dT,
                    magma_int_t threads, magma_int_t *info)
{
/*  -- MAGMA (version 1.3.0) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       November 2012

    Purpose   
    =======   
    SSYTRD_HE2HB reduces a real symmetric matrix A to real symmetric   
    band-diagonal form T by an orthogonal similarity transformation:   
    Q**T * A * Q = T.   
    This version stores the triangular matrices T used in the accumulated
    Householder transformations (I - V T V').

    Arguments   
    =========   
    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    A       (input/output) REAL array, dimension (LDA,N)   
            On entry, the symmetric matrix A.  If UPLO = 'U', the leading   
            N-by-N upper triangular part of A contains the upper   
            triangular part of the matrix A, and the strictly lower   
            triangular part of A is not referenced.  If UPLO = 'L', the   
            leading N-by-N lower triangular part of A contains the lower   
            triangular part of the matrix A, and the strictly upper   
            triangular part of A is not referenced.   
            On exit, if UPLO = 'U', the Upper band-diagonal of A is 
            overwritten by the corresponding elements of the   
            band-diagonal matrix T, and the elements above the band   
            diagonal, with the array TAU, represent the orthogonal   
            matrix Q as a product of elementary reflectors; if UPLO   
            = 'L', the the Lower band-diagonal of A is overwritten by 
            the corresponding elements of the band-diagonal   
            matrix T, and the elements below the band-diagonal, with   
            the array TAU, represent the orthogonal matrix Q as a product   
            of elementary reflectors. See Further Details.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    TAU     (output) REAL array, dimension (N-1)   
            The scalar factors of the elementary reflectors (see Further   
            Details).   

    WORK    (workspace/output) REAL array, dimension (MAX(1,LWORK))   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.  LWORK >= 1.   
            For optimum performance LWORK >= N*NB, where NB is the   
            optimal blocksize.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    dT      (output) REAL array on the GPU, dimension N*NB, 
            where NB is the optimal blocksize.
            On exit dT holds the upper triangular matrices T from the 
            accumulated Householder transformations (I - V T V') used
            in the factorization. The nb x nb matrices T are ordered 
            consecutively in memory one after another.

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    Further Details   
    ===============   
    If UPLO = 'U', the matrix Q is represented as a product of elementary   
    reflectors   

       Q = H(n-1) . . . H(2) H(1).   

    Each H(i) has the form   

       H(i) = I - tau * v * v'

    where tau is a real scalar, and v is a real vector with   
    v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in   
    A(1:i-1,i+1), and tau in TAU(i).   

    If UPLO = 'L', the matrix Q is represented as a product of elementary   
    reflectors   

       Q = H(1) H(2) . . . H(n-1).   

    Each H(i) has the form   

       H(i) = I - tau * v * v'   

    where tau is a real scalar, and v is a real vector with   
    v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),   
    and tau in TAU(i).

    The contents of A on exit are illustrated by the following examples   
    with n = 5:   

    if UPLO = 'U':                       if UPLO = 'L':   

      (  d   e   v2  v3  v4 )              (  d                  )   
      (      d   e   v3  v4 )              (  e   d              )   
      (          d   e   v4 )              (  v1  e   d          )   
      (              d   e  )              (  v1  v2  e   d      )   
      (                  d  )              (  v1  v2  v3  e   d  )   

    where d and e denote diagonal and off-diagonal elements of T, and vi   
    denotes an element of the vector defining H(i).   
    =====================================================================    */

    #define a_ref(a_1,a_2)  ( a  + ((a_2)-1)*( lda) + (a_1)-1)
    #define da_ref(a_1,a_2) (da  + ((a_2)-1)*(ldda) + (a_1)-1)
    #define tau_ref(a_1)    (tau + (a_1)-1)
    #define t_ref(a_1)      (dT  + ((a_1)-1)*(lddt))

    char uplo_[2] = {uplo, 0};

    int ldda = ((n+31)/32)*32;
    int lddt = nb;
   
    float c_neg_one  = MAGMA_S_NEG_ONE;
    float c_neg_half = MAGMA_S_NEG_HALF;
    float c_one  = MAGMA_S_ONE ;
    float c_zero = MAGMA_S_ZERO;
    float  d_one = MAGMA_D_ONE;

    magma_int_t pm, pn, indi, indj, pk;
    magma_int_t pm_old=0, pn_old=0, indi_old=0, indj_old=0;

    int i;
    int lwkopt;
    int lquery;

    *info = 0;
    int upper = lapackf77_lsame(uplo_, "U");
    lquery = lwork == -1;
    if (! upper && ! lapackf77_lsame(uplo_, "L")) {
        *info = -1;
    } else if (n < 0) {
        *info = -2;
    } else if (lda < max(1,n)) {
        *info = -4;
    } else if (lwork < 1 && ! lquery) {
        *info = -9;
    }

    if (*info == 0) {
      /* Determine the block size. */
      lwkopt = n * nb;
      MAGMA_S_SET2REAL( work[0], lwkopt );
    }

    if (*info != 0)
      return *info;
    else if (lquery)
      return *info;

    /* Quick return if possible */
    if (n == 0) {
        work[0] = c_one;
        return *info;
    }

    float *da;
    if (MAGMA_SUCCESS != magma_smalloc( &da, (n + 2*nb)*ldda )) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }

    magma_int_t mklth = min(threads,12);
#if defined(USEMKL)
    mkl_set_num_threads(mklth);
#endif
#if defined(USEACML)
    omp_set_num_threads(mklth);
#endif


    /* Use the first panel of da as work space */
    float *dwork = da+n*ldda;
    float *dW    = dwork + nb*ldda;

    #ifdef TRACING
    char buf[80];
    #endif
    cudaStream_t stream[3];
    magma_queue_create( &stream[0] );
    magma_queue_create( &stream[1] );
    stream[2] = 0;  // default stream
    
    trace_init( 1, 1, 3, stream );

    float *hT = work + lwork - nb*nb;
    lwork -= nb*nb;
    memset( hT, 0, nb*nb*sizeof(float));

    magmablasSetKernelStream( stream[0] );
    cudaEvent_t Pupdate_event;
    cudaEventCreateWithFlags(&Pupdate_event,cudaEventDisableTiming);
    //cudaEventCreate(&Pupdate_event);


    if (upper) {
      printf("SSYTRD_HE2HB is not yet implemented for upper matrix storage. Exit.\n");
      exit(1);

    }else {
        /* Copy the matrix to the GPU */
        if (1 <= n-nb){
            trace_gpu_start( 0, 0, "set", "set A" );
            magma_ssetmatrix_async( (n-nb), (n-nb),
                                    a_ref(nb+1, nb+1),  lda,
                                    da_ref(nb+1, nb+1), ldda, stream[0] );
            trace_gpu_end( 0, 0 );
        }

        /* Reduce the lower triangle of A */
        for (i = 1; i <= n-nb; i += nb) 
        {
             indi = i+nb;
             indj = i;
             pm   = n - i - nb + 1;
             //pn   = min(i+nb-1, n-nb) -i + 1;
             pn   = nb;
             
             /*   Get the current panel (no need for the 1st iteration) */
             if (i > 1 ){
                 // spanel_to_q copy the upper oof diagonal part of 
                 // the matrix to work to be restored later. acctually
                 //  the zero's and one's putted are not used this is only
                 //   because we don't have a function that copy only the
                 //    upper part of A to be restored after copying the 
                 //    lookahead panel that has been computted from GPU to CPU. 
                 spanel_to_q(MagmaUpper, pn-1, a_ref(i, i+1), lda, work);

                 trace_gpu_start( 0, 1, "get", "get panel" );
                 //magma_queue_sync( stream[0] );
                 cudaStreamWaitEvent(stream[1], Pupdate_event, 0);
                 magma_sgetmatrix_async( (pm+pn), pn,
                                         da_ref( i, i), ldda,
                                         a_ref ( i, i), lda, stream[1] );
                 trace_gpu_end( 0, 1 );

                 trace_gpu_start( 0, 2, "syr2k", "syr2k" );
                 magma_ssyr2k(MagmaLower, MagmaNoTrans, pm_old-pn_old, pn_old, c_neg_one,
                      da_ref(indi_old+pn_old, indj_old), ldda,
                      dW + pn_old           , pm_old, d_one,
                      da_ref(indi_old+pn_old, indi_old+pn_old), ldda);
                 trace_gpu_end( 0, 2 );

                 trace_cpu_start( 0, "sync", "sync on 1" );
                 magma_queue_sync( stream[1] );
                 trace_cpu_end( 0 );
                 sq_to_panel(MagmaUpper, pn-1, a_ref(i, i+1), lda, work);
             }

             /* ==========================================================
                QR factorization on a panel starting nb off of the diagonal.
                Prepare the V and T matrices. 
                ==========================================================  */
             #ifdef TRACING
             snprintf( buf, sizeof(buf), "panel %d", i );
             #endif
             trace_cpu_start( 0, "geqrf", buf );
             lapackf77_sgeqrf(&pm, &pn, a_ref(indi, indj), &lda, 
                        tau_ref(i), work, &lwork, info);
             
             /* Form the matrix T */
                         pk=min(pm,pn);
             lapackf77_slarft( MagmaForwardStr, MagmaColumnwiseStr,
                           &pm, &pk, a_ref(indi, indj), &lda,
                           tau_ref(i), hT, &nb);

             /* Prepare V - put 0s in the upper triangular part of the panel
                (and 1s on the diagonal), temporaly storing the original in work */
             spanel_to_q(MagmaUpper, pk, a_ref(indi, indj), lda, work);
             trace_cpu_end( 0 );

             /* Send V from the CPU to the GPU */
             trace_gpu_start( 0, 0, "set", "set V and T" );
             magma_ssetmatrix_async( pm, pk,
                                     a_ref(indi, indj),  lda,
                                     da_ref(indi, indj), ldda, stream[0] );

             /* Send the triangular factor T to the GPU */
             magma_ssetmatrix_async( pk, pk,
                                     hT,       nb,
                                     t_ref(i), lddt, stream[0] );
             trace_gpu_end( 0, 0 );
             
             /* ==========================================================
                Compute W:
                1. X = A (V T)
                2. W = X - 0.5* V * (T' * (V' * X)) 
                ==========================================================  */
             /* dwork = V T */
             trace_cpu_start( 0, "sync", "sync on 0" );
             // this sync is done here to be sure that the copy has been finished
             // because below we made a restore sq_to_panel and this restore need
             // to ensure that the copy has been finished. we did it here to allow
             // overlapp of restore with next gemm and symm.
             magma_queue_sync( stream[0] );
             trace_cpu_end( 0 );
             
             trace_gpu_start( 0, 2, "gemm", "work = V*T" );
             magma_sgemm(MagmaNoTrans, MagmaNoTrans, pm, pk, pk,
                         c_one, da_ref(indi, indj), ldda, 
                         t_ref(i), lddt,
                         c_zero, dwork, pm);
             trace_gpu_end( 0, 2 );
             
             /* dW = X = A*V*T. dW = A*dwork */ 
             trace_gpu_start( 0, 2, "symm", "X = A*work" );
             magma_ssymm(MagmaLeft, uplo, pm, pk,
                         c_one, da_ref(indi, indi), ldda,
                         dwork, pm,
                         c_zero, dW, pm);
             trace_gpu_end( 0, 2 );
             /* restore the panel */
             sq_to_panel(MagmaUpper, pk, a_ref(indi, indj), lda, work);
             
             /* dwork = V*T already ==> dwork' = T'*V'
              * compute T'*V'*X ==> dwork'*W ==>
              * dwork + pm*nb = ((T' * V') * X) = dwork' * X = dwork' * W */
             trace_gpu_start( 0, 2, "gemm", "work = T'*V'*X" );
             magma_sgemm(MagmaTrans, MagmaNoTrans, pk, pk, pm,
                         c_one, dwork, pm, 
                         dW, pm,
                         c_zero, dwork + pm*nb, nb);
             trace_gpu_end( 0, 2 );
             
             /* W = X - 0.5 * V * T'*V'*X
              *   = X - 0.5 * V * (dwork + pm*nb) = W - 0.5 * V * (dwork + pm*nb) */
             trace_gpu_start( 0, 2, "gemm", "W = X - 0.5*V*(T'*V'*X)" );
             magma_sgemm(MagmaNoTrans, MagmaNoTrans, pm, pk, pk,
                         c_neg_half, da_ref(indi, indj), ldda,
                         dwork + pm*nb, nb, 
                         c_one,     dW, pm);
             trace_gpu_end( 0, 2 );

             /* ==========================================================
                Update the unreduced submatrix A(i+ib:n,i+ib:n), using   
                an update of the form:  A := A - V*W' - W*V' 
                ==========================================================  */
             if (i + nb <= n-nb){
                 /* There would be next iteration;
                    do lookahead - update the next panel */
                 trace_gpu_start( 0, 2, "gemm", "gemm 4 next panel left" );
                 magma_sgemm(MagmaNoTrans, MagmaTrans, pm, pn, pn, c_neg_one,
                             da_ref(indi, indj), ldda,
                             dW                , pm, c_one,
                             da_ref(indi, indi), ldda);
                 trace_gpu_end( 0, 2 );
             
                 trace_gpu_start( 0, 2, "gemm", "gemm 5 next panel right" );
                 magma_sgemm(MagmaNoTrans, MagmaTrans, pm, pn, pn, c_neg_one,
                             dW                , pm,
                             da_ref(indi, indj), ldda, c_one,
                             da_ref(indi, indi), ldda);
                 trace_gpu_end( 0, 2 );
                 cudaEventRecord(Pupdate_event, stream[0]);
             }
             else {
                 /* no look-ahead as this is last iteration */
                 trace_gpu_start( 0, 2, "syr2k", "syr2k last iteration" );
                 magma_ssyr2k(MagmaLower, MagmaNoTrans, pk, pk, c_neg_one,
                              da_ref(indi, indj), ldda,
                              dW                , pm, d_one,
                              da_ref(indi, indi), ldda);
                 trace_gpu_end( 0, 2 );
             }
             
             indi_old = indi;
             indj_old = indj;
             pm_old   = pm;
             pn_old   = pn;
        }  // end loop for(i)

        /* Send the last block to the CPU */
        pk = min(pm,pn);
        if (1 <= n-nb){
            spanel_to_q(MagmaUpper, pk-1, a_ref(n-pk+1, n-pk+2), lda, work);
            trace_gpu_start( 0, 2, "get", "get last block" );
            magma_sgetmatrix( pk, pk,
                              da_ref(n-pk+1, n-pk+1), ldda,
                              a_ref(n-pk+1, n-pk+1),  lda );
            trace_gpu_end( 0, 2 );
            sq_to_panel(MagmaUpper, pk-1, a_ref(n-pk+1, n-pk+2), lda, work);
        }
    }// end of LOWER
    
    trace_finalize( "ssytrd_sy2sb.svg", "trace.css" );

    cudaEventDestroy(Pupdate_event);
    magma_queue_destroy( stream[0] );
    magma_queue_destroy( stream[1] );
    magma_free( da );
    MAGMA_S_SET2REAL( work[0], lwkopt );
    magmablasSetKernelStream( 0 );
    
#if defined(USEMKL)
    mkl_set_num_threads(1);
#endif
#if defined(USEACML)
    omp_set_num_threads(1);
#endif
    

    return *info;
} /* ssytrd_sy2sb_ */
Example #10
0
int main( int argc, char** argv)
{
    real_Double_t gflops, gpu_perf, cpu_perf, gpu_time, cpu_time;
    float *hA, *hR;
    magmaFloat_ptr dA;
    magma_int_t N = 0, n2, lda, ldda;
    magma_int_t size[10] =
    { 1024, 2048, 3072, 4032, 5184, 6048, 7200, 8064, 8928, 10560 };

    magma_int_t i, info;
    float mz_one = MAGMA_S_NEG_ONE;
    magma_int_t ione     = 1;
    magma_int_t ISEED[4] = {0,0,0,1};
    float      work[1], matnorm, diffnorm;

    if (argc != 1) {
        for(i = 1; i<argc; i++) {
            if (strcmp("-N", argv[i])==0)
                N = atoi(argv[++i]);
        }
        if (N>0) size[0] = size[9] = N;
        else exit(1);
    }
    else {
        printf("\nUsage: \n");
        printf("  testing_spotrf_gpu -N %d\n\n", 1024);
    }

    /* Initialize */
    magma_queue_t  queue;
    magma_device_t device[ MagmaMaxGPUs ];
    int num = 0;
    magma_err_t err;
    magma_init();
    err = magma_get_devices( device, MagmaMaxGPUs, &num );
    if ( err != 0 || num < 1 ) {
        fprintf( stderr, "magma_get_devices failed: %d\n", err );
        exit(-1);
    }
    err = magma_queue_create( device[0], &queue );
    if ( err != 0 ) {
        fprintf( stderr, "magma_queue_create failed: %d\n", err );
        exit(-1);
    }

    /* Allocate memory for the largest matrix */
    N    = size[9];
    n2   = N * N;
    ldda = ((N+31)/32) * 32;
    TESTING_MALLOC_CPU( hA, float, n2 );
    TESTING_MALLOC_PIN( hR, float, n2 );
    TESTING_MALLOC_DEV( dA, float, ldda*N );

    printf("\n\n");
    printf("  N    CPU GFlop/s (sec)    GPU GFlop/s (sec)    ||R_magma-R_lapack||_F / ||R_lapack||_F\n");
    printf("========================================================================================\n");
    for(i=0; i<10; i++) {
        N   = size[i];
        lda = N;
        n2  = lda*N;
        ldda = ((N+31)/32)*32;
        gflops = FLOPS( (float)N ) * 1e-9;

        /* Initialize the matrix */
        lapackf77_slarnv( &ione, ISEED, &n2, hA );
        /* Symmetrize and increase the diagonal */
        for( int i = 0; i < N; ++i ) {
            MAGMA_S_SET2REAL( hA(i,i), MAGMA_S_REAL(hA(i,i)) + N );
            for( int j = 0; j < i; ++j ) {
                hA(i, j) = MAGMA_S_CNJG( hA(j,i) );
            }
        }
        lapackf77_slacpy( MagmaFullStr, &N, &N, hA, &lda, hR, &lda );

        /* Warm up to measure the performance */
        magma_ssetmatrix( N, N, hA, 0, lda, dA, 0, ldda, queue );
        magma_spotrf_gpu( MagmaUpper, N, dA, 0, ldda, &info, queue );

        /* ====================================================================
           Performs operation using MAGMA
           =================================================================== */
        magma_ssetmatrix( N, N, hA, 0, lda, dA, 0, ldda, queue );
        gpu_time = magma_wtime();
        magma_spotrf_gpu( MagmaUpper, N, dA, 0, ldda, &info, queue );
        gpu_time = magma_wtime() - gpu_time;
        if (info != 0)
            printf( "magma_spotrf had error %d.\n", info );

        gpu_perf = gflops / gpu_time;

        /* =====================================================================
           Performs operation using LAPACK
           =================================================================== */
        cpu_time = magma_wtime();
        lapackf77_spotrf( MagmaUpperStr, &N, hA, &lda, &info );
        cpu_time = magma_wtime() - cpu_time;
        if (info != 0)
            printf( "lapackf77_spotrf had error %d.\n", info );

        cpu_perf = gflops / cpu_time;

        /* =====================================================================
           Check the result compared to LAPACK
           |R_magma - R_lapack| / |R_lapack|
           =================================================================== */
        magma_sgetmatrix( N, N, dA, 0, ldda, hR, 0, lda, queue );
        matnorm = lapackf77_slange("f", &N, &N, hA, &lda, work);
        blasf77_saxpy(&n2, &mz_one, hA, &ione, hR, &ione);
        diffnorm = lapackf77_slange("f", &N, &N, hR, &lda, work);
        printf( "%5d     %6.2f (%6.2f)     %6.2f (%6.2f)         %e\n",
                N, cpu_perf, cpu_time, gpu_perf, gpu_time, diffnorm / matnorm );

        if (argc != 1)
            break;
    }

    /* clean up */
    TESTING_FREE_CPU( hA );
    TESTING_FREE_PIN( hR );
    TESTING_FREE_DEV( dA );
    magma_queue_destroy( queue );
    magma_finalize();
}