static inline int maybe_syscall_gettime_cputime (clockid_t clock_id, struct timespec *tp) { return maybe_syscall_gettime_cpu (clock_id == CLOCK_THREAD_CPUTIME_ID ? MAKE_THREAD_CPUCLOCK (0, CPUCLOCK_SCHED) : MAKE_PROCESS_CPUCLOCK (0, CPUCLOCK_SCHED), tp); }
int timer_create (clockid_t clock_id, struct sigevent *evp, timer_t *timerid) { #undef timer_create { clockid_t syscall_clockid = (clock_id == CLOCK_PROCESS_CPUTIME_ID ? MAKE_PROCESS_CPUCLOCK (0, CPUCLOCK_SCHED) : clock_id == CLOCK_THREAD_CPUTIME_ID ? MAKE_THREAD_CPUCLOCK (0, CPUCLOCK_SCHED) : clock_id); /* If the user wants notification via a thread we need to handle this special. */ if (evp == NULL || __builtin_expect (evp->sigev_notify != SIGEV_THREAD, 1)) { struct sigevent local_evp; /* We avoid allocating too much memory by basically using struct timer as a derived class with the first two elements being in the superclass. We only need these two elements here. */ struct timer *newp = (struct timer *) malloc (offsetof (struct timer, thrfunc)); if (newp == NULL) /* No more memory. */ return -1; if (evp == NULL) { /* The kernel has to pass up the timer ID which is a userlevel object. Therefore we cannot leave it up to the kernel to determine it. */ local_evp.sigev_notify = SIGEV_SIGNAL; local_evp.sigev_signo = SIGALRM; local_evp.sigev_value.sival_ptr = newp; evp = &local_evp; } kernel_timer_t ktimerid; int retval = INLINE_SYSCALL (timer_create, 3, syscall_clockid, evp, &ktimerid); if (retval != -1) { newp->sigev_notify = (evp != NULL ? evp->sigev_notify : SIGEV_SIGNAL); newp->ktimerid = ktimerid; *timerid = (timer_t) newp; } else { /* Cannot allocate the timer, fail. */ free (newp); retval = -1; } return retval; } else { /* Create the helper thread. */ pthread_once (&__helper_once, __start_helper_thread); if (__helper_tid == 0) { /* No resources to start the helper thread. */ __set_errno (EAGAIN); return -1; } struct timer *newp; newp = (struct timer *) malloc (sizeof (struct timer)); if (newp == NULL) return -1; /* Copy the thread parameters the user provided. */ newp->sival = evp->sigev_value; newp->thrfunc = evp->sigev_notify_function; newp->sigev_notify = SIGEV_THREAD; /* We cannot simply copy the thread attributes since the implementation might keep internal information for each instance. */ (void) pthread_attr_init (&newp->attr); if (evp->sigev_notify_attributes != NULL) { struct pthread_attr *nattr; struct pthread_attr *oattr; nattr = (struct pthread_attr *) &newp->attr; oattr = (struct pthread_attr *) evp->sigev_notify_attributes; nattr->schedparam = oattr->schedparam; nattr->schedpolicy = oattr->schedpolicy; nattr->flags = oattr->flags; nattr->guardsize = oattr->guardsize; nattr->stackaddr = oattr->stackaddr; nattr->stacksize = oattr->stacksize; } /* In any case set the detach flag. */ (void) pthread_attr_setdetachstate (&newp->attr, PTHREAD_CREATE_DETACHED); /* Create the event structure for the kernel timer. */ struct sigevent sev = { .sigev_value.sival_ptr = newp, .sigev_signo = SIGTIMER, .sigev_notify = SIGEV_SIGNAL | SIGEV_THREAD_ID, ._sigev_un = { ._pad = { [0] = __helper_tid } } }; /* Create the timer. */ INTERNAL_SYSCALL_DECL (err); int res; res = INTERNAL_SYSCALL (timer_create, err, 3, syscall_clockid, &sev, &newp->ktimerid); if (! INTERNAL_SYSCALL_ERROR_P (res, err)) { /* Add to the queue of active timers with thread delivery. */ pthread_mutex_lock (&__active_timer_sigev_thread_lock); newp->next = __active_timer_sigev_thread; __active_timer_sigev_thread = newp; pthread_mutex_unlock (&__active_timer_sigev_thread_lock); *timerid = (timer_t) newp; return 0; } /* Free the resources. */ free (newp); __set_errno (INTERNAL_SYSCALL_ERRNO (res, err)); return -1; } }