Example #1
0
int rt_hw_cpu_init(void)
{
    MAP_IntMasterDisable();
    IntRegister(FAULT_HARD, HardFault_Handler);	
    IntRegister(FAULT_PENDSV, PendSV_Handler);
    IntRegister(FAULT_SYSTICK, SysTick_Handler);
    
    // Enable lazy stacking for interrupt handlers.  This allows floating-point
    // instructions to be used within interrupt handlers, but at the expense of
    // extra stack usage.
    MAP_FPULazyStackingEnable();

    // Set the clocking to run directly from the external crystal/oscillator.
    // TODO: The SYSCTL_XTAL_ value must be changed to match the value of the
    // crystal on your board.
    SysClock = MAP_SysCtlClockFreqSet(
                (SYSCTL_XTAL_25MHZ | SYSCTL_OSC_MAIN | SYSCTL_USE_PLL | SYSCTL_CFG_VCO_480),
                SYS_CLOCK_DEFAULT);

    MAP_SysTickDisable();
    MAP_SysTickPeriodSet(SysClock/ RT_TICK_PER_SECOND - 1);
    MAP_SysTickIntEnable();
    MAP_SysTickEnable();	

    return 0;
}
Example #2
0
void timerInit()
{
#ifdef TARGET_IS_BLIZZARD_RB1
    //
    //  Run at system clock at 80MHz
    //
    MAP_SysCtlClockSet(SYSCTL_SYSDIV_2_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|
                       SYSCTL_OSC_MAIN);
#else
    //
    //  Run at system clock at 120MHz
    //
    MAP_SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ|SYSCTL_OSC_MAIN|SYSCTL_USE_PLL|SYSCTL_CFG_VCO_480), F_CPU);
#endif

    //
    //  SysTick is used for delay() and delayMicroseconds()
    //

    MAP_SysTickPeriodSet(F_CPU / SYSTICKHZ);
    MAP_SysTickEnable();
    MAP_IntPrioritySet(FAULT_SYSTICK, SYSTICK_INT_PRIORITY);
    MAP_SysTickIntEnable();
    MAP_IntMasterEnable();

    // PIOSC is used during Deep Sleep mode for wakeup
    MAP_SysCtlPIOSCCalibrate(SYSCTL_PIOSC_CAL_FACT);  // Factory-supplied calibration used
}
Example #3
0
int platform_init()
{
    // Set the clocking to run from PLL
#if defined( FORLM3S9B92 ) || defined( FORLM3S9D92 )
    MAP_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ);
#else
    MAP_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_8MHZ);
#endif

    // Setup PIO
    pios_init();

    // Setup SSIs
    spis_init();

    // Setup UARTs
    uarts_init();

    // Setup timers
    timers_init();

    // Setup PWMs
    pwms_init();

#ifdef BUILD_ADC
    // Setup ADCs
    adcs_init();
#endif

#ifdef BUILD_CAN
    // Setup CANs
    cans_init();
#endif

    // Setup system timer
    cmn_systimer_set_base_freq( MAP_SysCtlClockGet() );
    cmn_systimer_set_interrupt_freq( SYSTICKHZ );

    // Setup ethernet (TCP/IP)
    eth_init();

    // Common platform initialization code
    cmn_platform_init();

    // Virtual timers
    // If the ethernet controller is used the timer is already initialized, so skip this sequence
#if VTMR_NUM_TIMERS > 0 && !defined( BUILD_UIP )
    // Configure SysTick for a periodic interrupt.
    MAP_SysTickPeriodSet( MAP_SysCtlClockGet() / SYSTICKHZ );
    MAP_SysTickEnable();
    MAP_SysTickIntEnable();
    MAP_IntMasterEnable();
#endif

    // All done
    return PLATFORM_OK;
}
Example #4
0
void init_hardware()
{
    // Set SysTick timer period (TN_SYS_TICK_FQ_HZ)
    MAP_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                       SYSCTL_XTAL_16MHZ);
    ///////////
    MAP_SysTickDisable();
    MAP_SysTickPeriodSet(MAP_SysCtlClockGet() / TN_SYS_TICK_FQ_HZ);
    MAP_SysTickIntEnable();
    MAP_SysTickEnable();
}
Example #5
0
    StellarisIO()
        : magic(gMagic)
    {
        MAP_FPULazyStackingEnable();

        /* Set clock to PLL at 50MHz */
        MAP_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ);

        MAP_SysTickPeriodSet(MAP_SysCtlClockGet() / (1000*10)); // 1us
        MAP_SysTickIntEnable();
        MAP_SysTickEnable();
    }
Example #6
0
void platform_init(void) {
	/* Enable lazy stacking for interrupt handlers.  This allows floating-point instructions to be used within interrupt
	 * handlers, but at the expense of extra stack usage. */
	MAP_FPULazyStackingEnable();

	/* Set clock to PLL at 50MHz */
	MAP_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
					   SYSCTL_XTAL_16MHZ);

	/* Enable the GPIO pins for the LED (PF2 & PF3). */
	MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
	MAP_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_3|GPIO_PIN_2);
	/* Enable the system tick. FIXME do we need this? */
	MAP_SysTickPeriodSet(MAP_SysCtlClockGet() / SYSTICKS_PER_SECOND);
	MAP_SysTickIntEnable();
	MAP_SysTickEnable();
}
Example #7
0
void systick_init()
{
  //
  // Configure SysTick for a periodic interrupt.
  //
  MAP_SysTickPeriodSet(MAP_SysCtlClockGet() / SYSTICKHZ);
  MAP_SysTickEnable();
  MAP_SysTickIntEnable();

  //MAP_IntEnable(INT_GPIOA);
  MAP_IntEnable(INT_GPIOE);
  MAP_IntMasterEnable();

  MAP_SysCtlPeripheralClockGating(false);

  MAP_GPIOIntTypeSet(GPIO_PORTE_BASE, ENC_INT, GPIO_FALLING_EDGE);
  MAP_GPIOPinIntClear(GPIO_PORTE_BASE, ENC_INT);
  MAP_GPIOPinIntEnable(GPIO_PORTE_BASE, ENC_INT);
  UARTprintf("int enabled\n");
}
Example #8
0
  void SystemTimer::initialize()
  {
    uint32_t clockRate;

    __counter = 0;

#ifdef CLASS_IS_TM4C123
    clockRate = MAP_SysCtlClockGet();
#else
    clockRate = MAP_SysCtlClockFreqGet();
#endif

    if (clockRate == 66666666 && MCU_CLOCK == CLK80) { // some boards reports the clock frequency incorrectly
      clockRate = 80000000;
    }

    MAP_SysTickPeriodSet(clockRate / 1000);

    MAP_SysTickIntEnable();
    MAP_SysTickEnable();
  }
Example #9
0
/**
 * This function will initial LPC40xx board.
 */
void rt_hw_board_init()
{
  MAP_IntMasterDisable();
    IntRegister(FAULT_HARD, HardFault_Handler);	
    IntRegister(FAULT_PENDSV, PendSV_Handler);
    IntRegister(FAULT_SYSTICK, SysTick_Handler);
    
	  //
    // Enable lazy stacking for interrupt handlers.  This allows floating-point
    // instructions to be used within interrupt handlers, but at the expense of
    // extra stack usage.
    //
    MAP_FPULazyStackingEnable();

    //
    // Set the clocking to run directly from the external crystal/oscillator.
    // TODO: The SYSCTL_XTAL_ value must be changed to match the value of the
    // crystal on your board.
    //
    SysClock = MAP_SysCtlClockFreqSet(
                (SYSCTL_XTAL_25MHZ | SYSCTL_OSC_MAIN | SYSCTL_USE_PLL | SYSCTL_CFG_VCO_480),
                SYS_CLOCK_DEFAULT);

    MAP_SysTickDisable();
    MAP_SysTickPeriodSet(SysClock/ RT_TICK_PER_SECOND - 1);
    MAP_SysTickIntEnable();
    MAP_SysTickEnable();	

    /* set pend exception priority */
    //IntPrioritySet(FAULT_PENDSV, (1 << 5) - 1);
    
    /*init uart device*/		
    rt_hw_uart_init();
    //redirect RTT stdio to CONSOLE device
    rt_console_set_device(RT_CONSOLE_DEVICE_NAME);
    //
    // Enable interrupts to the processor.
    //
	  MAP_IntMasterEnable();
}
Example #10
0
int main(void)
{
	IntVTableBaseSet((unsigned long)&g_pfnVectors[0]);
    
	MAP_PRCMPeripheralClkEnable(PRCM_GPIOA0, PRCM_RUN_MODE_CLK);
	MAP_PRCMPeripheralClkEnable(PRCM_GPIOA1, PRCM_RUN_MODE_CLK);
	MAP_PRCMPeripheralClkEnable(PRCM_GPIOA2, PRCM_RUN_MODE_CLK);
	MAP_PRCMPeripheralClkEnable(PRCM_GPIOA3, PRCM_RUN_MODE_CLK);
    
	MAP_IntMasterEnable();
	PRCMCC3200MCUInit();
	MAP_SysTickIntEnable();
	MAP_SysTickPeriodSet(F_CPU / 1000);
	MAP_SysTickEnable();
    
	setup();
    
	for (;;) {
		loop();
		if (serialEventRun) serialEventRun();
	}
}
Example #11
0
//*****************************************************************************
//
// Initialize and operate the data logger.
//
//*****************************************************************************
int
main(void)
{
    tContext sDisplayContext, sBufferContext;
    uint32_t ui32HibIntStatus, ui32SysClock, ui32LastTickCount;
    bool bSkipSplash;
    uint8_t ui8ButtonState, ui8ButtonChanged;
    uint_fast8_t ui8X, ui8Y;


    //
    // Enable lazy stacking for interrupt handlers.  This allows floating-point
    // instructions to be used within interrupt handlers, but at the expense of
    // extra stack usage.
    //
    MAP_FPULazyStackingEnable();

    //
    // Set the clocking to run at 50 MHz.
    //
    MAP_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_XTAL_16MHZ |
                       SYSCTL_OSC_MAIN);
    ui32SysClock = MAP_SysCtlClockGet();

    //
    // Initialize locals.
    //
    bSkipSplash = false;
    ui32LastTickCount = 0;

    //
    // Initialize the data acquisition module.  This initializes the ADC
    // hardware.
    //
    AcquireInit();

    //
    // Enable access to  the hibernate peripheral.  If the hibernate peripheral
    // was already running then this will have no effect.
    //
    MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_HIBERNATE);

    //
    // Check to see if the hiberate module is already active and if so then
    // read the saved configuration state.  If both are okay, then proceed
    // to check and see if we are logging data using sleep mode.
    //
    if(HibernateIsActive() && !GetSavedState(&g_sConfigState))
    {
        //
        // Read the status of the hibernate module.
        //
        ui32HibIntStatus = HibernateIntStatus(1);

        //
        // If this is a pin wake, that means the user pressed the select
        // button and we should terminate the sleep logging.  In this case
        // we will fall out of this conditional section, and go through the
        // normal startup below, but skipping the splash screen so the user
        // gets immediate response.
        //
        if(ui32HibIntStatus & HIBERNATE_INT_PIN_WAKE)
        {
            //
            // Clear the interrupt flag so it is not seen again until another
            // wake.
            //
            HibernateIntClear(HIBERNATE_INT_PIN_WAKE);
            bSkipSplash = true;
        }

        //
        // Otherwise if we are waking from hibernate and it was not a pin
        // wake, then it must be from RTC match.  Check to see if we are
        // sleep logging and if so then go through an abbreviated startup
        // in order to collect the data and go back to sleep.
        //
        else if(g_sConfigState.ui32SleepLogging &&
                (ui32HibIntStatus & HIBERNATE_INT_RTC_MATCH_0))
        {
            //
            // Start logger and pass the configuration.  The logger should
            // configure itself to take one sample.
            //
            AcquireStart(&g_sConfigState);
            g_iLoggerState = eSTATE_LOGGING;

            //
            // Enter a forever loop to run the acquisition.  This will run
            // until a new sample has been taken and stored.
            //
            while(!AcquireRun())
            {
            }

            //
            // Getting here means that a data acquisition was performed and we
            // can now go back to sleep.  Save the configuration and then
            // activate the hibernate.
            //
            SetSavedState(&g_sConfigState);

            //
            // Set wake condition on pin-wake or RTC match.  Then put the
            // processor in hibernation.
            //
            HibernateWakeSet(HIBERNATE_WAKE_PIN | HIBERNATE_WAKE_RTC);
            HibernateRequest();

            //
            // Hibernating takes a finite amount of time to occur, so wait
            // here forever until hibernate activates and the processor
            // power is removed.
            //
            for(;;)
            {
            }
        }

        //
        // Otherwise, this was not a pin wake, and we were not sleep logging,
        // so just fall out of this conditional and go through the normal
        // startup below.
        //
    }
    else
    {
        //
        // In this case, either the hibernate module was not already active, or
        // the saved configuration was not valid.  Initialize the configuration
        // to the default state and then go through the normal startup below.
        //
        GetDefaultState(&g_sConfigState);
    }

    //
    // Enable the Hibernate module to run.
    //
    HibernateEnableExpClk(SysCtlClockGet());

    //
    // The hibernate peripheral trim register must be set per silicon
    // erratum 2.1
    //
    HibernateRTCTrimSet(0x7FFF);

    //
    // Start the RTC running.  If it was already running then this will have
    // no effect.
    //
    HibernateRTCEnable();

    //
    // In case we were sleep logging and are now finished (due to user
    // pressing select button), then disable sleep logging so it doesnt
    // try to start up again.
    //
    g_sConfigState.ui32SleepLogging = 0;
    SetSavedState(&g_sConfigState);

    //
    // Initialize the display driver.
    //
    CFAL96x64x16Init();

    //
    // Initialize the buttons driver.
    //
    ButtonsInit();

    //
    // Pass the restored state to the menu system.
    //
    MenuSetState(&g_sConfigState);

    //
    // Enable the USB peripheral
    //
    MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_USB0);

    //
    // Configure the required pins for USB operation.
    //
    MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);
    MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOG);
    MAP_GPIOPinConfigure(GPIO_PG4_USB0EPEN);
    MAP_GPIOPinTypeUSBDigital(GPIO_PORTG_BASE, GPIO_PIN_4);
    MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOL);
    MAP_GPIOPinTypeUSBAnalog(GPIO_PORTL_BASE, GPIO_PIN_6 | GPIO_PIN_7);
    MAP_GPIOPinTypeUSBAnalog(GPIO_PORTB_BASE, GPIO_PIN_0 | GPIO_PIN_1);

    //
    // Erratum workaround for silicon revision A1.  VBUS must have pull-down.
    //
    if(CLASS_IS_BLIZZARD && REVISION_IS_A1)
    {
        HWREG(GPIO_PORTB_BASE + GPIO_O_PDR) |= GPIO_PIN_1;
    }

    //
    // Initialize the USB stack mode and pass in a mode callback.
    //
    USBStackModeSet(0, eUSBModeOTG, ModeCallback);

    //
    // Initialize the stack to be used with USB stick.
    //
    USBStickInit();

    //
    // Initialize the stack to be used as a serial device.
    //
    USBSerialInit();

    //
    // Initialize the USB controller for dual mode operation with a 2ms polling
    // rate.
    //
    USBOTGModeInit(0, 2000, g_pui8HCDPool, HCD_MEMORY_SIZE);

    //
    // Initialize the menus module.  This module will control the user
    // interface menuing system.
    //
    MenuInit(WidgetActivated);

    //
    // Configure SysTick to periodically interrupt.
    //
    g_ui32TickCount = 0;
    MAP_SysTickPeriodSet(ui32SysClock / CLOCK_RATE);
    MAP_SysTickIntEnable();
    MAP_SysTickEnable();

    //
    // Initialize the display context and another context that is used
    // as an offscreen drawing buffer for display animation effect
    //
    GrContextInit(&sDisplayContext, &g_sCFAL96x64x16);
    GrContextInit(&sBufferContext, &g_sOffscreenDisplayA);

    //
    // Show the splash screen if we are not skipping it.  The only reason to
    // skip it is if the application was in sleep-logging mode and the user
    // just waked it up with the select button.
    //
    if(!bSkipSplash)
    {
        const uint8_t *pui8SplashLogo = g_pui8Image_TI_Black;

        //
        // Draw the TI logo on the display.  Use an animation effect where the
        // logo will "slide" onto the screen.  Allow select button to break
        // out of animation.
        //
        for(ui8X = 0; ui8X < 96; ui8X++)
        {
            if(ButtonsPoll(0, 0) & SELECT_BUTTON)
            {
                break;
            }
            GrImageDraw(&sDisplayContext, pui8SplashLogo, 95 - ui8X, 0);
        }

        //
        // Leave the logo on the screen for a long duration.  Monitor the
        // buttons so that if the user presses the select button, the logo
        // display is terminated and the application starts immediately.
        //
        while(g_ui32TickCount < 400)
        {
            if(ButtonsPoll(0, 0) & SELECT_BUTTON)
            {
                break;
            }
        }

        //
        // Extended splash sequence
        //
        if(ButtonsPoll(0, 0) & UP_BUTTON)
        {
            for(ui8X = 0; ui8X < 96; ui8X += 4)
            {
                GrImageDraw(&sDisplayContext,
                            g_ppui8Image_Splash[(ui8X / 4) & 3],
                            (int32_t)ui8X - 96L, 0);
                GrImageDraw(&sDisplayContext, pui8SplashLogo, ui8X, 0);
                MAP_SysCtlDelay(ui32SysClock / 12);
            }
            MAP_SysCtlDelay(ui32SysClock / 3);
            pui8SplashLogo = g_ppui8Image_Splash[4];
            GrImageDraw(&sDisplayContext, pui8SplashLogo, 0, 0);
            MAP_SysCtlDelay(ui32SysClock / 12);
        }

        //
        // Draw the initial menu into the offscreen buffer.
        //
        SlideMenuDraw(&g_sMenuWidget, &sBufferContext, 0);

        //
        // Now, draw both the TI logo splash screen (from above) and the initial
        // menu on the screen at the same time, moving the coordinates so that
        // the logo "slides" off the display and the menu "slides" onto the
        // display.
        //
        for(ui8Y = 0; ui8Y < 64; ui8Y++)
        {
            GrImageDraw(&sDisplayContext, pui8SplashLogo, 0, -ui8Y);
            GrImageDraw(&sDisplayContext, g_pui8OffscreenBufA, 0, 63 - ui8Y);
        }
    }

    //
    // Add the menu widget to the widget tree and send an initial paint
    // request.
    //
    WidgetAdd(WIDGET_ROOT, (tWidget *)&g_sMenuWidget);
    WidgetPaint(WIDGET_ROOT);

    //
    // Set the focus handle to the menu widget.  Any button events will be
    // sent to this widget
    //
    g_ui32KeyFocusWidgetHandle = (uint32_t)&g_sMenuWidget;

    //
    // Forever loop to run the application
    //
    while(1)
    {

        //
        // Each time the timer tick occurs, process any button events.
        //
        if(g_ui32TickCount != ui32LastTickCount)
        {
            //
            // Remember last tick count
            //
            ui32LastTickCount = g_ui32TickCount;

            //
            // Read the debounced state of the buttons.
            //
            ui8ButtonState = ButtonsPoll(&ui8ButtonChanged, 0);

            //
            // Pass any button presses through to the widget message
            // processing mechanism.  The widget that has the button event
            // focus (probably the menu widget) will catch these button events.
            //
            if(BUTTON_PRESSED(SELECT_BUTTON, ui8ButtonState, ui8ButtonChanged))
            {
                SendWidgetKeyMessage(WIDGET_MSG_KEY_SELECT);
            }
            if(BUTTON_PRESSED(UP_BUTTON, ui8ButtonState, ui8ButtonChanged))
            {
                SendWidgetKeyMessage(WIDGET_MSG_KEY_UP);
            }
            if(BUTTON_PRESSED(DOWN_BUTTON, ui8ButtonState, ui8ButtonChanged))
            {
                SendWidgetKeyMessage(WIDGET_MSG_KEY_DOWN);
            }
            if(BUTTON_PRESSED(LEFT_BUTTON, ui8ButtonState, ui8ButtonChanged))
            {
                SendWidgetKeyMessage(WIDGET_MSG_KEY_LEFT);
            }
            if(BUTTON_PRESSED(RIGHT_BUTTON, ui8ButtonState, ui8ButtonChanged))
            {
                SendWidgetKeyMessage(WIDGET_MSG_KEY_RIGHT);
            }
        }

        //
        // Tell the OTG library code how much time has passed in milliseconds
        // since the last call.
        //
        USBOTGMain(GetTickms());

        //
        // Call functions as needed to keep the host or device mode running.
        //
        if(g_iCurrentUSBMode == eUSBModeDevice)
        {
            USBSerialRun();
        }
        else if(g_iCurrentUSBMode == eUSBModeHost)
        {
            USBStickRun();
        }

        //
        // If in the logging state, then call the logger run function.  This
        // keeps the data acquisition running.
        //
        if((g_iLoggerState == eSTATE_LOGGING) ||
           (g_iLoggerState == eSTATE_VIEWING))
        {
            if(AcquireRun() && g_sConfigState.ui32SleepLogging)
            {
                //
                // If sleep logging is enabled, then at this point we have
                // stored the first data item, now save the state and start
                // hibernation.  Wait for the power to be cut.
                //
                SetSavedState(&g_sConfigState);
                HibernateWakeSet(HIBERNATE_WAKE_PIN | HIBERNATE_WAKE_RTC);
                HibernateRequest();
                for(;;)
                {
                }
            }

            //
            // If viewing instead of logging then request a repaint to keep
            // the viewing window updated.
            //
            if(g_iLoggerState == eSTATE_VIEWING)
            {
                WidgetPaint(WIDGET_ROOT);
            }
        }

        //
        // If in the saving state, then save data from flash storage to
        // USB stick.
        //
        if(g_iLoggerState == eSTATE_SAVING)
        {
            //
            // Save data from flash to USB
            //
            FlashStoreSave();

            //
            // Return to idle state
            //
            g_iLoggerState = eSTATE_IDLE;
        }

        //
        // If in the erasing state, then erase the data stored in flash.
        //
        if(g_iLoggerState == eSTATE_ERASING)
        {
            //
            // Save data from flash to USB
            //
            FlashStoreErase();

            //
            // Return to idle state
            //
            g_iLoggerState = eSTATE_IDLE;
        }

        //
        // If in the flash reporting state, then show the report of the amount
        // of used and free flash memory.
        //
        if(g_iLoggerState == eSTATE_FREEFLASH)
        {
            //
            // Report free flash space
            //
            FlashStoreReport();

            //
            // Return to idle state
            //
            g_iLoggerState = eSTATE_IDLE;
        }

        //
        // If we are exiting the clock setting widget, that means that control
        // needs to be given back to the menu system.
        //
        if(g_iLoggerState == eSTATE_CLOCKEXIT)
        {
            //
            // Give the button event focus back to the menu system
            //
            g_ui32KeyFocusWidgetHandle = (uint32_t)&g_sMenuWidget;

            //
            // Send a button event to the menu widget that means the left
            // key was pressed.  This signals the menu widget to deactivate
            // the current child widget (which was the clock setting wigdet).
            // This will cause the menu widget to slide the clock set widget
            // off the screen and resume control of the display.
            //
            SendWidgetKeyMessage(WIDGET_MSG_KEY_LEFT);
            g_iLoggerState = eSTATE_IDLE;
        }

        //
        // Process any new messages that are in the widget queue.  This keeps
        // the user interface running.
        //
        WidgetMessageQueueProcess();
    }
}
void SetupSysTick(void)
{
    MAP_SysTickPeriodSet(MAP_SysCtlClockGet());
    MAP_SysTickIntEnable();
    MAP_SysTickEnable();
}
Example #13
0
int main(void) {
	
	int  delay;
	float fTemperature, fPressure, fAltitude, fK_Altitude, fAltitude_sum,fK_Altitude_sum;
	int count,i;
//	static float f_meas[VAR_COUNT], fAlt_Mean, fAlt_Var;
	unsigned short sw1_count, sw2_count;
	unsigned char sw1_was_cleared = 0, sw2_was_cleared = 0;


	// Set the clocking to run directly from the external crystal/oscillator.
	MAP_SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN |
			WRFL_XTAL);


	//init ports and peripherals
	PlatformInit();
	Nokia5110_Init();
	Nokia5110_Clear();


    Nokia5110_DrawFullImage(gears_logo);
    for(delay=0; delay<1000000; delay=delay+1);

    Nokia5110_Clear();
    Nokia5110_SetCursor(3, 1);
    Nokia5110_OutString("WRFL");
    Nokia5110_SetCursor(1, 2);
    Nokia5110_OutString("Prototype");
    Nokia5110_SetCursor(2, 4);
    Nokia5110_OutString("VER 0.1");
    Nokia5110_SetCursor(0, 5);
    Nokia5110_OutString("NightMecanic");
    for(delay=0; delay<1000000; delay=delay+1);
    Nokia5110_Clear();
    //
   // Enable interrupts to the processor.
   //
   MAP_IntMasterEnable();

   //
   // Initialize I2C1 peripheral.
   //
   I2CMInit(&g_sI2CInst, BMP180_I2C_BASE, BMP180_I2C_INT, 0xff, 0xff,
			MAP_SysCtlClockGet());

   //
   // Initialize the BMP180
   //
   BMP180Init(&g_sBMP180Inst, &g_sI2CInst, BMP180_I2C_ADDRESS,
			  BMP180AppCallback, &g_sBMP180Inst);


   //
   // Wait for initialization callback to indicate reset request is complete.
   //
   while(g_vui8DataFlag == 0)
   {
	   //
	   // Wait for I2C Transactions to complete.
	   //
   }

   //
   // Reset the data ready flag
   //
   g_vui8DataFlag = 0;

   //set oversampling to 8x
   g_sBMP180Inst.ui8Mode = 0xC0;

   //Initialize the Kalman filter
   Kalman_Init(&Alt_KState, 0.0f, 1.0f, ALT_KALMAN_R, ALT_KALMAN_Q);

   //
   // Enable the system ticks at 10 hz.
   //
   MAP_SysTickPeriodSet(MAP_SysCtlClockGet() / (40 * 3));
   MAP_SysTickIntEnable();
   MAP_SysTickEnable();


   Nokia5110_SetCursor(0, 0);
   Nokia5110_OutString("SW1:");

   Nokia5110_SetCursor(0, 2);
   Nokia5110_OutString("SW2:");

  //config done
   count = 0;
   //
   // Begin the data collection and printing.  Loop Forever.
   //
   while(1)
   {

	   // SW1
	   if (sw_state & SW1){
		   if (sw1_was_cleared){
			   sw1_was_cleared = 0;
			   sw1_count++;
		   	   Nokia5110_SetCursor(5, 0);
		   	   Nokia5110_OutUDec(sw1_count);
		   }
	   }else
		   sw1_was_cleared = 1;

	   //SW2
	   if (sw_state & SW2){
	   		   if (sw2_was_cleared){
	   			   sw2_was_cleared = 0;
	   			   sw2_count++;
	   		   	   Nokia5110_SetCursor(5, 2);
	   		   	   Nokia5110_OutUDec(sw2_count);
	   		   }
	   	   }else
	   		   sw2_was_cleared = 1;

	   // handle BMP180 data (display average every 50 samples)
	   if (g_vui8DataFlag ){
		   //
		   // Reset the data ready flag.
		   //
		   g_vui8DataFlag = 0;

		   //
		   // Get a local copy of the latest temperature data in float format.
		   //
		   BMP180DataTemperatureGetFloat(&g_sBMP180Inst, &fTemperature);

		   //
		   // Print temperature with three digits of decimal precision.
		   //

		   //Nokia5110_SetCursor(0, 0);
		   //Nokia5110_OutString("Temp:");
		   //Nokia5110_OutFloatp3(fTemperature);

		   //
		   // Get a local copy of the latest air pressure data in float format.
		   //
		   BMP180DataPressureGetFloat(&g_sBMP180Inst, &fPressure);

	   	   //
	   	   // Print Pressure with three digits of decimal precision.
	   	   //

	   	   //Nokia5110_SetCursor(0, 1);
	   	   // Nokia5110_OutString("Pres:");
	   	   //Nokia5110_SetCursor(0, 2);

	   	   //display in hPa
	   	   //Nokia5110_OutFloatp3((fPressure / 100.0f));

	   	   //
	   	   // Calculate the altitude.
	   	   //
	   	   //fAltitude = 44330.0f * (1.0f - powf(fPressure / 101325.0f,
	   	   //									   1.0f / 5.255f));
	   	   //corrected:
	   	   fAltitude = 44330.0f * (1.0f - powf(fPressure / LOC_ALT_P0,
	   										   1.0f / 5.255f));
	   	   // Kalman filtered altitude

	  	   Kalman_Update (&Alt_KState, fAltitude);
	  	   fK_Altitude = Alt_KState.X;


	  	   fAltitude_sum += fAltitude;
	  	   fK_Altitude_sum += fK_Altitude;
	  	   count++;

	  	   if (count>=50){
	  		 Nokia5110_SetCursor(0, 3);
	  		 Nokia5110_OutString("Alt:");
	  		 Nokia5110_OutFloatp3(fAltitude_sum/50.0);

	  		 Nokia5110_SetCursor(0, 5);
	  		 Nokia5110_OutString("KAlt:");
	  		 Nokia5110_OutFloatp3(fK_Altitude_sum/50.0);

	  		fAltitude_sum = 0;
	  		fK_Altitude_sum = 0;
	  		count = 0;
	  	   }


/*
	  	 //calculate variance
	  	 f_meas[count]=fK_Altitude;
	  	 count++;

	  	 if (count>=VAR_COUNT){
	  		 fAlt_Mean = 0.0f;
	  		 fAlt_Var = 0.0f;
	  		 // calculate mean
	  		 for(i=0; i<VAR_COUNT; i++){
	  			 fAlt_Mean = fAlt_Mean +f_meas[i];
	  		 }
	  		 fAlt_Mean = fAlt_Mean/((float) VAR_COUNT);

	  		 // Calculate Var
	  		 for(i=0; i<VAR_COUNT; i++){
	  			 fAlt_Var = fAlt_Var + powf((f_meas[i] - fAlt_Mean),2.0f);
	  		 }
	  		 fAlt_Var = fAlt_Var/((float) VAR_COUNT);



	  		 //
	  		 // Print altitude with three digits of decimal precision.
	  		 //

	  		 Nokia5110_SetCursor(0, 4);
	  		 Nokia5110_OutString("Var:");

	  		 Nokia5110_OutFloatp3(fAlt_Var);

	  		 count = 0;

	  	 }
*/
	   //
	   // Delay to keep printing speed reasonable. About 100msec.
	   //
	   //MAP_SysCtlDelay(MAP_SysCtlClockGet() / (10 * 3));

	   }
   }//while end
}
Example #14
0
void main(void) {
  static struct uip_eth_addr eth_addr;
  uip_ipaddr_t ipaddr;

  cpu_init();
  uart_init();
  printf("Welcome\n");
  spi_init();
  enc28j60_comm_init();

  printf("Welcome\n");

  enc_init(mac_addr);

  //
  // Configure SysTick for a periodic interrupt.
  //
  MAP_SysTickPeriodSet(MAP_SysCtlClockGet() / SYSTICKHZ);
  MAP_SysTickEnable();
  MAP_SysTickIntEnable();

  //MAP_IntEnable(INT_GPIOA);
  MAP_IntEnable(INT_GPIOE);
  MAP_IntMasterEnable();

  MAP_SysCtlPeripheralClockGating(false);

  printf("int enabled\n");

  MAP_GPIOIntTypeSet(GPIO_PORTE_BASE, ENC_INT, GPIO_FALLING_EDGE);
  MAP_GPIOPinIntClear(GPIO_PORTE_BASE, ENC_INT);
  MAP_GPIOPinIntEnable(GPIO_PORTE_BASE, ENC_INT);

  uip_init();

  eth_addr.addr[0] = mac_addr[0];
  eth_addr.addr[1] = mac_addr[1];
  eth_addr.addr[2] = mac_addr[2];
  eth_addr.addr[3] = mac_addr[3];
  eth_addr.addr[4] = mac_addr[4];
  eth_addr.addr[5] = mac_addr[5];

  uip_setethaddr(eth_addr);

#define DEFAULT_IPADDR0 10
#define DEFAULT_IPADDR1 0
#define DEFAULT_IPADDR2 0
#define DEFAULT_IPADDR3 201

#define DEFAULT_NETMASK0 255
#define DEFAULT_NETMASK1 255
#define DEFAULT_NETMASK2 255
#define DEFAULT_NETMASK3 0

#undef STATIC_IP

#ifdef STATIC_IP
  uip_ipaddr(ipaddr, DEFAULT_IPADDR0, DEFAULT_IPADDR1, DEFAULT_IPADDR2,
	     DEFAULT_IPADDR3);
  uip_sethostaddr(ipaddr);
  printf("IP: %d.%d.%d.%d\n", DEFAULT_IPADDR0, DEFAULT_IPADDR1,
	     DEFAULT_IPADDR2, DEFAULT_IPADDR3);
  uip_ipaddr(ipaddr, DEFAULT_NETMASK0, DEFAULT_NETMASK1, DEFAULT_NETMASK2,
	     DEFAULT_NETMASK3);
  uip_setnetmask(ipaddr);
#else
  uip_ipaddr(ipaddr, 0, 0, 0, 0);
  uip_sethostaddr(ipaddr);
  printf("Waiting for IP address...\n");
  uip_ipaddr(ipaddr, 0, 0, 0, 0);
  uip_setnetmask(ipaddr);
#endif

  httpd_init();

#ifndef STATIC_IP
  dhcpc_init(mac_addr, 6);
  dhcpc_request();
#endif

  long lPeriodicTimer, lARPTimer;
  lPeriodicTimer = lARPTimer = 0;

  int i; // = MAP_GPIOPinRead(GPIO_PORTA_BASE, ENC_INT) & ENC_INT;
  while(true) {
    //MAP_IntDisable(INT_UART0);
    MAP_SysCtlSleep();
    //MAP_IntEnable(INT_UART0);

    //i = MAP_GPIOPinRead(GPIO_PORTA_BASE, ENC_INT) & ENC_INT;
    /*while(i != 0 && g_ulFlags == 0) {
      i = MAP_GPIOPinRead(GPIO_PORTA_BASE, ENC_INT) & ENC_INT;
      }*/

    if( HWREGBITW(&g_ulFlags, FLAG_ENC_INT) == 1 ) {
      HWREGBITW(&g_ulFlags, FLAG_ENC_INT) = 0;
      enc_action();
    }

    if(HWREGBITW(&g_ulFlags, FLAG_SYSTICK) == 1) {
      HWREGBITW(&g_ulFlags, FLAG_SYSTICK) = 0;
      lPeriodicTimer += SYSTICKMS;
      lARPTimer += SYSTICKMS;
      //printf("%d %d\n", lPeriodicTimer, lARPTimer);
    }

    if( lPeriodicTimer > UIP_PERIODIC_TIMER_MS ) {
      lPeriodicTimer = 0;
      int l;
      for(l = 0; l < UIP_CONNS; l++) {
	uip_periodic(l);

	//
	// If the above function invocation resulted in data that
	// should be sent out on the network, the global variable
	// uip_len is set to a value > 0.
	//
	if(uip_len > 0) {
	  uip_arp_out();
	  enc_send_packet(uip_buf, uip_len);
	  uip_len = 0;
	}
      }

      for(l = 0; l < UIP_UDP_CONNS; l++) {
	uip_udp_periodic(l);
	if( uip_len > 0) {
	  uip_arp_out();
	  enc_send_packet(uip_buf, uip_len);
	  uip_len = 0;
	}
      }
    }

    if( lARPTimer > UIP_ARP_TIMER_MS) {
      lARPTimer = 0;
      uip_arp_timer();
    }

  }

}
Example #15
0
int main()
{

    //
    // Make sure the main oscillator is enabled because this is required by
    // the PHY.  The system must have a 25MHz crystal attached to the OSC
    // pins. The SYSCTL_MOSC_HIGHFREQ parameter is used when the crystal
    // frequency is 10MHz or higher.
    //
    SysCtlMOSCConfigSet(SYSCTL_MOSC_HIGHFREQ);

    //
    // Run from the PLL at 120 MHz.
    //
    g_ui32SysClock = MAP_SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
                                             SYSCTL_OSC_MAIN |
                                             SYSCTL_USE_PLL |
                                             SYSCTL_CFG_VCO_480), 120000000);
    // Configure the device pins.
    //
    PinoutSet(true, false);

    //
    // Configure UART.
    //
    //UARTStdioConfig(0, 115200, g_ui32SysClock);

    //
    // Clear the terminal and print banner.
    //
    //UARTprintf("\033[2J\033[H");
    //UARTprintf("Ethernet lwIP example\n\n");

    //
    // Configure Port N1 for as an output for the animation LED.
    //
    MAP_GPIOPinTypeGPIOOutput(GPIO_PORTN_BASE, GPIO_PIN_1);
    MAP_GPIOPinTypeGPIOOutput(GPIO_PORTN_BASE, GPIO_PIN_0);
    MAP_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1);

    //
    // Initialize LED to OFF (0)
    //
    MAP_GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_1, ~GPIO_PIN_1);
    MAP_GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_0, ~GPIO_PIN_0);
    MAP_GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1, ~GPIO_PIN_1);

    //
    // Configure SysTick for a periodic interrupt.
    //
    MAP_SysTickPeriodSet(g_ui32SysClock / SYSTICKHZ);
    MAP_SysTickEnable();
    MAP_SysTickIntEnable();

    // Init Onion Client
    client = new OnionClient("o8Ik6DuC","NfyGRECh3WSZw9xn");
    client->registerFunction("/on",ledOn,0,0);
    client->registerFunction("/off",ledOff,0,0);
    char *params[1] = {"data"};
    client->registerFunction("/pubTest",pubTest,params,1);
    client->init(g_ui32SysClock);
    //
    // Setup Onion Client
    //
    //httpd_init();
    //client->begin();
    //
    // Set the interrupt priorities.  We set the SysTick interrupt to a higher
    // priority than the Ethernet interrupt to ensure that the file system
    // tick is processed if SysTick occurs while the Ethernet handler is being
    // processed.  This is very likely since all the TCP/IP and HTTP work is
    // done in the context of the Ethernet interrupt.
    //
    MAP_IntPrioritySet(INT_EMAC0, ETHERNET_INT_PRIORITY);
    MAP_IntPrioritySet(FAULT_SYSTICK, SYSTICK_INT_PRIORITY);

    //
    // Loop forever.  All the work is done in interrupt handlers.
    //
    uint32_t last_time = g_millis;
    bool led = false;
    while(1)
    {
      if ((g_millis - last_time) > 500) {
        if (led) {
          MAP_GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_0, ~GPIO_PIN_0);
          led = false;
        } else {
          MAP_GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_0, GPIO_PIN_0);
          led = true;
        }
        last_time = g_millis;
      }
      client->loop();
    }
  return 0;
}
//*****************************************************************************
//
// Main 'C' Language entry point.
//
//*****************************************************************************
int
main(void)
{
    float fTemperature, fPressure, fAltitude;
    int32_t i32IntegerPart;
    int32_t i32FractionPart;
    tContext sContext;
    uint32_t ui32SysClock;
    char pcBuf[15];

    //
    // Setup the system clock to run at 40 Mhz from PLL with crystal reference
    //
    ui32SysClock = MAP_SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ |
                                           SYSCTL_OSC_MAIN |
                                           SYSCTL_USE_PLL |
                                           SYSCTL_CFG_VCO_480), 40000000);

    //
    // Configure the device pins.
    //
    PinoutSet();

    //
    // Initialize the display driver.
    //
    Kentec320x240x16_SSD2119Init(ui32SysClock);

    //
    // Initialize the graphics context.
    //
    GrContextInit(&sContext, &g_sKentec320x240x16_SSD2119);

    //
    // Draw the application frame.
    //
    FrameDraw(&sContext, "bmp180");

    //
    // Flush any cached drawing operations.
    //
    GrFlush(&sContext);

    //
    // Enable UART0
    //
    MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);

    //
    // Initialize the UART for console I/O.
    //
    UARTStdioConfig(0, 115200, ui32SysClock);

    //
    // Print the welcome message to the terminal.
    //
    UARTprintf("\033[2JBMP180 Example\n");

    //
    // The I2C3 peripheral must be enabled before use.
    //
    MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C3);

    //
    // Configure the pin muxing for I2C3 functions on port G4 and G5.
    // This step is not necessary if your part does not support pin muxing.
    //
    MAP_GPIOPinConfigure(GPIO_PG4_I2C3SCL);
    MAP_GPIOPinConfigure(GPIO_PG5_I2C3SDA);

    //
    // Select the I2C function for these pins.  This function will also
    // configure the GPIO pins pins for I2C operation, setting them to
    // open-drain operation with weak pull-ups.  Consult the data sheet
    // to see which functions are allocated per pin.
    //
    MAP_GPIOPinTypeI2CSCL(GPIO_PORTG_BASE, GPIO_PIN_4);
    MAP_GPIOPinTypeI2C(GPIO_PORTG_BASE, GPIO_PIN_5);

    //
    // Enable interrupts to the processor.
    //
    MAP_IntMasterEnable();

    //
    // Initialize I2C3 peripheral.
    //
    I2CMInit(&g_sI2CInst, I2C3_BASE, INT_I2C3, 0xff, 0xff,
             ui32SysClock);

    //
    // Initialize the BMP180
    //
    BMP180Init(&g_sBMP180Inst, &g_sI2CInst, BMP180_I2C_ADDRESS,
               BMP180AppCallback, &g_sBMP180Inst);

    //
    // Wait for initialization callback to indicate reset request is complete.
    //
    while(g_vui8DataFlag == 0)
    {
        //
        // Wait for I2C Transactions to complete.
        //
    }

    //
    // Reset the data ready flag
    //
    g_vui8DataFlag = 0;

    //
    // Enable the system ticks at 10 hz.
    //
    MAP_SysTickPeriodSet(ui32SysClock / (10 * 3));
    MAP_SysTickIntEnable();
    MAP_SysTickEnable();

    //
    // Configure PQ4 to control the blue LED.
    //
    MAP_GPIOPinTypeGPIOOutput(GPIO_PORTQ_BASE, GPIO_PIN_4);

    //
    // Print temperature, pressure and altitude labels once on the LCD.
    //
    GrStringDraw(&sContext, "Temperature", 11,
                 ((GrContextDpyWidthGet(&sContext) / 2) - 96),
                 ((GrContextDpyHeightGet(&sContext) - 32) / 2) - 24, 1);
    GrStringDraw(&sContext, "Pressure", 8,
                 ((GrContextDpyWidthGet(&sContext) / 2) - 63),
                 (GrContextDpyHeightGet(&sContext) - 32) / 2, 1);
    GrStringDraw(&sContext, "Altitude", 8,
                 ((GrContextDpyWidthGet(&sContext) / 2) - 59),
                 ((GrContextDpyHeightGet(&sContext) - 32) / 2) + 24, 1);

    //
    // Begin the data collection and printing.  Loop Forever.
    //
    while(1)
    {
        //
        // Read the data from the BMP180 over I2C.  This command starts a
        // temperature measurement.  Then polls until temperature is ready.
        // Then automatically starts a pressure measurement and polls for that
        // to complete.  When both measurement are complete and in the local
        // buffer then the application callback is called from the I2C
        // interrupt context.  Polling is done on I2C interrupts allowing
        // processor to continue doing other tasks as needed.
        //
        BMP180DataRead(&g_sBMP180Inst, BMP180AppCallback, &g_sBMP180Inst);
        while(g_vui8DataFlag == 0)
        {
            //
            // Wait for the new data set to be available.
            //
        }

        //
        // Reset the data ready flag.
        //
        g_vui8DataFlag = 0;

        //
        // Get a local copy of the latest temperature data in float format.
        //
        BMP180DataTemperatureGetFloat(&g_sBMP180Inst, &fTemperature);

        //
        // Convert the floats to an integer part and fraction part for easy
        // print.
        //
        i32IntegerPart = (int32_t) fTemperature;
        i32FractionPart =(int32_t) (fTemperature * 1000.0f);
        i32FractionPart = i32FractionPart - (i32IntegerPart * 1000);
        if(i32FractionPart < 0)
        {
            i32FractionPart *= -1;
        }

        //
        // Print temperature with three digits of decimal precision to LCD and
        // terminal.
        //
        usnprintf(pcBuf, sizeof(pcBuf), "%03d.%03d ", i32IntegerPart,
                                                     i32FractionPart);
        GrStringDraw(&sContext, pcBuf, 8,
                     ((GrContextDpyWidthGet(&sContext) / 2) + 16),
                     ((GrContextDpyHeightGet(&sContext) - 32) / 2) - 24, 1);
        UARTprintf("Temperature %3d.%03d\t\t", i32IntegerPart,
                                               i32FractionPart);

        //
        // Get a local copy of the latest air pressure data in float format.
        //
        BMP180DataPressureGetFloat(&g_sBMP180Inst, &fPressure);

        //
        // Convert the floats to an integer part and fraction part for easy
        // print.
        //
        i32IntegerPart = (int32_t) fPressure;
        i32FractionPart =(int32_t) (fPressure * 1000.0f);
        i32FractionPart = i32FractionPart - (i32IntegerPart * 1000);
        if(i32FractionPart < 0)
        {
            i32FractionPart *= -1;
        }

        //
        // Print Pressure with three digits of decimal precision to LCD and
        // terminal.
        //
        usnprintf(pcBuf, sizeof(pcBuf), "%3d.%03d ", i32IntegerPart,
                                                     i32FractionPart);
        GrStringDraw(&sContext, pcBuf, -1,
                     ((GrContextDpyWidthGet(&sContext) / 2) + 16),
                     (GrContextDpyHeightGet(&sContext) - 32) / 2, 1);
        UARTprintf("Pressure %3d.%03d\t\t", i32IntegerPart, i32FractionPart);

        //
        // Calculate the altitude.
        //
        fAltitude = 44330.0f * (1.0f - powf(fPressure / 101325.0f,
                                            1.0f / 5.255f));

        //
        // Convert the floats to an integer part and fraction part for easy
        // print.
        //
        i32IntegerPart = (int32_t) fAltitude;
        i32FractionPart =(int32_t) (fAltitude * 1000.0f);
        i32FractionPart = i32FractionPart - (i32IntegerPart * 1000);
        if(i32FractionPart < 0)
        {
            i32FractionPart *= -1;
        }

        //
        // Print altitude with three digits of decimal precision to LCD and
        // terminal.
        //
        usnprintf(pcBuf, sizeof(pcBuf), "%3d.%03d ", i32IntegerPart,
                                                     i32FractionPart);
        GrStringDraw(&sContext, pcBuf, 8,
                     ((GrContextDpyWidthGet(&sContext) / 2) + 16),
                     ((GrContextDpyHeightGet(&sContext) - 32) / 2) + 24, 1);
        UARTprintf("Altitude %3d.%03d", i32IntegerPart, i32FractionPart);

        //
        // Print new line.
        //
        UARTprintf("\n");

        //
        // Delay to keep printing speed reasonable. About 100 milliseconds.
        //
        MAP_SysCtlDelay(ui32SysClock / (10 * 3));
    }
}
Example #17
0
int main()
{
	//
	// Enable lazy stacking for interrupt handlers.  This allows floating-point
	// instructions to be used within interrupt handlers, but at the expense of
	// extra stack usage.
	//
	MAP_FPUEnable();
	MAP_FPULazyStackingEnable();

	//
	// Set the clocking to run from the PLL at 50MHZ, change to SYSCTL_SYSDIV_2_5 for 80MHz if neeeded
	//
	MAP_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ);
	MAP_IntMasterDisable();

	//
	// Initialize the SW2 button
	//
	MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
	//
	// Unlock PF0 so we can change it to a GPIO input
	// Once we have enabled (unlocked) the commit register then re-lock it
	// to prevent further changes.  PF0 is muxed with NMI thus a special case.
	//
	HWREG(GPIO_PORTF_BASE + GPIO_O_LOCK) = GPIO_LOCK_KEY;
	HWREG(GPIO_PORTF_BASE + GPIO_O_CR) |= 0x01;
	HWREG(GPIO_PORTF_BASE + GPIO_O_LOCK) = 0;
	MAP_GPIOPinTypeGPIOInput(GPIO_PORTF_BASE, GPIO_PIN_0);
	MAP_GPIOPadConfigSet(GPIO_PORTF_BASE, GPIO_PIN_0, GPIO_STRENGTH_2MA , GPIO_PIN_TYPE_STD_WPU);

	//
	// Initialize the communication layer with a default UART setting
	//
	AbstractComm * comm = NULL;
	AbstractComm * uart_comm = new UARTComm();
	purpinsComm communication(uart_comm);

	//
	// Initialize the robot object
	//
	purpinsRobot purpins;

	//
	// Initialize the EEPROM
	//
	purpinsSettings settings;

	//
	// Initialize the MPU6050-based IMU
	//
	mpudata_t mpu;
	//unsigned long sample_rate = 10 ;
	//mpu9150_init(0, sample_rate, 0);
	memset(&mpu, 0, sizeof(mpudata_t));

	//
	// Get the current processor clock frequency.
	//
	ulClockMS = MAP_SysCtlClockGet() / (3 * 1000);
	//unsigned long loop_delay = (1000 / sample_rate) - 2;

	//
	// Configure SysTick to occur 1000 times per second
	//
	MAP_SysTickPeriodSet(MAP_SysCtlClockGet() / SYSTICKS_PER_SECOND);
	MAP_SysTickIntEnable();
	MAP_SysTickEnable();

	MAP_IntMasterEnable();

	//
	// Load the settings from EEPROM
	//
	// Load the robot's ID
	settings.get(PP_SETTING_ID, &id, sizeof(uint32_t));
	// Load the motors' PID gains
	settings.get(PP_SETTING_LEFT_PID, purpins.leftPIDGains(), sizeof(PIDGains));
	settings.get(PP_SETTING_RIGHT_PID, purpins.rightPIDGains(), sizeof(PIDGains));
	// Load the communication type
	uint32_t comm_type;
	settings.get(PP_SETTING_COMM_TYPE, &comm_type, sizeof(uint32_t));
	// Holding SW2 at startup forces USB Comm
	if(comm_type != PP_COMM_TYPE_USB && MAP_GPIOPinRead(GPIO_PORTF_BASE, GPIO_PIN_0) == 1)
	{
		if(comm_type == PP_COMM_TYPE_CC3000)
		{
			comm = new WiFiComm();
			// Load network and server settings
			settings.get(PP_SETTING_NETWORK_DATA, (static_cast<WiFiComm*>(comm))->network(), sizeof(Network));
			settings.get(PP_SETTING_SERVER_DATA, (static_cast<WiFiComm*>(comm))->server(), sizeof(Server));
			// Set WiFiComm as the underlying communication layer
			communication.setCommLayer(comm);
		}
		else if(comm_type == PP_COMM_TYPE_ESP8266)
		{
			// TODO
		}
		else if(comm_type == PP_COMM_TYPE_XBEE)
		{
			// TODO
		}
	}

	//
	// Communication variables and stuff
	//
	uint8_t sensors_pack[SENSORS_PACK_SIZE];
	bool send_pack = false;
	unsigned long sensor_streaming_millis = 0;
	unsigned long last_millis = millis();

	uint8_t data[SERIAL_BUFFER_SIZE];
	size_t data_size;
	uint8_t action;

	//
	// Main loop, just managing communications
	//
	while(1)
	{
		//
		// Check for a new action
		//
		action = communication.getMsg(data, data_size);

		// If we got an action...
		if(action > 0)
		{
			// Process it!!!
			if(action == PP_ACTION_GET_VERSION)
			{
				uint8_t version = VERSION;
				communication.sendMsg(PP_ACTION_GET_VERSION, (void*)(&version), 1);
			}
			else if(action == PP_ACTION_DRIVE)
			{
				RobotSpeed speed;
				memcpy(&speed, data, sizeof(speed));
				purpins.setSpeed(&speed);
				communication.sendAck(PP_ACTION_DRIVE);
			}
			else if(action == PP_ACTION_DRIVE_MOTORS)
			{
				MotorSpeeds motor_speeds;
				memcpy(&motor_speeds, data, sizeof(motor_speeds));
				purpins.setMotorSpeeds(&motor_speeds);
				communication.sendAck(PP_ACTION_DRIVE_MOTORS);
			}
			else if(action == PP_ACTION_DRIVE_PWM)
			{
				MotorPWMs motor_pwms;
				memcpy(&motor_pwms, data, sizeof(motor_pwms));
				purpins.setPWM(&motor_pwms);
				communication.sendAck(PP_ACTION_DRIVE_PWM);
			}
			else if(action == PP_ACTION_GET_ODOMETRY)
			{
				Pose odometry;
				purpins.getOdometry(&odometry);
				communication.sendMsg(PP_ACTION_GET_ODOMETRY, (void*)(&odometry), sizeof(odometry));
			}
			else if(action == PP_ACTION_GET_MOTOR_SPEEDS)
			{
				MotorSpeeds speed;
				purpins.getMotorSpeeds(&speed);
				communication.sendMsg(PP_ACTION_GET_MOTOR_SPEEDS, (void*)(&speed), sizeof(speed));
			}
			else if(action == PP_ACTION_GET_ENCODER_PULSES)
			{
				EncoderPulses encoder_pulses;
				purpins.getEncoderTicks(&encoder_pulses);
				communication.sendMsg(PP_ACTION_GET_ENCODER_PULSES, (void*)(&encoder_pulses), sizeof(encoder_pulses));
			}
			else if(action == PP_ACTION_GET_IMU)
			{
				IMU imu_data;
				imu_data.orientation_x = mpu.fusedQuat[0];
				imu_data.orientation_y = mpu.fusedQuat[1];
				imu_data.orientation_z = mpu.fusedQuat[2];
				imu_data.orientation_w = mpu.fusedQuat[4];
				imu_data.linear_acceleration_x = mpu.calibratedAccel[0];
				imu_data.linear_acceleration_y = mpu.calibratedAccel[1];
				imu_data.linear_acceleration_z = mpu.calibratedAccel[2];
				imu_data.angular_velocity_x = mpu.calibratedMag[0];
				imu_data.angular_velocity_y = mpu.calibratedMag[1];
				imu_data.angular_velocity_z = mpu.calibratedMag[2];
				communication.sendMsg(PP_ACTION_GET_IMU, (void*)(&imu_data), sizeof(imu_data));
			}
			else if(action == PP_ACTION_GET_IR_SENSORS)
			{
				// TODO: Add the IR sensors
			}
			else if(action == PP_ACTION_GET_GAS_SENSOR)
			{
				// TODO: Add the gas sensor
			}
			else if(action == PP_ACTION_SET_SENSORS_PACK)
			{
				bool ok = true;
				memset(sensors_pack, 0, SENSORS_PACK_SIZE);
				if(data_size > SENSORS_PACK_SIZE)
				{
					communication.error(PP_ERROR_BUFFER_SIZE);
					ok = false;
					break;
				}
				for(unsigned int i=0 ; i<data_size ; i++)
				{
					if(data[i] < PP_ACTION_GET_ODOMETRY || data[i] > PP_ACTION_GET_GAS_SENSOR)
					{
						communication.error(PP_ERROR_SENSOR_UNKNOWN);
						ok = false;
						break;
					}
				}
				if(ok)
				{
					memcpy(sensors_pack, data, data_size);
					communication.sendAck(PP_ACTION_SET_SENSORS_PACK);
				}
			}
			else if(action == PP_ACTION_GET_SENSORS_PACK)
			{
				send_pack = true;
			}
			else if(action == PP_ACTION_SET_SENSOR_STREAMING)
			{
				float sensor_streaming_frequency;
				memcpy(&sensor_streaming_frequency, data, sizeof(sensor_streaming_frequency));
				sensor_streaming_millis = 1/sensor_streaming_frequency * 1000;
				communication.sendAck(PP_ACTION_SET_SENSOR_STREAMING);
			}
			else if(action == PP_ACTION_SET_GLOBAL_POSE)
			{
				Pose pose;
				memcpy(&pose, data, sizeof(pose));
				purpins.setGlobalPose(&pose);
				communication.sendAck(PP_ACTION_SET_GLOBAL_POSE);
			}
			else if(action == PP_ACTION_SET_NEIGHBORS_POSES)
			{
				// TODO: Finish this
			}
			else if(action == PP_ACTION_SET_ID)
			{
				memcpy(&id, data, sizeof(id));
				settings.save(PP_SETTING_ID, data, sizeof(uint32_t));
				communication.sendAck(PP_ACTION_SET_ID);
			}
			else if(action == PP_ACTION_GET_ID)
			{
				communication.sendMsg(PP_ACTION_GET_ID, (void*)(&id), sizeof(id));
			}
			else if(action == PP_ACTION_SET_PID_GAINS)
			{
				memcpy(purpins.leftPIDGains(), data, sizeof(PIDGains));
				memcpy(purpins.rightPIDGains(), data+sizeof(PIDGains), sizeof(PIDGains));
				settings.save(PP_SETTING_LEFT_PID, data, sizeof(PIDGains));
				settings.save(PP_SETTING_RIGHT_PID, data+sizeof(PIDGains), sizeof(PIDGains));
				communication.sendAck(PP_ACTION_SET_PID_GAINS);
			}
			else if(action == PP_ACTION_GET_PID_GAINS)
			{
				memcpy(data, purpins.leftPIDGains(), sizeof(PIDGains));
				memcpy(data+sizeof(PIDGains), purpins.rightPIDGains(), sizeof(PIDGains));
				communication.sendMsg(PP_ACTION_GET_ID, (void*)(data), 2*sizeof(PIDGains));
			}
			else if(action == PP_ACTION_SET_SERVER_DATA)
			{
				settings.save(PP_SETTING_SERVER_DATA, data, sizeof(Server));
				communication.sendAck(PP_ACTION_SET_SERVER_DATA);
			}
			else if(action == PP_ACTION_GET_SERVER_DATA)
			{
				settings.get(PP_SETTING_SERVER_DATA, data, sizeof(Server));
				communication.sendMsg(PP_ACTION_GET_SERVER_DATA, (void*)(data), sizeof(Server));
			}
			else if(action == PP_ACTION_SET_NETWORK_DATA)
			{
				settings.save(PP_SETTING_NETWORK_DATA, data, sizeof(Network));
				communication.sendAck(PP_ACTION_SET_NETWORK_DATA);
			}
			else if(action == PP_ACTION_GET_NETWORK_DATA)
			{
				settings.get(PP_SETTING_NETWORK_DATA, data, sizeof(Network));
				communication.sendMsg(PP_ACTION_GET_NETWORK_DATA, (void*)(data), sizeof(Network));
			}
			else if(action == PP_ACTION_SET_COMM_TYPE)
			{
				memcpy(&comm_type, data, sizeof(comm_type));
				if(comm_type != communication.type())
				{
					if(comm_type == PP_COMM_TYPE_USB)
					{
						communication.setCommLayer(uart_comm);
						if(comm != NULL) delete comm;
					}
					if(comm_type == PP_COMM_TYPE_CC3000)
					{
						if(comm != NULL) delete comm;
						comm = new WiFiComm();
						// Load network and server settings
						settings.get(PP_SETTING_NETWORK_DATA, (static_cast<WiFiComm*>(comm))->network(), sizeof(Network));
						settings.get(PP_SETTING_SERVER_DATA, (static_cast<WiFiComm*>(comm))->server(), sizeof(Server));
						// Set WiFiComm as the underlying communication layer
						communication.setCommLayer(comm);
					}
					else if(comm_type == PP_COMM_TYPE_ESP8266)
					{
						// TODO
					}
					else if(comm_type == PP_COMM_TYPE_XBEE)
					{
						// TODO
					}
					else
					{
						communication.error(PP_ERROR_COMM_UNKNOWN);
					}
					communication.sendAck(PP_ACTION_SET_COMM_TYPE);
				}
			}

		} // if(action > 0)

		//
		// Manage sensor streaming
		//
		unsigned long current_millis = millis();
		if(send_pack || (sensor_streaming_millis > 0 && (current_millis - last_millis) >= sensor_streaming_millis))
		{
			size_t size = 0;
			for(int i=0 ; i<SENSORS_PACK_SIZE ; i++)
			{
				if(sensors_pack[i] == 0) break;

				if(sensors_pack[i] == PP_ACTION_GET_ODOMETRY)
				{
					Pose odometry;
					purpins.getOdometry(&odometry);
					memcpy(data+size, &odometry, sizeof(odometry));
					size += sizeof(odometry);
				}
				else if(sensors_pack[i] == PP_ACTION_GET_MOTOR_SPEEDS)
				{
					MotorSpeeds speed;
					purpins.getMotorSpeeds(&speed);
					memcpy(data+size, &speed, sizeof(speed));
					size += sizeof(speed);
				}
				else if(sensors_pack[i] == PP_ACTION_GET_ENCODER_PULSES)
				{
					EncoderPulses encoder_pulses;
					purpins.getEncoderTicks(&encoder_pulses);
					memcpy(data+size, &encoder_pulses, sizeof(encoder_pulses));
					size += sizeof(encoder_pulses);
				}
				else if(sensors_pack[i] == PP_ACTION_GET_IMU)
				{
					IMU imu_data;
					imu_data.orientation_x = mpu.fusedQuat[0];
					imu_data.orientation_y = mpu.fusedQuat[1];
					imu_data.orientation_z = mpu.fusedQuat[2];
					imu_data.orientation_w = mpu.fusedQuat[4];
					imu_data.linear_acceleration_x = mpu.calibratedAccel[0];
					imu_data.linear_acceleration_y = mpu.calibratedAccel[1];
					imu_data.linear_acceleration_z = mpu.calibratedAccel[2];
					imu_data.angular_velocity_x = mpu.calibratedMag[0];
					imu_data.angular_velocity_y = mpu.calibratedMag[1];
					imu_data.angular_velocity_z = mpu.calibratedMag[2];
					memcpy(data+size, &imu_data, sizeof(imu_data));
					size += sizeof(imu_data);
				}
				else if(sensors_pack[i] == PP_ACTION_GET_IR_SENSORS)
				{
					// TODO: Add the IR sensors
				}
				else if(sensors_pack[i] == PP_ACTION_GET_GAS_SENSOR)
				{
					// TODO: Add the gas sensor
				}
			}

			communication.sendMsg(PP_ACTION_GET_SENSORS_PACK, (void*)(data), size);
			last_millis = current_millis;
			send_pack = false;

		} // if(send_pack ...

	} // while(1)

	return 0;
}
Example #18
0
//*****************************************************************************
//
// The program main function.  It performs initialization, then runs a command
// processing loop to read commands from the console.
//
//*****************************************************************************
int
main(void)
{
  //  int nStatus;
    FRESULT iFResult;
  //  tRectangle sRect;

    //
    // Enable the GPIO port that is used for the on-board LED.
    //
    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPION);

    //
    // Check if the peripheral access is enabled.
    //
    while(!SysCtlPeripheralReady(SYSCTL_PERIPH_GPION))
    {
    }

    //
    // Enable the GPIO pin for the LED (PN0).  Set the direction as output, and
    // enable the GPIO pin for digital function.
    //
    GPIOPinTypeGPIOOutput(GPIO_PORTN_BASE, GPIO_PIN_0);

    volatile uint32_t ui32Loop;
    int counter = 2;


    //
    // Enable lazy stacking for interrupt handlers.  This allows floating-point
    // instructions to be used within interrupt handlers, but at the expense of
    // extra stack usage.
    //
    MAP_FPULazyStackingEnable();

    //
    // Set the system clock to run at 50MHz from the PLL.
    //
    g_ui32SysClock = SysCtlClockFreqSet (SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
                           SYSCTL_XTAL_16MHZ,50000000);

    //
    // Enable the peripherals used by this example.
    //
    MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_SSI3);

    //
    // Configure SysTick for a 100Hz interrupt.  The FatFs driver wants a 10 ms
    // tick.
    //
    MAP_SysTickPeriodSet(g_ui32SysClock / 100);
    MAP_SysTickEnable();
    MAP_SysTickIntEnable();

    //
    // Enable Interrupts
    //
    MAP_IntMasterEnable();
    // Mount the file system, using logical disk 0.
    //
    iFResult = f_mount(0, &g_sFatFs);



    iFResult = f_open(&g_sFileObject, "testFile.txt", (FA_OPEN_ALWAYS | FA_WRITE));


    while(counter > 0){
    		GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_0, GPIO_PIN_0);
    		for(ui32Loop = 0; ui32Loop < 200000; ui32Loop++)
    		{
    		}

    		//
    		// Turn off the LED.
    		//
    		GPIOPinWrite(GPIO_PORTN_BASE, GPIO_PIN_0, 0x0);

    		//
    		// Delay for a bit.
    		//
    		for(ui32Loop = 0; ui32Loop < 200000; ui32Loop++)
    		{
    		}
    		counter--;
    }

    if(iFResult != FR_OK)
    {
       return(1);
    }
}
int main(void)
{
	MAP_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |SYSCTL_XTAL_12MHZ); //50MHZ

	//
	// Enable peripherals to operate when CPU is in sleep.
	//
	MAP_SysCtlPeripheralClockGating(true);

	//
	// Configure SysTick to occur 1000 times per second, to use as a time
	// reference.  Enable SysTick to generate interrupts.
	//
	MAP_SysTickPeriodSet(MAP_SysCtlClockGet() / SYSTICKS_PER_SECOND);
	MAP_SysTickIntEnable();
	MAP_SysTickEnable();

	//
	// Get the current processor clock frequency.
	//
	ulClockMS = MAP_SysCtlClockGet() / (3 * 1000);

	// init Serial Comm
	initSerialComm(230400);

	// init SSI0 in slave mode
	initSPIComm();

#ifdef DEBUG
	UARTprintf("Setting up PID\n");
#endif
	initCarPID();
#ifdef DEBUG
	UARTprintf("done\n");
#endif

#ifdef DEBUG
	UARTprintf("Setting up PWM ... \n");
#endif
	configurePWM();
	configureGPIO();
#ifdef DEBUG
	UARTprintf("done\n");
#endif

#ifdef DEBUG
	UARTprintf("Setting up Servo ... \n");
#endif
	servo_init();
	servo_setPosition(90);
#ifdef DEBUG
	UARTprintf("done\n");
#endif

#ifdef DEBUG
	UARTprintf("Starting QEI...");
#endif
	encoder_init();
#ifdef DEBUG
	UARTprintf("done\n");
#endif

#ifdef USE_I2C
#ifdef DEBUG
	UARTprintf("Setting up I2C\n");
#endif
	//I2C
	MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C0);
	MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB);
	MAP_GPIOPinTypeI2C(GPIO_PORTB_AHB_BASE,GPIO_PIN_2 | GPIO_PIN_3);
	MAP_I2CMasterInitExpClk(I2C0_MASTER_BASE,SysCtlClockGet(),true);  //false = 100khz , true = 400khz
	I2CMasterTimeoutSet(I2C0_MASTER_BASE, 1000);
#ifdef DEBUG
	UARTprintf("done\n");
#endif
#endif

#ifdef USE_I2C
#ifdef USE_INA226
#ifdef DEBUG
	UARTprintf("Setting up INA226\n");
#endif
	initINA226();
#ifdef DEBUG
	UARTprintf("done\n");
#endif
#endif
#endif


	while (1)
	{

	}
}