Example #1
0
Val   make_posthandler_resumption_fate_from_task   (				// Called once from this file, once from   src/c/main/run-mythryl-code-and-runtime-eventloop.c
    //==========================================
    //
    Task* task,
    Val*  resume							// Either   resume_after_handling_signal   or   resume_after_handling_software_generated_periodic_event
){									// from a platform-dependent assembly file like    src/c/machine-dependent/prim.intel32.asm  
    // 
    // Build the resume fate for a signal or poll event handler.
    // This closure contains the address of the resume entry-point and
    // the registers from the Mythryl state.
    //
    // Caller guarantees us roughly 4KB available space.
    //
    // This gets called from make_mythryl_signal_handler_arg() below,
    // and also from  src/c/main/run-mythryl-code-and-runtime-eventloop.c

    // Allocate the resumption closure:
    //
    set_slot_in_nascent_heapchunk(task,  0, MAKE_TAGWORD(10, PAIRS_AND_RECORDS_BTAG));
    set_slot_in_nascent_heapchunk(task,  1, PTR_CAST( Val, resume));
    set_slot_in_nascent_heapchunk(task,  2, task->argument);
    set_slot_in_nascent_heapchunk(task,  3, task->fate);
    set_slot_in_nascent_heapchunk(task,  4, task->current_closure);
    set_slot_in_nascent_heapchunk(task,  5, task->link_register);
    set_slot_in_nascent_heapchunk(task,  6, task->program_counter);
    set_slot_in_nascent_heapchunk(task,  7, task->exception_fate);
    set_slot_in_nascent_heapchunk(task,  8, task->callee_saved_registers[0]);				// John Reppy says not to do: set_slot_in_nascent_heapchunk(task,  8, task->current_thread);
    set_slot_in_nascent_heapchunk(task,  9, task->callee_saved_registers[1]);
    set_slot_in_nascent_heapchunk(task, 10, task->callee_saved_registers[2]);
    //
    return commit_nascent_heapchunk(task, 10);
}
Example #2
0
void   save_c_state   (Task* task, ...)   {
    // ============
    // 
    // Build a return closure that will save
    // a collection of Mythryl values being
    // used by C.  The Mythryl values are
    // passed by reference with NULL as termination.
    //
    // This fn is called only in:
    //
    //     src/c/main/load-compiledfiles.c

    va_list ap;

    Val*    vp;

    va_start (ap, task);
    int  n;
    for (n = 0; (vp = va_arg(ap, Val *)) != NULL;  n++) {
	continue;
    }
    va_end (ap);

    va_start (ap, task);
    LIB7_AllocWrite (task, 0, MAKE_TAGWORD(n, PAIRS_AND_RECORDS_BTAG));
    for (int i = 1;  i <= n;  i++) {
	vp = va_arg (ap, Val *);
        LIB7_AllocWrite (task, i, *vp);
    }
    task->callee_saved_registers[0]   = LIB7_Alloc(task, n);
    task->fate    = PTR_CAST( Val, return_to_c_level_c);
    va_end (ap);
}
Example #3
0
Val   _lib7_P_TTY_tcgetattr   (Task* task,  Val arg)   {
    //=====================
    //
    // Mythryl type:   Int -> (Unt, Unt, Unt, Unt, String, Unt, Unt)
    //
    // Get parameters associated with tty.
    //
    // NOTE: the calls to cfget[io] speed by making the code more OS-dependent
    // and using the package of struct termios.
    //
    // This fn gets bound as   tcgetattr   in:
    //
    //     src/lib/std/src/psx/posix-tty.pkg

									    ENTER_MYTHRYL_CALLABLE_C_FN(__func__);

    int fd = TAGGED_INT_TO_C_INT( arg );

    struct termios  data;

    RELEASE_MYTHRYL_HEAP( task->hostthread, __func__, NULL);
	//
	int status =  tcgetattr( fd, &data );
	//
    RECOVER_MYTHRYL_HEAP( task->hostthread, __func__ );

    if (status < 0)   return RAISE_SYSERR__MAY_HEAPCLEAN(task, status, NULL);

    Val iflag  =  make_one_word_unt(task, data.c_iflag  );			Roots roots1 = { &iflag,   NULL   };
    Val oflag  =  make_one_word_unt(task, data.c_oflag  );			Roots roots2 = { &oflag,  &roots1 };
    Val cflag  =  make_one_word_unt(task, data.c_cflag  );			Roots roots3 = { &cflag,  &roots2 };
    Val lflag  =  make_one_word_unt(task, data.c_lflag  );			Roots roots4 = { &lflag,  &roots3 };

    Val ispeed =  make_one_word_unt(task, cfgetispeed (&data) );		Roots roots5 = { &ispeed, &roots4 };
    Val ospeed =  make_one_word_unt(task, cfgetospeed (&data) );		Roots roots6 = { &ospeed, &roots5 };
    
    Val cc = allocate_nonempty_ascii_string__may_heapclean (task, NCCS, &roots6 );

    memcpy(
	GET_VECTOR_DATACHUNK_AS( void*, cc ),
        data.c_cc,
	NCCS
    );

    // Construct the result vector:
    //
    set_slot_in_nascent_heapchunk   (task, 0, MAKE_TAGWORD(PAIRS_AND_RECORDS_BTAG, 7));
    set_slot_in_nascent_heapchunk   (task, 1, iflag);
    set_slot_in_nascent_heapchunk   (task, 2, oflag);
    set_slot_in_nascent_heapchunk   (task, 3, cflag);
    set_slot_in_nascent_heapchunk   (task, 4, lflag);
    set_slot_in_nascent_heapchunk   (task, 5, cc);
    set_slot_in_nascent_heapchunk   (task, 6, ispeed);
    set_slot_in_nascent_heapchunk   (task, 7, ospeed);

    Val result = commit_nascent_heapchunk (task, 7);

									    EXIT_MYTHRYL_CALLABLE_C_FN(__func__);
    return result;
}
Example #4
0
// opengl-client.api        type:   (None -- not exported to opengl-client.api level.)
// opengl-client-driver.api type:   Void -> (Int, Bool)
//
Val   _lib7_Opengl_get_queued_bool_callback   (Task *task,  Val arg)   {
    //==================================
    //
    Callback_Queue_Entry e = get_next_queued_callback ();
    //
    if (e.callback_type != QUEUED_BOOL_CALLBACK) {
        strcpy( text_buf, "get_queued_bool_callback: Next callback not Bool." );
        moan_and_die();
    }

    set_slot_in_nascent_heapchunk(  task, 0, MAKE_TAGWORD(PAIRS_AND_RECORDS_BTAG, 2));
    set_slot_in_nascent_heapchunk(  task, 1, TAGGED_INT_FROM_C_INT( e.callback_number ));
    set_slot_in_nascent_heapchunk(  task, 2, e.entry.bool_value ?  HEAP_TRUE : HEAP_FALSE );
    //
    return commit_nascent_heapchunk(task, 2);
}
Example #5
0
static Val   allocate_heap_ram_for_pickle   (Task*  task,  Vunt  bytesize) {
    //       ============================
    //
    // Allocate a bytevector to hold the pickled datastructure.

//  Heap* heap   =  task->heap;
    int	  size_in_words =  BYTES_TO_WORDS( bytesize );
    Val	  tagword   =  MAKE_TAGWORD( size_in_words, FOUR_BYTE_ALIGNED_NONPOINTER_DATA_BTAG );

    // We probably should allocate space in the hugechunk region for these chunks.	XXX BUGGO FIXME
    //
    if (bytesize >= agegroup0_buffer_size_in_bytes(task)-(8*ONE_K_BINARY))   die ("Pickling %d bytes not supported -- increase agegroup0 buffer size.", bytesize);	// XXX BUGGO FIXME

    set_slot_in_nascent_heapchunk( task, 0, tagword );

    return   commit_nascent_heapchunk( task, size_in_words );
}
Example #6
0
// opengl-client.api        type:   (None -- not exported to opengl-client.api level.)
// opengl-client-driver.api type:   Void -> (Int,     Int)
//                                 callback x      y
//
static Val   do__get_queued_int_pair_callback   (Task *task, Val arg)   {
    //       ================================
    Callback_Queue_Entry e = get_next_queued_callback ();

printf("do__get_queued_int_pair_callback called\n");
    if (e.callback_type != QUEUED_INT_PAIR_CALLBACK) {
        strcpy( text_buf, "get_queued_int_pair_callback: Next callback not Int_Pair." );
        moan_and_die();
    }

printf("do__get_queued_int_pair_callback called returning a record.\n");
    set_slot_in_nascent_heapchunk(  task, 0, MAKE_TAGWORD(PAIRS_AND_RECORDS_BTAG, 3)      );
    set_slot_in_nascent_heapchunk(  task, 1, TAGGED_INT_FROM_C_INT( e.callback_number    ));
    set_slot_in_nascent_heapchunk(  task, 2, TAGGED_INT_FROM_C_INT( e.entry.int_pair.x	 ));
    set_slot_in_nascent_heapchunk(  task, 3, TAGGED_INT_FROM_C_INT( e.entry.int_pair.y ));
    //
    return commit_nascent_heapchunk(task, 3);
}
Example #7
0
// opengl-client.api        type:   (None -- not exported to opengl-client.api level.)
// opengl-client-driver.api type:   Void -> (Int, Float)
//
Val   _lib7_Opengl_get_queued_float_callback   (Task* task, Val arg)  {
    //===================================
    //
    Callback_Queue_Entry e = get_next_queued_callback ();
    //
    if (e.callback_type != QUEUED_FLOAT_CALLBACK) {
        strcpy( text_buf, "get_queued_float_callback: Next callback not Float." );
        moan_and_die();
    }

    double d =  e.entry.float_value;

    Val boxed_double =   make_float64(task, d );					// make_float64		is from   src/c/h/make-strings-and-vectors-etc.h

    set_slot_in_nascent_heapchunk(  task, 0, MAKE_TAGWORD(PAIRS_AND_RECORDS_BTAG, 2));
    set_slot_in_nascent_heapchunk(  task, 1, TAGGED_INT_FROM_C_INT( e.callback_number ));
    set_slot_in_nascent_heapchunk(  task, 2, boxed_double );
    return commit_nascent_heapchunk(task, 2);
}
Example #8
0
Val   _lib7_Date_greanwich_mean_time   (Task* task,  Val arg) {
    //==============================
    //
    // Mythryl type:  one_word_int::Int -> (Int, Int, Int, Int, Int, Int, Int, Int, Int)
    //
    // Takes a UTC time value (in seconds), and converts it to a 9-tuple with
    // the fields:  tm_sec, tm_min, tm_hour, tm_mday, tm_mon, tm_year, tm_wday,
    // tm_yday, and tm_isdst.
    //
    // This fn gets bound to   gm_time'   in:
    //
    //     src/lib/std/src/date.pkg

									    ENTER_MYTHRYL_CALLABLE_C_FN("_lib7_Date_greanwich_mean_time");

    time_t t =  (time_t) INT1_LIB7toC(arg);

    RELEASE_MYTHRYL_HEAP( task->pthread, "_lib7_Date_greanwich_mean_time", NULL );
	//
        struct tm* tm =  gmtime( &t );
	//
    RECOVER_MYTHRYL_HEAP( task->pthread, "_lib7_Date_greanwich_mean_time" );

    if (tm == NULL) return RAISE_SYSERR__MAY_HEAPCLEAN(task,0,NULL);

    set_slot_in_nascent_heapchunk(task, 0, MAKE_TAGWORD(PAIRS_AND_RECORDS_BTAG, 9));
    set_slot_in_nascent_heapchunk(task, 1, TAGGED_INT_FROM_C_INT(tm->tm_sec));
    set_slot_in_nascent_heapchunk(task, 2, TAGGED_INT_FROM_C_INT(tm->tm_min));
    set_slot_in_nascent_heapchunk(task, 3, TAGGED_INT_FROM_C_INT(tm->tm_hour));
    set_slot_in_nascent_heapchunk(task, 4, TAGGED_INT_FROM_C_INT(tm->tm_mday));
    set_slot_in_nascent_heapchunk(task, 5, TAGGED_INT_FROM_C_INT(tm->tm_mon));
    set_slot_in_nascent_heapchunk(task, 6, TAGGED_INT_FROM_C_INT(tm->tm_year));
    set_slot_in_nascent_heapchunk(task, 7, TAGGED_INT_FROM_C_INT(tm->tm_wday));
    set_slot_in_nascent_heapchunk(task, 8, TAGGED_INT_FROM_C_INT(tm->tm_yday));
    set_slot_in_nascent_heapchunk(task, 9, TAGGED_INT_FROM_C_INT(tm->tm_isdst));

    return commit_nascent_heapchunk(task, 9);
}
Example #9
0
static void   load_compiled_file__may_heapclean   (
    //        =================================
    //
    Task*  task,
    char*  filename,
    Roots* extra_roots
){
    ///////////////////////////////////////////////////////
    // Loading an compiledfile is a five-step process:
    //
    // 1. Read the header, which holds various
    //    numbers we need such as the number of
    //    code segments in the compiledfile.
    //
    // 2. Locate all the values imported by this
    //    compiledfile from the export lists of
    //    previously loaded compiled_files.
    //      For subsequent ease of access, we
    //    construct an 'import record' (a vector)
    //    holding all these values packed
    //    consecutively.
    //
    ///////////////////////////////////////////////////////

    FILE* file;
    int   i;
    int   bytes_of_code_remaining;
    int   bytes_of_exports = 0;

    Compiledfile_Header   header;

    Picklehash	export_picklehash;

    Int1         segment_bytesize;
    Int1         entrypoint_offset_in_bytes;

    size_t          archive_offset;
    char*           compiledfile_filename = filename;
    

    // If 'filename' is a "library@offset:compiledfile" triple,
    // parse it into its three parts:
    //
    {   char* at_ptr
            =
            strchr (filename, '@');

	if  (!at_ptr) {

	    archive_offset = 0; 	// We're loading a bare .compiled, not one packed within a library archive.

	} else {

            char* colon_ptr = strchr (at_ptr + 1, ':');
	    if   (colon_ptr) {
		 *colon_ptr = '\0';

		 compiledfile_filename = colon_ptr + 1;
	    }

	    archive_offset = strtoul (at_ptr + 1, NULL, 0);        // XXX SUCKO FIXME Needs more sanity checking.
	    *at_ptr = '\0';
	}
    }

    // Log all files loaded, for diagnostic/information purposes:
    //
    if (!archive_offset) {
        //
	fprintf (
	    log_fd ? log_fd : stderr,
	    "                    load-compiledfiles.c:   Loading   object file   %s\n",
		   filename
	);

    } else {

	fprintf (
	    log_fd ? log_fd : stderr,
	    "                    load-compiledfiles.c:   Loading   offset        %8d in lib  %s  \tnamely object file %s\n",
	    archive_offset,
	    filename,
	    compiledfile_filename
	);
    }

    // Open the file:
    //
    file = open_file( filename, TRUE );            if (!file)   print_stats_and_exit( 1 );

    // If an offset is given (which is to say, if we are loading
    // an compiledfile packed within a library archive) then
    // then seek to the beginning of the section that contains
    // the image of our compiledfile:
    //
    if (archive_offset) {
        //
        if (fseek (file, archive_offset, SEEK_SET) == -1) {
	    //
	    die ("Cannot seek on archive file \"%s@%ul\": %s", filename, (unsigned long) archive_offset, strerror(errno) );
        }
    }

    // Get the header:
    //
    read_n_bytes_from_file( file, &header, sizeof(Compiledfile_Header), filename );

    // The integers in the header are kept in big-endian byte 
    // order, so convert them if we're on a little-endian box:
    //
    header.number_of_imported_picklehashes	= BIGENDIAN_TO_HOST( header.number_of_imported_picklehashes	);
    header.number_of_exported_picklehashes	= BIGENDIAN_TO_HOST( header.number_of_exported_picklehashes	);
    header.bytes_of_import_tree			= BIGENDIAN_TO_HOST( header.bytes_of_import_tree            	);
    header.bytes_of_dependency_info		= BIGENDIAN_TO_HOST( header.bytes_of_dependency_info	 	);
    header.bytes_of_inlinable_code		= BIGENDIAN_TO_HOST( header.bytes_of_inlinable_code	 	);
    header.reserved				= BIGENDIAN_TO_HOST( header.reserved			 	);
    header.pad             			= BIGENDIAN_TO_HOST( header.pad       			 	);
    header.bytes_of_compiled_code		= BIGENDIAN_TO_HOST( header.bytes_of_compiled_code		);
    header.bytes_of_symbolmapstack		= BIGENDIAN_TO_HOST( header.bytes_of_symbolmapstack		);

    // XXX SUCKO FIXME These days 99% of the market is little-endian,
    // so should either change to always little-endian, or else
    // (better) always use host system's native byte ordering.
    // Ideally we should be able to just mmap the .compiledfile into
    // memory and be ready to go, with no bit-fiddling needed at all.



    // Read the 'import tree' and locate all the thus-specified
    // needed values located in the export tree of previously-
    // loaded compiled_files:
    //
    int imports_record_slot_count
        =
        header.number_of_imported_picklehashes + 1;

    // Make sure we have enough free heap space to allocate 
    // our 'import record' vector of imported values:
    //
    if (need_to_call_heapcleaner (task, REC_BYTESIZE(imports_record_slot_count))) {
        //
	call_heapcleaner_with_extra_roots (task, 0, extra_roots );
    }

    // Write the header for our 'import record', which will be 
    // a Mythryl record with 'imports_record_slot_count' slots:
    //
    set_slot_in_nascent_heapchunk (task, 0, MAKE_TAGWORD(imports_record_slot_count, PAIRS_AND_RECORDS_BTAG));

    // Locate all the required import values and
    // save them in our nascent on-heap 'import record':
    //
    {   int    next_imports_record_slot_to_fill = 1;

        // Over all previously loaded .compiled files
        // from which we import values:
        //
	while (next_imports_record_slot_to_fill < imports_record_slot_count) {
	    //
	    Picklehash	picklehash_naming_previously_loaded_compiled_file;

	    read_n_bytes_from_file( file, &picklehash_naming_previously_loaded_compiled_file, sizeof(Picklehash), filename );

            // Locate all needed imports exported by that
            // particular pre-loaded compiledfile:
            //
	    next_imports_record_slot_to_fill
		=
		fetch_imports (
		    task,
		    file,
		    filename,
		    next_imports_record_slot_to_fill,
		    picklehash_to_exports_tree( &picklehash_naming_previously_loaded_compiled_file )
		);
	}
    }

    // Put a dummy valid value (NIL) in the last slot,
    // just so the cleaner won't go bananas if it
    // looks at that slot:
    //
    set_slot_in_nascent_heapchunk( task, imports_record_slot_count, HEAP_NIL );

    // Complete the above by actually allocating
    // the 'import record' on the Mythryl heap:
    //
    Val import_record =  commit_nascent_heapchunk( task, imports_record_slot_count );			// Contains all the values we import from other compiled_files.

    Roots roots1 = { &import_record, extra_roots };

    // Get the export picklehash for this compiledfile.
    // This is the name by which other compiled_files will
    // refer to us in their turn as they are loaded.
    //
    // Some compiled_files may not have such a name, in
    // which case they have no directly visible exported
    // values.  (This typically means that they are a
    // plug-in which installs pointers to itself in some
    // other module's datastructures, as a side-effect
    // during loading.)
    //
    if (header.number_of_exported_picklehashes == 1) {

	bytes_of_exports = sizeof( Picklehash );

	read_n_bytes_from_file( file, &export_picklehash, bytes_of_exports, filename );

    } else if (header.number_of_exported_picklehashes != 0) {

	die ("Number of exported picklehashes is %d (should be 0 or 1)",
            (int)header.number_of_exported_picklehashes
        );
    }

    // Seek to the first "code segment" within our compiledfile image.
    // This contains bytecoded instructions interpretable by
    // make-package-literals-via-bytecode-interpreter.c which construct all the needed constant
    // lists etc for this compiledfile.  (If we stored them as actual
    // lists, we'd have to do relocations on all the pointers in
    // those structures at this point.  The bytecode solution seems
    // simpler.)
    {
        // XXX BUGGO FIXME A 'long' is 32 bits on 32-bit Linux,
        // but files longer than 2GB (signed long!) are often
        // supported.  We probably should use fseeko in those
        // cases and then
        //    #define _FILE_OFFSET_BITS 64
        // so as to support large (well, *huge* :) library files.
        // See the manpage for details.
        // This probably won't be a frequent problem in practice
        // for a few years yet, and by then we'll probably be
        // running 64-bit Linux anyhow, so not a high priority.
        //
	long file_offset = archive_offset
	                 + sizeof(Compiledfile_Header)
			 + header.bytes_of_import_tree
	                 + bytes_of_exports
	                 + header.bytes_of_dependency_info
			 + header.bytes_of_inlinable_code
			 + header.reserved
	                 + header.pad;

	if (fseek(file, file_offset, SEEK_SET) == -1) {
	    //
	    die ("cannot seek on .compiled file \"%s\": %s", filename, strerror(errno) );
        }
    }

    ////////////////////////////////////////////////////////////////
    // In principle, a .compiled file can contain any number of
    // code segments, so we track the number of bytes of code
    // left to process:  When it hits zero, we've done all
    // the code segments.
    //
    // In practice, we currently always have exactly two
    // code segments, the first of which contains the byte-
    // coded logic constructing our literals (constants
    // -- see src/c/heapcleaner/make-package-literals-via-bytecode-interpreter.c)
    // and the second of which contains all our compiled
    // native code for the compiledfile, including that
    // which constructs our tree of exported (directly externally
    // visible) values.
    ////////////////////////////////////////////////////////////////

    bytes_of_code_remaining
	=
	header.bytes_of_compiled_code;

    // Read the size and the dummy entry point for the
    // first code segment (literal-constructing bytecodes).
    // The entrypoint offset of this first segment is always
    // zero, which is why we ignore it here:
    //
    read_n_bytes_from_file( file, &segment_bytesize, sizeof(Int1), filename );
    //
    segment_bytesize = BIGENDIAN_TO_HOST( segment_bytesize );
    //
    read_n_bytes_from_file( file, &entrypoint_offset_in_bytes, sizeof(Int1), filename );
    //	
    // entrypoint_offset_in_bytes = BIGENDIAN_TO_HOST( entrypoint_offset_in_bytes );

    bytes_of_code_remaining -=  segment_bytesize + 2 * sizeof(Int1);
    //
    if (bytes_of_code_remaining < 0) {
	//
	die ("format error (data size mismatch) in .compiled file \"%s\"", filename);
    }


    Val	    mythryl_result = HEAP_VOID;


    if (segment_bytesize > 0) {
	//
	Unt8* data_chunk =  MALLOC_VEC( Unt8, segment_bytesize );

	read_n_bytes_from_file( file, data_chunk, segment_bytesize, filename );

	mythryl_result = make_package_literals_via_bytecode_interpreter__may_heapclean (task, data_chunk, segment_bytesize, &roots1);

	FREE(data_chunk);
    }

    // Do a functional update of the last element of the import_record:
    //
    for (i = 0;  i < imports_record_slot_count;  i++) {
	//
	set_slot_in_nascent_heapchunk(task, i, PTR_CAST(Val*, import_record)[i-1]);	// <============ last use of import_record
    }
    set_slot_in_nascent_heapchunk( task, imports_record_slot_count, mythryl_result );
    mythryl_result = commit_nascent_heapchunk( task, imports_record_slot_count );

    Roots roots2 = { &mythryl_result, extra_roots };					// 'extra_roots' not '&roots1' because import_record is dead here.

    // Do a garbage collection, if necessary:
    //
    if (need_to_call_heapcleaner( task, PICKLEHASH_BYTES + REC_BYTESIZE(5)) ) {
        //
	call_heapcleaner_with_extra_roots (task, 0, &roots2 );
    }

    while (bytes_of_code_remaining > 0) {						// In practice, we always execute this loop exactly once.
	//
        // Read the size and entry point for this code chunk:

	read_n_bytes_from_file( file, &segment_bytesize, sizeof(Int1), filename );
      
	segment_bytesize =  BIGENDIAN_TO_HOST( segment_bytesize );

	read_n_bytes_from_file( file, &entrypoint_offset_in_bytes, sizeof(Int1), filename );

	entrypoint_offset_in_bytes =  BIGENDIAN_TO_HOST( entrypoint_offset_in_bytes );

        // How much more?
        //
	bytes_of_code_remaining -=  segment_bytesize + 2 * sizeof(Int1);
	//
	if (bytes_of_code_remaining < 0)   die ("format error (code size mismatch) in .compiled file \"%s\"", filename);

        // Allocate heap space and read code chunk:
	//
	Val code_chunk = allocate_nonempty_code_chunk (task, segment_bytesize);
	//
	read_n_bytes_from_file( file, PTR_CAST(char*, code_chunk), segment_bytesize, filename );

        // Flush the instruction cache, so CPU will see
        // our newly loaded code.  (To gain speed, and
        // simplify the hardware design, most modern CPUs
        //  assume that code is never modified on the fly,
        // or at least not without manually  flushing the
        // instruction cache this way.)
	//
	flush_instruction_cache (PTR_CAST(char*, code_chunk), segment_bytesize);
      
        // Create closure, taking entry point into account:
	//
	{   Val closure = make_one_slot_record(  task,  PTR_CAST( Val, PTR_CAST (char*, code_chunk) + entrypoint_offset_in_bytes)  );

	    // Apply the closure to the import picklehash vector.
	    //
	    // This actually executes all the top-level code for
	    // the compile unit, which is to say that if the
	    // source for our compiledfile looked something like
	    //
	    // package my_pkg {
	    //     my _ = file::print "Hello, world!\n";
	    // };
	    //
	    // then when we do the following 'apply' call, you'd see
	    //
	    // Hello, world!
	    //
	    // printed on the standard output.
	    //
	    // In addition, invisible compiler-generated code
	    // constructs and returns the tree of exports from
	    // our compiledfile.
	    //
	    save_c_state                                          (task, extra_roots);				// We do NOT want mythryl_result on the extra_roots list here.
	    mythryl_result =  run_mythryl_function__may_heapclean (task, closure, mythryl_result, TRUE, NULL); 	// run_mythryl_function__may_heapclean		def in   src/c/main/run-mythryl-code-and-runtime-eventloop.c
	    restore_c_state					  (task, extra_roots);
	}

	if (need_to_call_heapcleaner (task, PICKLEHASH_BYTES+REC_BYTESIZE(5))) {
	    //
	    call_heapcleaner_with_extra_roots (task, 0, &roots2 );
        }
    }

    // Publish this compiled_file's exported-values tree
    // for the benefit of compiled_files loaded later:
    //
    if (bytes_of_exports) {
	//
	register_compiled_file_exports__may_heapclean (
            task,
            &export_picklehash,     // key -- the 16-byte picklehash naming this compiledfile.
            mythryl_result,         // val -- the tree of exported Mythryl values.
	    extra_roots
        );
    }

    fclose( file );
}                                   // load_compiled_file__may_heapclean
Val   make_package_literals_via_bytecode_interpreter   (Task* task,   Unt8* bytecode_vector,   int bytecode_vector_length_in_bytes)   {
    //==============
    //
    // NOTE: We allocate all of the chunks in agegroup 1,
    // but allocate the vector of literals in agegroup0.
    //
    // This fn gets exported to the Mythryl level as
    //
    //     make_package_literals_via_bytecode_interpreter
    // in
    //     src/lib/compiler/execution/code-segments/code-segment.pkg
    // via
    //     src/c/lib/heap/make-package-literals-via-bytecode-interpreter.c
    //
    // Our ultimate invocation is in
    //
    //     src/lib/compiler/execution/main/execute.pkg


    int pc = 0;

    // Check that sufficient space is available for the
    // literal chunk that we are about to allocate.
    // Note that the cons cell has already been accounted
    // for in space_available (but not in space_needed).
    //
    #define GC_CHECK										\
	do {											\
	    if (space_needed > space_available							\
            &&  need_to_call_heapcleaner( task, space_needed + LIST_CONS_CELL_BYTESIZE)		\
            ){											\
		call_heapcleaner_with_extra_roots (task, 0, (Val *)&bytecode_vector, &stk, NULL);	\
		space_available = 0;								\
												\
	    } else {										\
												\
		space_available -= space_needed;						\
	    }											\
	} while (0)

    #ifdef DEBUG_LITERALS
	debug_say("make_package_literals_via_bytecode_interpreter: bytecode_vector = %#x, bytecode_vector_length_in_bytes = %d\n", bytecode_vector, bytecode_vector_length_in_bytes);
    #endif

    if (bytecode_vector_length_in_bytes <= 8)   return HEAP_NIL;

    Val_Sized_Unt  magic
	=
	GET32(bytecode_vector);   pc += 4;

    Val_Sized_Unt  max_depth							/* This variable is currently unused, so suppress 'unused var' compiler warning: */   __attribute__((unused))
	=
	GET32(bytecode_vector);   pc += 4;

    if (magic != V1_MAGIC) {
	die("bogus literal magic number %#x", magic);
    }

    Val	stk = HEAP_NIL;

    int space_available = 0;

    for (;;) {
	//
	ASSERT(pc < bytecode_vector_length_in_bytes);

	space_available -= LIST_CONS_CELL_BYTESIZE;	// Space for stack cons cell.

	if (space_available < ONE_K_BINARY) {
	    //
	    if (need_to_call_heapcleaner(task, 64*ONE_K_BINARY)) {
		//
		call_heapcleaner_with_extra_roots (task, 0, (Val *)&bytecode_vector, &stk, NULL);
            }
	    space_available = 64*ONE_K_BINARY;
	}


	switch (bytecode_vector[ pc++ ]) {
	    //
	case I_INT:
	    {	int i = GET32(bytecode_vector);	pc += 4;

		#ifdef DEBUG_LITERALS
		    debug_say("[%2d]: INT(%d)\n", pc-5, i);
		#endif

		LIST_CONS(task, stk, TAGGED_INT_FROM_C_INT(i), stk);
	    }
	    break;

	case I_RAW32:
	    {
		int i = GET32(bytecode_vector);	pc += 4;

		#ifdef DEBUG_LITERALS
		    debug_say("[%2d]: RAW32[%d]\n", pc-5, i);
		#endif

		Val               result;
		INT1_ALLOC(task, result, i);

		LIST_CONS(task, stk, result, stk);
		space_available -= 2*WORD_BYTESIZE;
	    }
	    break;

	case I_RAW32L:
	    {
		int n = GET32(bytecode_vector);	pc += 4;

		#ifdef DEBUG_LITERALS
		debug_say("[%2d]: RAW32L(%d) [...]\n", pc-5, n);
		#endif

		ASSERT(n > 0);

		int space_needed = 4*(n+1);
		GC_CHECK;

		LIB7_AllocWrite (task, 0, MAKE_TAGWORD(n, FOUR_BYTE_ALIGNED_NONPOINTER_DATA_BTAG));

		for (int j = 1;  j <= n;  j++) {
		    //
		    int i = GET32(bytecode_vector);	pc += 4;

		    LIB7_AllocWrite (task, j, (Val)i);
		}

		Val result =  LIB7_Alloc(task, n );

		LIST_CONS(task, stk, result, stk);
	    }
	    break;

	case I_RAW64:
	    {
		double d = get_double(&(bytecode_vector[pc]));	pc += 8;

		Val	           result;
		REAL64_ALLOC(task, result, d);

		#ifdef DEBUG_LITERALS
		    debug_say("[%2d]: RAW64[%f] @ %#x\n", pc-5, d, result);
		#endif

		LIST_CONS(task, stk, result, stk);

		space_available -= 4*WORD_BYTESIZE;		// Extra 4 bytes for alignment padding.
	    }
	    break;

	case I_RAW64L:
	    {
		int n = GET32(bytecode_vector);	pc += 4;

		#ifdef DEBUG_LITERALS
		    debug_say("[%2d]: RAW64L(%d) [...]\n", pc-5, n);
		#endif

		ASSERT(n > 0);

		int space_needed = 8*(n+1);
		GC_CHECK;

		#ifdef ALIGN_FLOAT64S
		    // Force FLOAT64_BYTESIZE alignment (descriptor is off by one word)
		    //
		    task->heap_allocation_pointer = (Val*)((Punt)(task->heap_allocation_pointer) | WORD_BYTESIZE);
		#endif

		int j = 2*n;							// Number of words.

		LIB7_AllocWrite (task, 0, MAKE_TAGWORD(j, EIGHT_BYTE_ALIGNED_NONPOINTER_DATA_BTAG));

		Val result =  LIB7_Alloc(task, j );

		for (int j = 0;  j < n;  j++) {
		    //
		    PTR_CAST(double*, result)[j] = get_double(&(bytecode_vector[pc]));	pc += 8;
		}
		LIST_CONS(task, stk, result, stk);
	    }
	    break;

	case I_STR:
	    {
		int n = GET32(bytecode_vector);		pc += 4;

		#ifdef DEBUG_LITERALS
		    debug_say("[%2d]: STR(%d) [...]", pc-5, n);
		#endif

		if (n == 0) {
		    #ifdef DEBUG_LITERALS
			debug_say("\n");
		    #endif

		    LIST_CONS(task, stk, ZERO_LENGTH_STRING__GLOBAL, stk);

		    break;
		}

		int j = BYTES_TO_WORDS(n+1);								// '+1' to include space for '\0'.

		// The space request includes space for the data-chunk header word and
		// the sequence header chunk.
		//
		int space_needed = WORD_BYTESIZE*(j+1+3);
		GC_CHECK;

		// Allocate the data chunk:
		//
		LIB7_AllocWrite(task, 0, MAKE_TAGWORD(j, FOUR_BYTE_ALIGNED_NONPOINTER_DATA_BTAG));
		LIB7_AllocWrite (task, j, 0);								// So word-by-word string equality works.

		Val result = LIB7_Alloc (task, j);

		#ifdef DEBUG_LITERALS
		    debug_say(" @ %#x (%d words)\n", result, j);
		#endif
		memcpy (PTR_CAST(void*, result), &bytecode_vector[pc], n);		pc += n;

		// Allocate the header chunk:
		//
		SEQHDR_ALLOC(task, result, STRING_TAGWORD, result, n);

		// Push on stack:
		//
		LIST_CONS(task, stk, result, stk);
	    }
	    break;

	case I_LIT:
	    {
		int n = GET32(bytecode_vector);	pc += 4;

		Val result = stk;

		for (int j = 0;  j < n;  j++) {
		    //
		    result = LIST_TAIL(result);
		}

		#ifdef DEBUG_LITERALS
		    debug_say("[%2d]: LIT(%d) = %#x\n", pc-5, n, LIST_HEAD(result));
		#endif

		LIST_CONS(task, stk, LIST_HEAD(result), stk);
	    }
	    break;

	  case I_VECTOR:
	    {
		int n = GET32(bytecode_vector);	pc += 4;

		#ifdef DEBUG_LITERALS
		    debug_say("[%2d]: VECTOR(%d) [", pc-5, n);
		#endif

		if (n == 0) {
		    #ifdef DEBUG_LITERALS
			debug_say("]\n");
		    #endif
		    LIST_CONS(task, stk, ZERO_LENGTH_VECTOR__GLOBAL, stk);
		    break;
		}

		// The space request includes space
		// for the data-chunk header word and
		// the sequence header chunk.
		//
		int space_needed = WORD_BYTESIZE*(n+1+3);
		GC_CHECK;

		// Allocate the data chunk:
		//
		LIB7_AllocWrite(task, 0, MAKE_TAGWORD(n, RO_VECTOR_DATA_BTAG));

		// Top of stack is last element in vector:
		//
		for (int j = n;  j > 0;  j--) {
		    //
		    LIB7_AllocWrite(task, j, LIST_HEAD(stk));

		    stk = LIST_TAIL(stk);
		}

		Val result =  LIB7_Alloc(task, n );

		// Allocate the header chunk:
		//
		SEQHDR_ALLOC(task, result, TYPEAGNOSTIC_RO_VECTOR_TAGWORD, result, n);

		#ifdef DEBUG_LITERALS
		    debug_say("...] @ %#x\n", result);
		#endif

		LIST_CONS(task, stk, result, stk);
	    }
	    break;

	case I_RECORD:
	    {
		int n = GET32(bytecode_vector);	pc += 4;

		#ifdef DEBUG_LITERALS
		    debug_say("[%2d]: RECORD(%d) [", pc-5, n);
		#endif

		if (n == 0) {
		    #ifdef DEBUG_LITERALS
			debug_say("]\n");
		    #endif

		    LIST_CONS(task, stk, HEAP_VOID, stk);
		    break;

		} else {

		    int space_needed = 4*(n+1);
		    GC_CHECK;

		    LIB7_AllocWrite(task, 0, MAKE_TAGWORD(n, PAIRS_AND_RECORDS_BTAG));
		}

		// Top of stack is last element in record:
		//
		for (int j = n;  j > 0;  j--) {
		    //
		    LIB7_AllocWrite(task, j, LIST_HEAD(stk));

		    stk = LIST_TAIL(stk);
		}

		Val result = LIB7_Alloc(task, n );

		#ifdef DEBUG_LITERALS
		    debug_say("...] @ %#x\n", result);
		#endif

		LIST_CONS(task, stk, result, stk);
	    }
	    break;

	case I_RETURN:
	    ASSERT(pc == bytecode_vector_length_in_bytes);

	    #ifdef DEBUG_LITERALS
	        debug_say("[%2d]: RETURN(%#x)\n", pc-5, LIST_HEAD(stk));
	    #endif

	    return  LIST_HEAD( stk );
	    break;

	default:
	    die ("bogus literal opcode #%x @ %d", bytecode_vector[pc-1], pc-1);
	}								// switch
    }									// while
}									// fun make_package_literals_via_bytecode_interpreter