Example #1
0
status_t CLOCK_SetPbeMode(mcg_pll_clk_select_t pllcs, mcg_pll_config_t const *config)
{
    /*
       This function is designed to change MCG to PBE mode from PEE/BLPE/FBE,
       but with this workflow, the source mode could be all modes except PEI/PBI.
     */
    MCG->C2 &= ~MCG_C2_LP_MASK; /* Disable lowpower. */

    /* Change to use external clock first. */
    MCG->C1 = ((MCG->C1 & ~(MCG_C1_CLKS_MASK | MCG_C1_IREFS_MASK)) | MCG_C1_CLKS(kMCG_ClkOutSrcExternal));

    /* Wait for CLKST clock status bits to show clock source is ext ref clk */
    while ((MCG->S & (MCG_S_IREFST_MASK | MCG_S_CLKST_MASK)) !=
           (MCG_S_IREFST(kMCG_FllSrcExternal) | MCG_S_CLKST(kMCG_ClkOutStatExt)))
    {
    }

    /* Disable PLL first, then configure PLL. */
    MCG->C6 &= ~MCG_C6_PLLS_MASK;
    while (MCG->S & MCG_S_PLLST_MASK)
    {
    }

    /* Configure the PLL. */
    {
        CLOCK_EnablePll0(config);
    }

    /* Change to PLL mode. */
    MCG->C6 |= MCG_C6_PLLS_MASK;
    while (!(MCG->S & MCG_S_PLLST_MASK))
    {
    }

    return kStatus_Success;
}
Example #2
0
/*
** ===================================================================
**     Method      :  Cpu_SetMCGModePEE (component MK21FN1M0MC12)
**
**     Description :
**         This method sets the MCG to PEE mode.
**         This method is internal. It is used by Processor Expert only.
** ===================================================================
*/
static void Cpu_SetMCGModePEE(uint8_t CLKMode)
{
  switch (CLKMode) {
    case 0U:
      /* Switch to PEE Mode */
      /* OSC_CR: ERCLKEN=1,??=0,EREFSTEN=1,??=0,SC2P=0,SC4P=0,SC8P=0,SC16P=0 */
      OSC_CR = (OSC_CR_ERCLKEN_MASK | OSC_CR_EREFSTEN_MASK);
      /* MCG_C7: OSCSEL=0 */
      MCG_C7 &= (uint8_t)~(uint8_t)(MCG_C7_OSCSEL_MASK);
      /* MCG_C1: CLKS=0,FRDIV=3,IREFS=0,IRCLKEN=0,IREFSTEN=0 */
      MCG_C1 = (MCG_C1_CLKS(0x00) | MCG_C1_FRDIV(0x03));
      /* MCG_C2: LOCRE0=0,??=0,RANGE0=2,HGO0=0,EREFS0=1,LP=0,IRCS=0 */
      MCG_C2 = (MCG_C2_RANGE0(0x02) | MCG_C2_EREFS0_MASK);
      /* MCG_C5: ??=0,PLLCLKEN0=0,PLLSTEN0=0,PRDIV0=1 */
      MCG_C5 = MCG_C5_PRDIV0(0x01);
      /* MCG_C6: LOLIE0=0,PLLS=1,CME0=0,VDIV0=6 */
      MCG_C6 = (MCG_C6_PLLS_MASK | MCG_C6_VDIV0(0x06));
      while((MCG_S & 0x0CU) != 0x0CU) { /* Wait until output of the PLL is selected */
      }
      break;
    default:
      break;
  }
}
Example #3
0
/************************************************************************************************ 
* SetPLL_Kinetis
* 系统的锁相环设定,其完成的主要工作为: 设定CoreClock、BusClock、FlexClock、FlashClock
* (设置的具体频率在KinetisConfig.h中配置)
************************************************************************************************/
static void SetPLL_Kinetis(void)
{
  K_int32u_t temp_reg;
  K_int8u_t  i;
// First move to FBE mode
// Enable external oscillator, RANGE=2, HGO=1, EREFS=1, LP=0, IRCS=0
  MCG_C2 = MCG_C2_RANGE(1) | MCG_C2_HGO_MASK | MCG_C2_EREFS_MASK;

// after initialization of oscillator release latched state of oscillator and GPIO
  SIM_SCGC4 |= SIM_SCGC4_LLWU_MASK;
  LLWU_CS |= LLWU_CS_ACKISO_MASK;
  
// Select external oscilator and Reference Divider and clear IREFS to start ext osc
// CLKS=2, FRDIV=3, IREFS=0, IRCLKEN=0, IREFSTEN=0
  MCG_C1 = MCG_C1_CLKS(2) | MCG_C1_FRDIV(3);

  /* if we aren't using an osc input we don't need to wait for the osc to init */

  while (MCG_S & MCG_S_IREFST_MASK){}; // wait for Reference clock Status bit to clear

  while (((MCG_S & MCG_S_CLKST_MASK) >> MCG_S_CLKST_SHIFT) != 0x2){}; // Wait for clock status bits to show clock source is ext ref clk

// Now in FBE

  /* 设定PLL时钟 */
#if CORE_CLK_Kinetis  <= 110
  MCG_C5 = MCG_C5_PRDIV(REF_CLK_Kinetis/2 - 1);     /* PLLCLK == 2MHz */
#else
  #if   REF_CLK_Kinetis % 3 == 0
    MCG_C5 = MCG_C5_PRDIV(REF_CLK_Kinetis/3 - 1);   /* PLLCLK == 3MHz */
  #elif REF_CLK_Kinetis % 4 == 0
    MCG_C5 = MCG_C5_PRDIV(REF_CLK_Kinetis/4 - 1);   /* PLLCLK == 4MHz */
  #elif REF_CLK_Kinetis % 5 == 0
    MCG_C5 = MCG_C5_PRDIV(REF_CLK_Kinetis*2/5 - 1); /* PLLCLK == 2.5MHz */
  #endif
#endif 
  /*
   * Ensure MCG_C6 is at the reset default of 0. LOLIE disabled,
   * PLL disabled, clk monitor disabled, PLL VCO divider is clear 
   */  
  MCG_C6 = 0x0;

  /* 设定各时钟的分频数 */
  temp_reg = FMC_PFAPR; // store present value of FMC_PFAPR
  // set M0PFD through M7PFD to 1 to disable prefetch
  FMC_PFAPR |= FMC_PFAPR_M7PFD_MASK | FMC_PFAPR_M6PFD_MASK | FMC_PFAPR_M5PFD_MASK
             | FMC_PFAPR_M4PFD_MASK | FMC_PFAPR_M3PFD_MASK | FMC_PFAPR_M2PFD_MASK
             | FMC_PFAPR_M1PFD_MASK | FMC_PFAPR_M0PFD_MASK;
  
  // set clock dividers to desired value  
  SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0)       
              | SIM_CLKDIV1_OUTDIV2(DIV_BusClk_Kinetis - 1) 
              | SIM_CLKDIV1_OUTDIV3(DIV_FlexClk_Kinetis - 1) 
              | SIM_CLKDIV1_OUTDIV4(DIV_FlashClk_Kinetis - 1);
  // wait for dividers to change
  for (i = 0 ; i < DIV_FlashClk_Kinetis ; i++) {}
  FMC_PFAPR = temp_reg; // re-store original value of FMC_PFAPR  
  
  /* 设置倍频数,倍频数为VDIV+24 */
#if CORE_CLK_Kinetis  <= 110
  MCG_C6 = MCG_C6_PLLS_MASK | MCG_C6_VDIV(CORE_CLK_Kinetis/2 - 24); 
#else
  #if   REF_CLK_Kinetis % 3 == 0
    MCG_C6 = MCG_C6_PLLS_MASK | MCG_C6_VDIV(CORE_CLK_Kinetis/3 - 24); 
  #elif REF_CLK_Kinetis % 4 == 0
    MCG_C6 = MCG_C6_PLLS_MASK | MCG_C6_VDIV(CORE_CLK_Kinetis/4 - 24);
  #elif REF_CLK_Kinetis % 5 == 0
    MCG_C6 = MCG_C6_PLLS_MASK | MCG_C6_VDIV(CORE_CLK_Kinetis*2/5 - 24); 
  #endif
#endif
  
  while (!(MCG_S & MCG_S_PLLST_MASK)){}; // wait for PLL status bit to set

  while (!(MCG_S & MCG_S_LOCK_MASK)){}; // Wait for LOCK bit to set

// Now running PBE Mode

// Transition into PEE by setting CLKS to 0
// CLKS=0, FRDIV=3, IREFS=0, IRCLKEN=0, IREFSTEN=0
  MCG_C1 &= ~MCG_C1_CLKS_MASK;

// Wait for clock status bits to update
  while (((MCG_S & MCG_S_CLKST_MASK) >> MCG_S_CLKST_SHIFT) != 0x3){};
} 
Example #4
0
/*!
 *  @brief      PLL超频
 *  @param      PLL_e       频率设置参数
 *  @return     超频频率(MHz)
 *  @since      v5.0
 *  @warning    此函数只能在 复位后没进行任何频率设置情况下调用,即MCG在FEI模式下才可调用
 *  Sample usage:       uint8 clk = pll_init(PLL100);        //超频
 */
uint8 pll_init(PLL_e pll)
{

    mcg_div_count( pll);

    SIM_SCGC5 |= SIM_SCGC5_PORTA_MASK;      //PTA18 和 PTA19 用于 晶振

    // set clock dividers to desired value
    SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(mcg_div.core_div) |  SIM_CLKDIV1_OUTDIV4(mcg_div.bus_div);


    //上电复位后,单片机会自动进入 FEI 模式,使用 内部参考时钟

    //FEI -> FBE
    OSC0_CR  =  ( 0
                  | OSC_CR_ERCLKEN_MASK     //使能 外部参考时钟
                  //| OSC_CR_SC2P_MASK      //配置电容
                  //| OSC_CR_SC4P_MASK      //配置电容
                  //| OSC_CR_SC8P_MASK      //配置电容
                  | OSC_CR_SC16P_MASK       //配置电容
                 );

    MCG_C2 =    ( 0
                | MCG_C2_RANGE0(2)
                | MCG_C2_EREFS0_MASK
                );

    MCG_C1 = (0
              | MCG_C1_CLKS(2)
              | MCG_C1_FRDIV(7)
              | MCG_C1_IRCLKEN_MASK
              );

    while (MCG_S & MCG_S_IREFST_MASK) {};                       //等待FLL参考时钟 为 外部参考时钟(S[IREFST]=0,表示使用外部参考时钟,)

    while ((MCG_S & MCG_S_CLKST_MASK)  != MCG_S_CLKST(0x2)) {}; //等待选择外部参考时钟

    //现在已经进入了 FBE模式

    //FBE -> PBE


    MCG_C5 = MCG_C5_PRDIV0(mcg_cfg[pll].prdiv);                      //分频, EXTAL_IN_MHz/( PRDIV+1)
    MCG_C6 = MCG_C6_PLLS_MASK | MCG_C6_VDIV0(mcg_cfg[pll].vdiv) ;    //倍频, EXTAL_IN_MHz/( PRDIV+1)  * (VDIV+24)

    while (!(MCG_S & MCG_S_PLLST_MASK)) {};                         //等待时钟源选择PLL

    while (!(MCG_S & MCG_S_LOCK0_MASK)) {};                          //等待 PLL锁了(锁相环)

    // 现在已经进入了 PBE 模式

    // PBE -> PEE
    //MCG_C1 &= ~MCG_C1_CLKS_MASK;
    MCG_C1 = MCG_C1_IRCLKEN_MASK;

    while (((MCG_S & MCG_S_CLKST_MASK) ) != MCG_S_CLKST(0x3)) {};//等待选择输出PLL

    // 现在已经进入了 PEE 模式
    
    SIM_SOPT2 |= (0         //选择 PLL时钟
              | SIM_SOPT2_PLLFLLSEL_MASK
             );

    return mcg_cfg[pll].clk;
} //pll_init
Example #5
0
/**
 * @brief   K20x clock initialization.
 * @note    All the involved constants come from the file @p board.h.
 * @note    This function is meant to be invoked early during the system
 *          initialization, it is usually invoked from the file
 *          @p board.c.
 * @todo    This function needs to be more generic.
 *
 * @special
 */
void k20x_clock_init(void) {
#if !KINETIS_NO_INIT

  /* Disable the watchdog */
  WDOG->UNLOCK = 0xC520;
  WDOG->UNLOCK = 0xD928;
  WDOG->STCTRLH &= ~WDOG_STCTRLH_WDOGEN;

  SIM->SCGC5 |= SIM_SCGC5_PORTA |
                SIM_SCGC5_PORTB |
                SIM_SCGC5_PORTC |
                SIM_SCGC5_PORTD |
                SIM_SCGC5_PORTE;

#if KINETIS_MCG_MODE == KINETIS_MCG_MODE_FEI
  /* This is the default mode at reset. */

  /* Configure FEI mode */
  MCG->C4 = MCG_C4_DRST_DRS(KINETIS_MCG_FLL_DRS) |
            (KINETIS_MCG_FLL_DMX32 ? MCG_C4_DMX32 : 0);

  /* Set clock dividers */
  SIM->CLKDIV1 = SIM_CLKDIV1_OUTDIV1(KINETIS_CLKDIV1_OUTDIV1-1) |
                 SIM_CLKDIV1_OUTDIV2(KINETIS_CLKDIV1_OUTDIV2-1) |
                 SIM_CLKDIV1_OUTDIV4(KINETIS_CLKDIV1_OUTDIV4-1);
  SIM->CLKDIV2 = SIM_CLKDIV2_USBDIV(0); /* not strictly necessary since usb_lld will set this */

#elif KINETIS_MCG_MODE == KINETIS_MCG_MODE_PEE

  uint32_t ratio, frdiv;
  uint32_t ratios[] = { 32, 64, 128, 256, 512, 1024, 1280, 1536 };
  uint8_t ratio_quantity = sizeof(ratios) / sizeof(ratios[0]);
  uint8_t i;

  /* EXTAL0 and XTAL0 */
  PORTA->PCR[18] = 0;
  PORTA->PCR[19] = 0;

  /*
   * Start in FEI mode
   */

  /* Internal capacitors for crystal */
#if defined(KINETIS_BOARD_OSCILLATOR_SETTING)
  OSC0->CR = KINETIS_BOARD_OSCILLATOR_SETTING;
#else /* KINETIS_BOARD_OSCILLATOR_SETTING */
  /* Disable the internal capacitors */
  OSC0->CR = 0;
#endif /* KINETIS_BOARD_OSCILLATOR_SETTING */

  /* TODO: need to add more flexible calculation, specially regarding
   *       divisors which may not be available depending on the XTAL
   *       frequency, which would required other registers to be modified.
   */
  /* Enable OSC, low power mode */
  MCG->C2 = MCG_C2_LOCRE0 | MCG_C2_EREFS0;
  if (KINETIS_XTAL_FREQUENCY > 8000000UL)
    MCG->C2 |= MCG_C2_RANGE0(2);
  else
    MCG->C2 |= MCG_C2_RANGE0(1);

  frdiv = 7;
  ratio = KINETIS_XTAL_FREQUENCY / 31250UL;
  for (i = 0; i < ratio_quantity; ++i) {
    if (ratio == ratios[i]) {
      frdiv = i;
      break;
    }
  }

  /* Switch to crystal as clock source, FLL input of 31.25 KHz */
  MCG->C1 = MCG_C1_CLKS(2) | MCG_C1_FRDIV(frdiv);

  /* Wait for crystal oscillator to begin */
  while (!(MCG->S & MCG_S_OSCINIT0));

  /* Wait for the FLL to use the oscillator */
  while (MCG->S & MCG_S_IREFST);

  /* Wait for the MCGOUTCLK to use the oscillator */
  while ((MCG->S & MCG_S_CLKST_MASK) != MCG_S_CLKST(2));

  /*
   * Now in FBE mode
   */
  #define KINETIS_PLLIN_FREQUENCY 2000000UL
  /*
   * Config PLL input for 2 MHz
   * TODO: Make sure KINETIS_XTAL_FREQUENCY >= 2Mhz && <= 50Mhz
   */
  MCG->C5 = MCG_C5_PRDIV0((KINETIS_XTAL_FREQUENCY/KINETIS_PLLIN_FREQUENCY) - 1);

  /*
   * Config PLL output to match KINETIS_SYSCLK_FREQUENCY
   * TODO: make sure KINETIS_SYSCLK_FREQUENCY is a match
   */
  for(i = 24; i < 56; i++)
  {
    if(i == (KINETIS_PLLCLK_FREQUENCY/KINETIS_PLLIN_FREQUENCY))
    {
      /* Config PLL to match KINETIS_PLLCLK_FREQUENCY */
      MCG->C6 = MCG_C6_PLLS | MCG_C6_VDIV0(i-24);
      break;
    }
  }

  if(i>=56)  /* Config PLL for 96 MHz output as default setting */
    MCG->C6 = MCG_C6_PLLS | MCG_C6_VDIV0(0);

  /* Wait for PLL to start using crystal as its input, and to lock */
  while ((MCG->S & (MCG_S_PLLST|MCG_S_LOCK0))!=(MCG_S_PLLST|MCG_S_LOCK0));

  /*
   * Now in PBE mode
   */
  /* Set the PLL dividers for the different clocks */
  SIM->CLKDIV1 = SIM_CLKDIV1_OUTDIV1(KINETIS_CLKDIV1_OUTDIV1-1) |
                 SIM_CLKDIV1_OUTDIV2(KINETIS_CLKDIV1_OUTDIV2-1) |
                 SIM_CLKDIV1_OUTDIV4(KINETIS_CLKDIV1_OUTDIV4-1);
  SIM->CLKDIV2 = SIM_CLKDIV2_USBDIV(0);
  SIM->SOPT2 = SIM_SOPT2_PLLFLLSEL;

  /* Switch to PLL as clock source */
  MCG->C1 = MCG_C1_CLKS(0);

  /* Wait for PLL clock to be used */
  while ((MCG->S & MCG_S_CLKST_MASK) != MCG_S_CLKST_PLL);

  /*
   * Now in PEE mode
   */
#else /* KINETIS_MCG_MODE == KINETIS_MCG_MODE_PEE */
#error Unimplemented KINETIS_MCG_MODE
#endif /* KINETIS_MCG_MODE == ... */

#endif /* !KINETIS_NO_INIT */
}
Example #6
0
status_t CLOCK_SetMcgConfig(const mcg_config_t *config)
{
    mcg_mode_t next_mode;
    status_t status = kStatus_Success;

    mcg_pll_clk_select_t pllcs = kMCG_PllClkSelPll0;

    /* If need to change external clock, MCG_C7[OSCSEL]. */
    if (MCG_C7_OSCSEL_VAL != config->oscsel)
    {
        /* If external clock is in use, change to FEI first. */
        if (!(MCG->S & MCG_S_IRCST_MASK))
        {
            CLOCK_ExternalModeToFbeModeQuick();
            CLOCK_SetFeiMode(config->dmx32, config->drs, (void (*)(void))0);
        }

        CLOCK_SetExternalRefClkConfig(config->oscsel);
    }

    /* Re-configure MCGIRCLK, if MCGIRCLK is used as system clock source, then change to FEI/PEI first. */
    if (MCG_S_CLKST_VAL == kMCG_ClkOutStatInt)
    {
        MCG->C2 &= ~MCG_C2_LP_MASK; /* Disable lowpower. */

        {
            CLOCK_SetFeiMode(config->dmx32, config->drs, CLOCK_FllStableDelay);
        }
    }

    /* Configure MCGIRCLK. */
    CLOCK_SetInternalRefClkConfig(config->irclkEnableMode, config->ircs, config->fcrdiv);

    next_mode = CLOCK_GetMode();

    do
    {
        next_mode = mcgModeMatrix[next_mode][config->mcgMode];

        switch (next_mode)
        {
            case kMCG_ModeFEI:
                status = CLOCK_SetFeiMode(config->dmx32, config->drs, CLOCK_FllStableDelay);
                break;
            case kMCG_ModeFEE:
                status = CLOCK_SetFeeMode(config->frdiv, config->dmx32, config->drs, CLOCK_FllStableDelay);
                break;
            case kMCG_ModeFBI:
                status = CLOCK_SetFbiMode(config->dmx32, config->drs, (void (*)(void))0);
                break;
            case kMCG_ModeFBE:
                status = CLOCK_SetFbeMode(config->frdiv, config->dmx32, config->drs, (void (*)(void))0);
                break;
            case kMCG_ModeBLPI:
                status = CLOCK_SetBlpiMode();
                break;
            case kMCG_ModeBLPE:
                status = CLOCK_SetBlpeMode();
                break;
            case kMCG_ModePBE:
                /* If target mode is not PBE or PEE, then only need to set CLKS = EXT here. */
                if ((kMCG_ModePEE == config->mcgMode) || (kMCG_ModePBE == config->mcgMode))
                {
                    {
                        status = CLOCK_SetPbeMode(pllcs, &config->pll0Config);
                    }
                }
                else
                {
                    MCG->C1 = ((MCG->C1 & ~MCG_C1_CLKS_MASK) | MCG_C1_CLKS(kMCG_ClkOutSrcExternal));
                    while (MCG_S_CLKST_VAL != kMCG_ClkOutStatExt)
                    {
                    }
                }
                break;
            case kMCG_ModePEE:
                status = CLOCK_SetPeeMode();
                break;
            default:
                break;
        }
        if (kStatus_Success != status)
        {
            return status;
        }
    } while (next_mode != config->mcgMode);

    if (config->pll0Config.enableMode & kMCG_PllEnableIndependent)
    {
        CLOCK_EnablePll0(&config->pll0Config);
    }
    else
    {
        MCG->C5 &= ~(uint32_t)kMCG_PllEnableIndependent;
    }
    return kStatus_Success;
}
Example #7
0
/**
 * @brief   MK20D5 clock initialization.
 * @note    All the involved constants come from the file @p board.h.
 * @note    This function is meant to be invoked early during the system
 *          initialization, it is usually invoked from the file
 *          @p board.c.
 * @todo    This function needs to be more generic.
 *
 * @special
 */
void mk20d50_clock_init(void) {

  uint32_t ratio, frdiv;
  uint32_t ratios[] = { 32, 64, 128, 256, 512, 1024, 1280, 1536 };
  int ratio_quantity = sizeof(ratios) / sizeof(ratios[0]);
  int i;

  /* Disable the watchdog */
  WDOG->UNLOCK = 0xC520;
  WDOG->UNLOCK = 0xD928;
  WDOG->STCTRLH &= ~WDOG_STCTRLH_WDOGEN;

  SIM->SCGC5 |= SIM_SCGC5_PORTA |
                SIM_SCGC5_PORTB |
                SIM_SCGC5_PORTC |
                SIM_SCGC5_PORTD |
                SIM_SCGC5_PORTE;

  /* EXTAL0 and XTAL0 */
  PORTA->PCR[18] = 0;
  PORTA->PCR[19] = 0;

  /*
   * Start in FEI mode
   */

  /* Disable capacitors for crystal */
  OSC->CR = 0;

  /* TODO: need to add more flexible calculation, specially regarding
   *       divisors which may not be available depending on the XTAL
   *       frequency, which would required other registers to be modified.
   */

  /* Enable OSC, low power mode */
  MCG->C2 = MCG_C2_LOCRE0 | MCG_C2_EREFS0;
  if (KINETIS_XTAL_FREQUENCY > 8000000)
    MCG->C2 |= MCG_C2_RANGE0(2);
  else
    MCG->C2 |= MCG_C2_RANGE0(1);

  frdiv = 7;
  ratio = KINETIS_XTAL_FREQUENCY / 31250;
  for (i = 0; i < ratio_quantity; ++i) {
    if (ratio == ratios[i]) {
      frdiv = i;
      break;
    }
  }

  /* Switch to crystal as clock source, FLL input of 31.25 KHz */
  MCG->C1 = MCG_C1_CLKS(2) | MCG_C1_FRDIV(frdiv);

  /* Wait for crystal oscillator to begin */
  while (!(MCG->S & MCG_S_OSCINIT0));

  /* Wait for the FLL to use the oscillator */
  while (MCG->S & MCG_S_IREFST);

  /* Wait for the MCGOUTCLK to use the oscillator */
  while ((MCG->S & MCG_S_CLKST_MASK) != MCG_S_CLKST(2));

  /*
   * Now in FBE mode
   */

  /* Config PLL input for 2 MHz */
  MCG->C5 = MCG_C5_PRDIV0((KINETIS_XTAL_FREQUENCY / 2000000) - 1);

  /* Config PLL for 96 MHz output */
  MCG->C6 = MCG_C6_PLLS | MCG_C6_VDIV0(0);

  /* Wait for PLL to start using crystal as its input */
  while (!(MCG->S & MCG_S_PLLST));

  /* Wait for PLL to lock */
  while (!(MCG->S & MCG_S_LOCK0));

  /*
   * Now in PBE mode
   */

  /* Switch to PLL as clock source */
  MCG->C1 = MCG_C1_CLKS(0);

  /* Wait for PLL clock to be used */
  while ((MCG->S & MCG_S_CLKST_MASK) != MCG_S_CLKST_PLL);

  /*
   * Now in PEE mode
   */
}
Example #8
0
/**
 * Initialize the system
 *
 * @param  none
 * @return none
 *
 * @brief  Setup the microcontroller system.
 *         Initialize the System.
 */
void SystemInit (void) {
    // system dividers
    SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(1) | SIM_CLKDIV1_OUTDIV3(2) | SIM_CLKDIV1_OUTDIV4(5);
    
    
    // after reset, we are in FEI mode
    
    // enable external clock source - OSC0
#if __SYS_OSC_CLK <= 8000000
    MCG_C2 = MCG_C2_LOCRE0_MASK | MCG_C2_RANGE(RANGE0_VAL) | (/*hgo_val*/0 << MCG_C2_HGO_SHIFT) | (/*erefs_val*/0 << MCG_C2_EREFS_SHIFT);
#else
    // On rev. 1.0 of silicon there is an issue where the the input bufferd are enabled when JTAG is connected.
    // This has the affect of sometimes preventing the oscillator from running. To keep the oscillator amplitude
    // low, RANGE = 2 should not be used. This should be removed when fixed silicon is available.
    MCG_C2 = MCG_C2_LOCRE_MASK | MCG_C2_RANGE(2) | (/*hgo_val*/0 << MCG_C2_HGO_SHIFT) | (/*erefs_val*/0 << MCG_C2_EREFS_SHIFT);
//    MCG_C2 = MCG_C2_LOCRE_MASK | MCG_C2_RANGE(1) | (/*hgo_val*/0 << MCG_C2_HGO_SHIFT) | (/*erefs_val*/0 << MCG_C2_EREFS_SHIFT);
#endif
    
    // select clock mode, we want FBE mode
    // CLKS = 2, FRDIV = frdiv_val, IREFS = 0, IRCLKEN = 0, IREFSTEN = 0
    MCG_C1 = MCG_C1_CLKS(2) | MCG_C1_FRDIV(FRDIV_VAL);
    
    /* wait until the MCG has moved into the proper mode */
    // if the external oscillator is used need to wait for OSCINIT to set
//      for (i = 0 ; i < 10000 ; i++)
//      {
//        if (MCG_S & MCG_S_OSCINIT_MASK) break; // jump out early if OSCINIT sets before loop finishes
//      }
//      if (!(MCG_S & MCG_S_OSCINIT_MASK)) return 0x23; // check bit is really set and return with error if not set
    
    // wait for reference clock status bit is cleared and clock source is ext ref clk
    while ((MCG_S & MCG_S_IREFST_MASK) || MCG_S_CLKST(2) != (MCG_S & MCG_S_CLKST_MASK));

    // ... FBE mode
    
    // enable clock monitor for osc0
    MCG_C6 = MCG_C6_CME_MASK;

    // PLL0
    MCG_C5 = MCG_C5_PRDIV(PRDIV_VAL - 1);       // set PLL0 ref divider, osc0 is reference

    MCG_C6 = MCG_C6_PLLS_MASK | MCG_C6_VDIV(VDIV_VAL - 16);     // set VDIV and enable PLL
        
    // wait to lock...
    while (!(MCG_S & MCG_S_PLLST_MASK));
    while (!(MCG_S & MCG_S_LOCK_MASK));
    
//    // Use actual PLL settings to calculate PLL frequency
//    prdiv = ((MCG_C5 & MCG_C5_PRDIV_MASK) + 1);
//    vdiv = ((MCG_C6 & MCG_C6_VDIV_MASK) + 16);

    // ... PBE mode
    MCG_C1 &= ~MCG_C1_CLKS_MASK;        // CLKS = 0, select PLL as MCG_OUT
    
    while (MCG_S_CLKST(3) != (MCG_S & MCG_S_CLKST_MASK));

    // ... PEE mode
    
/* ToDo: add code to initialize the system
         do not use global variables because this function is called before
         reaching pre-main. RW section maybe overwritten afterwards.          */
  SystemCoreClock = __SYSTEM_CLOCK;
}
Example #9
0
status_t CLOCK_SetFbiMode(mcg_dmx32_t dmx32, mcg_drs_t drs, void (*fllStableDelay)(void))
{
    uint8_t mcg_c4;
    bool change_drs = false;

#if (defined(MCG_CONFIG_CHECK_PARAM) && MCG_CONFIG_CHECK_PARAM)
    mcg_mode_t mode = CLOCK_GetMode();

    if (!((kMCG_ModeFEE == mode) || (kMCG_ModeFBI == mode) || (kMCG_ModeFBE == mode) || (kMCG_ModeFEI == mode) ||
          (kMCG_ModeBLPI == mode)))

    {
        return kStatus_MCG_ModeUnreachable;
    }
#endif

    mcg_c4 = MCG->C4;

    MCG->C2 &= ~MCG_C2_LP_MASK; /* Disable lowpower. */

    /*
       Errata: ERR007993
       Workaround: Invert MCG_C4[DMX32] or change MCG_C4[DRST_DRS] before
       reference clock source changes, then reset to previous value after
       reference clock changes.
     */
    if (kMCG_FllSrcExternal == MCG_S_IREFST_VAL)
    {
        change_drs = true;
        /* Change the LSB of DRST_DRS. */
        MCG->C4 ^= (1U << MCG_C4_DRST_DRS_SHIFT);
    }

    /* Set CLKS and IREFS. */
    MCG->C1 =
        ((MCG->C1 & ~(MCG_C1_CLKS_MASK | MCG_C1_IREFS_MASK)) | (MCG_C1_CLKS(kMCG_ClkOutSrcInternal)    /* CLKS = 1 */
                                                                | MCG_C1_IREFS(kMCG_FllSrcInternal))); /* IREFS = 1 */

    /* Wait and check status. */
    while (kMCG_FllSrcInternal != MCG_S_IREFST_VAL)
    {
    }

    /* Errata: ERR007993 */
    if (change_drs)
    {
        MCG->C4 = mcg_c4;
    }

    while (kMCG_ClkOutStatInt != MCG_S_CLKST_VAL)
    {
    }

    MCG->C4 = (mcg_c4 & ~(MCG_C4_DMX32_MASK | MCG_C4_DRST_DRS_MASK)) | (MCG_C4_DMX32(dmx32) | MCG_C4_DRST_DRS(drs));

    /* Wait for FLL stable time. */
    if (fllStableDelay)
    {
        fllStableDelay();
    }

    return kStatus_Success;
}
Example #10
0
/*
** ===================================================================
**     Method      :  Cpu_SetOperationMode (component MK22FN512VDC12)
**
**     Description :
**         This method requests to change the component's operation
**         mode (RUN, WAIT, SLEEP, STOP). The target operation mode
**         will be entered immediately.
**         See <Operation mode settings> for further details of the
**         operation modes mapping to low power modes of the cpu.
**     Parameters  :
**         NAME            - DESCRIPTION
**         OperationMode   - Requested driver
**                           operation mode
**         ModeChangeCallback - Callback to
**                           notify the upper layer once a mode has been
**                           changed. Parameter is ignored, only for
**                           compatibility of API with other components.
**       * ModeChangeCallbackParamPtr
**                           - Pointer to callback parameter to notify
**                           the upper layer once a mode has been
**                           changed. Parameter is ignored, only for
**                           compatibility of API with other components.
**     Returns     :
**         ---             - Error code
**                           ERR_OK - OK
**                           ERR_PARAM_MODE - Invalid operation mode
** ===================================================================
*/
LDD_TError Cpu_SetOperationMode(LDD_TDriverOperationMode OperationMode, LDD_TCallback ModeChangeCallback, LDD_TCallbackParam *ModeChangeCallbackParamPtr)
{
  (void) ModeChangeCallback;           /* Parameter is not used, suppress unused argument warning */
  (void) ModeChangeCallbackParamPtr;   /* Parameter is not used, suppress unused argument warning */
  switch (OperationMode) {
      case DOM_HSRUN:
      SMC_PMPROT = SMC_PMPROT_AHSRUN_MASK;
      SMC_PMCTRL |= SMC_PMCTRL_RUNM(3); /*HS RUN */
      while((SMC_PMSTAT & SMC_PMSTAT_PMSTAT_MASK) != SMC_PMSTAT_PMSTAT(0x80)) {  /* HS RUN status */
      };
       /* SCB_SCR: SLEEPDEEP=0,SLEEPONEXIT=0 */
      SCB_SCR &= (uint32_t)~(uint32_t)(
                  SCB_SCR_SLEEPDEEP_MASK |
                  SCB_SCR_SLEEPONEXIT_MASK
                 );
      if  (ClockConfigurationID != 2U) {
        if ((MCG_S & MCG_S_CLKST_MASK) != MCG_S_CLKST(3)) { /* If in PBE mode, switch to PEE. PEE to PBE transition was caused by wakeup from low power mode. */
          /* MCG_C1: CLKS=0,IREFS=0 */
	  MCG_C1 &= (uint8_t)~(uint8_t)((MCG_C1_CLKS(0x03) | MCG_C1_IREFS_MASK));
          while( (MCG_S & MCG_S_LOCK0_MASK) == 0x00U) { /* Wait for PLL lock */
          }
        }
      }
      break;
    case DOM_RUN:
      SMC_PMCTRL &= ~(SMC_PMCTRL_RUNM(3)); /*Normal RUN */
      while((SMC_PMSTAT & SMC_PMSTAT_PMSTAT_MASK) != SMC_PMSTAT_PMSTAT(0x1)) {  /* Normal RUN status */
      };
      /* SCB_SCR: SLEEPDEEP=0,SLEEPONEXIT=0 */
      SCB_SCR &= (uint32_t)~(uint32_t)(
                  SCB_SCR_SLEEPDEEP_MASK |
                  SCB_SCR_SLEEPONEXIT_MASK
                 );
      if  (ClockConfigurationID != 2U) {
        if ((MCG_S & MCG_S_CLKST_MASK) != MCG_S_CLKST(3)) { /* If in PBE mode, switch to PEE. PEE to PBE transition was caused by wakeup from low power mode. */
          /* MCG_C1: CLKS=0,IREFS=0 */
	  MCG_C1 &= (uint8_t)~(uint8_t)((MCG_C1_CLKS(0x03) | MCG_C1_IREFS_MASK));
          while( (MCG_S & MCG_S_LOCK0_MASK) == 0x00U) { /* Wait for PLL lock */
          }
        }
      }
      break;
    case DOM_WAIT:
      /* SCB_SCR: SLEEPDEEP=0 */
      SCB_SCR &= (uint32_t)~(uint32_t)(SCB_SCR_SLEEPDEEP_MASK);
      /* SCB_SCR: SLEEPONEXIT=0 */
      SCB_SCR &= (uint32_t)~(uint32_t)(SCB_SCR_SLEEPONEXIT_MASK);
      PE_WFI();
      break;
    case DOM_SLEEP:
      /* SCB_SCR: SLEEPDEEP=1 */
      SCB_SCR |= SCB_SCR_SLEEPDEEP_MASK;
      /* SMC_PMCTRL: STOPM=0 */
      SMC_PMCTRL &= (uint8_t)~(uint8_t)(SMC_PMCTRL_STOPM(0x07));
      (void)(SMC_PMCTRL == 0U);        /* Dummy read of SMC_PMCTRL to ensure the register is written before enterring low power mode */
      /* SCB_SCR: SLEEPONEXIT=1 */
      SCB_SCR |= SCB_SCR_SLEEPONEXIT_MASK;
      PE_WFI();
      break;
    case DOM_STOP:
      break;
    default:
      return ERR_PARAM_MODE;
  }
  return ERR_OK;
}
/*! @brief Sets up the clock out of RESET
 *
 */
void clock_initialise(void) {

#if (CLOCK_MODE == CLOCK_MODE_NONE)
   // No clock setup
#else
   // XTAL/EXTAL Pins
   SIM->SCGC5  |= SIM_SCGC5_PORTA_MASK;
   PORTA->PCR[3]  = PORT_PCR_MUX(0);
   PORTA->PCR[4]  = PORT_PCR_MUX(0);

   // Configure the Crystal Oscillator
   RTC->CR = RTC_CR_WPE_M|RTC_CR_SUP_M|RTC_CR_UM_M|RTC_CR_OSCE_M|RTC_CR_CLKO_M|RTC_CR_SCP_M;

   // Fast Internal Clock divider
   MCG->SC = MCG_SC_FCRDIV_M;

   // Out of reset MCG is in FEI mode
   // =============================================================

   SIM->CLKDIV1 = SIM_CLKDIV1_OUTDIV1(3) | SIM_CLKDIV1_OUTDIV2(7) | SIM_CLKDIV1_OUTDIV3(3) | SIM_CLKDIV1_OUTDIV4(7);

   // Switch from FEI -> FEI/FBI/FEE/FBE
   // =============================================================

   // Set up crystal or external clock source
   MCG->C2 =
            MCG_C2_LOCRE0_M     | // LOCRE0 = 0,1   -> Loss of clock reset enable
            MCG_C2_RANGE0_M     | // RANGE0 = 0,1,2 -> Oscillator low/high/very high clock range
            MCG_C2_HGO0_M       | // HGO0   = 0,1   -> Oscillator low power/high gain
            MCG_C2_EREFS0_M     | // EREFS0 = 0,1   -> Select external clock/crystal oscillator
            MCG_C2_IRCS_M;        // IRCS   = 0,1   -> Select slow/fast internal clock for internal reference

#if ((CLOCK_MODE == CLOCK_MODE_FEI) || (CLOCK_MODE == CLOCK_MODE_FBI) || (CLOCK_MODE == CLOCK_MODE_BLPI) )
   // Transition via FBI
   //=====================================
#define BYPASS (1) // CLKS value used while FLL locks
   MCG->C1 =  MCG_C1_CLKS(BYPASS)     | // CLKS     = X     -> External reference source while PLL locks
              MCG_C1_FRDIV_M          | // FRDIV    = N     -> XTAL/2^n ~ 31.25 kHz
              MCG_C1_IREFS_M          | // IREFS    = 0,1   -> External/Slow IRC for FLL source
              MCG_C1_IRCLKEN_M        | // IRCLKEN  = 0,1   -> IRCLK disable/enable
              MCG_C1_IREFSTEN_M;        // IREFSTEN = 0,1   -> Internal reference enabled in STOP mode

   // Wait for S_IREFST to indicate FLL Reference has switched
   do {
      __asm__("nop");
   } while ((MCG->S & MCG_S_IREFST_MASK) != (MCG_C1_IREFS_V<<MCG_S_IREFST_SHIFT));

   // Wait for S_CLKST to indicating that OUTCLK has switched to bypass PLL/FLL
   do {
      __asm__("nop");
   } while ((MCG->S & MCG_S_CLKST_MASK) != MCG_S_CLKST(BYPASS));

   // Set FLL Parameters
   MCG->C4 = (MCG->C4&~(MCG_C4_DMX32_MASK|MCG_C4_DRST_DRS_MASK))|MCG_C4_DMX32_M|MCG_C4_DRST_DRS_M;
#endif

#if ((CLOCK_MODE == CLOCK_MODE_FBE) || (CLOCK_MODE == CLOCK_MODE_FEE) || (CLOCK_MODE == CLOCK_MODE_PLBE) || (CLOCK_MODE == CLOCK_MODE_PBE) || (CLOCK_MODE == CLOCK_MODE_PEE))

   // Transition via FBE
   //=====================================
#define BYPASS (2) // CLKS value used while PLL locks
   MCG->C1 =  MCG_C1_CLKS(BYPASS)     | // CLKS     = 2     -> External reference source while PLL locks
              MCG_C1_FRDIV_M          | // FRDIV    = N     -> XTAL/2^n ~ 31.25 kHz
              MCG_C1_IREFS_M          | // IREFS    = 0,1   -> External/Slow IRC for FLL source
              MCG_C1_IRCLKEN_M        | // IRCLKEN  = 0,1   -> IRCLK disable/enable
              MCG_C1_IREFSTEN_M;        // IREFSTEN = 0,1   -> Internal reference enabled in STOP mode

#if (MCG_C2_EREFS_V != 0)
   // Wait for oscillator stable (if used)
   do {
      __asm__("nop");
   } while ((MCG->S & MCG_S_OSCINIT0_MASK) == 0);
#endif

   // Wait for S_IREFST to indicate FLL Reference has switched
   do {
      __asm__("nop");
   } while ((MCG->S & MCG_S_IREFST_MASK) != (MCG_C1_IREFS_V<<MCG_S_IREFST_SHIFT));

   // Wait for S_CLKST to indicating that OUTCLK has switched to bypass PLL/FLL
   do {
      __asm__("nop");
   } while ((MCG->S & MCG_S_CLKST_MASK) != MCG_S_CLKST(BYPASS));

   // Set FLL Parameters
   MCG->C4 = (MCG->C4&~(MCG_C4_DMX32_MASK|MCG_C4_DRST_DRS_MASK))|MCG_C4_DMX32_M|MCG_C4_DRST_DRS_M;
#endif

   // Select FEI/FBI/FEE/FBE clock mode
   MCG->C1 =  MCG_C1_CLKS_M       | // CLKS     = 0,1,2 -> Select FLL/IRCSCLK/ERCLK
              MCG_C1_FRDIV_M      | // FRDIV    = N     -> XTAL/2^n ~ 31.25 kHz
              MCG_C1_IREFS_M      | // IREFS    = 0,1   -> External/Slow IRC for FLL source
              MCG_C1_IRCLKEN_M    | // IRCLKEN  = 0,1   -> IRCLK disable/enable
              MCG_C1_IREFSTEN_M;    // IREFSTEN = 0,1   -> Internal reference enabled in STOP mode

   // Wait for mode change
   do {
      __asm__("nop");
   } while ((MCG->S & MCG_S_IREFST_MASK) != (MCG_C1_IREFS_V<<MCG_S_IREFST_SHIFT));

#if defined (MCG_C6_PLLS_V) && (MCG_C1_CLKS_V == 0) // FLL or PLL
#define MCG_S_CLKST_M MCG_S_CLKST(MCG_C6_PLLS_V?3:0)
#else
   #define MCG_S_CLKST_M MCG_S_CLKST(MCG_C1_CLKS_V)
#endif

   // Wait for S_CLKST to indicating that OUTCLK has switched
   do {
      __asm__("nop");
   } while ((MCG->S & MCG_S_CLKST_MASK) != MCG_S_CLKST_M);

   // Set the SIM _CLKDIV dividers
   SIM->CLKDIV1 = SIM_CLKDIV1_OUTDIV1_M | SIM_CLKDIV1_OUTDIV2_M | SIM_CLKDIV1_OUTDIV3_M | SIM_CLKDIV1_OUTDIV4_M;

#if (CLOCK_MODE == CLOCK_MODE_BLPE) || (CLOCK_MODE == CLOCK_MODE_BLPI)
   // Select BLPE/BLPI clock mode
   MCG->C2 =
            MCG_C2_LOCRE0_M      | // LOCRE0 = 0,1   -> Loss of clock reset
            MCG_C2_RANGE0_M      | // RANGE0 = 0,1,2 -> Oscillator low/high/very high clock range
            MCG_C2_HGO0_M        | // HGO0   = 0,1   -> Oscillator low power/high gain
            MCG_C2_EREFS0_M      | // EREFS0 = 0,1   -> Select external clock/crystal oscillator
            MCG_C2_LP_M          | // LP     = 0,1   -> Select FLL enabled/disabled in bypass mode
            MCG_C2_IRCS_M;         // IRCS   = 0,1   -> Select slow/fast internal clock for internal reference

#endif // (CLOCK_MODE == CLOCK_MODE_BLPE) || (CLOCK_MODE == CLOCK_MODE_BLPI)
#endif // (CLOCK_MODE == CLOCK_MODE_NONE)


   /*!
    * SOPT1 Clock multiplexing
    */
#if defined(SIM_SOPT1_OSC32KSEL_MASK) && defined(SIM_SOPT1_OSC32KSEL_M) // ERCLK32K source
   SIM->SOPT1 = (SIM->SOPT1&~SIM_SOPT1_OSC32KSEL_MASK)|SIM_SOPT1_OSC32KSEL_M;
#endif

   /*!
    * SOPT2 Clock multiplexing
    */
#if defined(SIM_SOPT2_SDHCSRC_MASK) && defined(SIM_SOPT2_SDHCSRC_M) // SDHC clock
   SIM->SOPT2 = (SIM->SOPT2&~SIM_SOPT2_SDHCSRC_MASK)|SIM_SOPT2_SDHCSRC_M;
#endif

#if defined(SIM_SOPT2_TIMESRC_MASK) && defined(SIM_SOPT2_TIMESRC_M) // Ethernet time-stamp clock
   SIM->SOPT2 = (SIM->SOPT2&~SIM_SOPT2_TIMESRC_MASK)|SIM_SOPT2_TIMESRC_M;
#endif

#if defined(SIM_SOPT2_RMIISRC_MASK) && defined(SIM_SOPT2_RMIISRC_M) // RMII clock
   SIM->SOPT2 = (SIM->SOPT2&~SIM_SOPT2_RMIISRC_MASK)|SIM_SOPT2_RMIISRC_M;
#endif

#ifdef SIM_SCGC4_USBOTG_MASK
   // !! WARNING !! The USB interface must be disabled for clock changes to have effect !! WARNING !!
   SIM->SCGC4 &= ~SIM_SCGC4_USBOTG_MASK;
#endif

#if defined(SIM_SOPT2_USBSRC_MASK) && defined(SIM_SOPT2_USBSRC_M) // USB clock (48MHz req.)
   SIM->SOPT2 = (SIM->SOPT2&~SIM_SOPT2_USBSRC_MASK)|SIM_SOPT2_USBSRC_M;
#endif

#if defined(SIM_SOPT2_USBFSRC_MASK) && defined(SIM_SOPT2_USBFSRC_M) // USB clock (48MHz req.)
   SIM->SOPT2 = (SIM->SOPT2&~SIM_SOPT2_USBFSRC_MASK)|SIM_SOPT2_USBFSRC_M;
#endif

#if defined(SIM_SOPT2_PLLFLLSEL_MASK) && defined(SIM_SOPT2_PLLFLLSEL_M) // Peripheral clock
   SIM->SOPT2 = (SIM->SOPT2&~SIM_SOPT2_PLLFLLSEL_MASK)|SIM_SOPT2_PLLFLLSEL_M;
#endif

#if defined(SIM_SOPT2_UART0SRC_MASK) && defined(SIM_SOPT2_UART0SRC_M) // UART0 clock
   SIM->SOPT2 = (SIM->SOPT2&~SIM_SOPT2_UART0SRC_MASK)|SIM_SOPT2_UART0SRC_M;
#endif

#if defined(SIM_SOPT2_TPMSRC_MASK) && defined(SIM_SOPT2_TPMSRC_M) // TPM clock
   SIM->SOPT2 = (SIM->SOPT2&~SIM_SOPT2_TPMSRC_MASK)|SIM_SOPT2_TPMSRC_M;
#endif

#if defined(SIM_SOPT2_CLKOUTSEL_MASK) && defined(SIM_SOPT2_CLKOUTSEL_M)
   SIM->SOPT2 = (SIM->SOPT2&~SIM_SOPT2_CLKOUTSEL_MASK)|SIM_SOPT2_CLKOUTSEL_M;
#endif

#if defined(SIM_SOPT2_RTCCLKOUTSEL_MASK) && defined(SIM_SOPT2_RTCCLKOUTSEL_M)
   SIM->SOPT2 = (SIM->SOPT2&~SIM_SOPT2_RTCCLKOUTSEL_MASK)|SIM_SOPT2_RTCCLKOUTSEL_M;
#endif

#if defined(SIM_CLKDIV2_USBDIV_MASK) && defined(SIM_CLKDIV2_USBFRAC_MASK) && defined(SIM_CLKDIV2_USB_M)
   SIM->CLKDIV2 = (SIM->CLKDIV2&~(SIM_CLKDIV2_USBDIV_MASK|SIM_CLKDIV2_USBFRAC_MASK)) | SIM_CLKDIV2_USB_M;
#endif

   SystemCoreClockUpdate();
}
void Boot_Init_Clock(void){
	
	  /* System clock initialization */
	  /* SIM_CLKDIV1: OUTDIV1=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,OUTDIV4=3,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0 */
	  SIM_CLKDIV1 = (SIM_CLKDIV1_OUTDIV1(0x00) | SIM_CLKDIV1_OUTDIV4(0x03)); /* Set the system prescalers to safe value */
	  /* SIM_SCGC5: PORTA=1 */
	  SIM_SCGC5 |= SIM_SCGC5_PORTA_MASK;   /* Enable clock gate for ports to enable pin routing */
	  if ((PMC_REGSC & PMC_REGSC_ACKISO_MASK) != 0x0U) {
	    /* PMC_REGSC: ACKISO=1 */
	    PMC_REGSC |= PMC_REGSC_ACKISO_MASK; /* Release IO pads after wakeup from VLLS mode. */
	  }
	  /* SIM_CLKDIV1: OUTDIV1=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,OUTDIV4=1,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0 */
	  SIM_CLKDIV1 = (SIM_CLKDIV1_OUTDIV1(0x00) | SIM_CLKDIV1_OUTDIV4(0x01)); /* Update system prescalers */
	  /* SIM_SOPT2: PLLFLLSEL=1 */
	  SIM_SOPT2 |= SIM_SOPT2_PLLFLLSEL_MASK; /* Select PLL as a clock source for various peripherals */
	  /* SIM_SOPT1: OSC32KSEL=3 */
	  SIM_SOPT1 |= SIM_SOPT1_OSC32KSEL(0x03); /* LPO 1kHz oscillator drives 32 kHz clock for various peripherals */
	  /* SIM_SOPT2: TPMSRC=1 */
	  SIM_SOPT2 = (uint32_t)((SIM_SOPT2 & (uint32_t)~(uint32_t)(
	               SIM_SOPT2_TPMSRC(0x02)
	              )) | (uint32_t)(
	               SIM_SOPT2_TPMSRC(0x01)
	              ));                      /* Set the TPM clock */
	  /* PORTA_PCR18: ISF=0,MUX=0 */
	  PORTA_PCR18 &= (uint32_t)~(uint32_t)((PORT_PCR_ISF_MASK | PORT_PCR_MUX(0x07)));
	  /* PORTA_PCR19: ISF=0,MUX=0 */
	  PORTA_PCR19 &= (uint32_t)~(uint32_t)((PORT_PCR_ISF_MASK | PORT_PCR_MUX(0x07)));
	  /* Switch to FBE Mode */
	  /* MCG_C2: LOCRE0=0,RANGE0=2,HGO0=0,EREFS0=1,LP=0,IRCS=0 */
	  MCG_C2 = (uint8_t)((MCG_C2 & (uint8_t)~(uint8_t)(
	            MCG_C2_LOCRE0_MASK |
	            MCG_C2_RANGE0(0x01) |
	            MCG_C2_HGO0_MASK |
	            MCG_C2_LP_MASK |
	            MCG_C2_IRCS_MASK
	           )) | (uint8_t)(
	            MCG_C2_RANGE0(0x02) |
	            MCG_C2_EREFS0_MASK
	           ));
	  /* OSC0_CR: ERCLKEN=1,??=0,EREFSTEN=0,??=0,SC2P=0,SC4P=0,SC8P=0,SC16P=0 */
	  OSC0_CR = OSC_CR_ERCLKEN_MASK;
	  /* MCG_C1: CLKS=2,FRDIV=3,IREFS=0,IRCLKEN=1,IREFSTEN=0 */
	  MCG_C1 = (MCG_C1_CLKS(0x02) | MCG_C1_FRDIV(0x03) | MCG_C1_IRCLKEN_MASK);
	  /* MCG_C4: DMX32=0,DRST_DRS=0 */
	  MCG_C4 &= (uint8_t)~(uint8_t)((MCG_C4_DMX32_MASK | MCG_C4_DRST_DRS(0x03)));
	  /* MCG_C5: ??=0,PLLCLKEN0=0,PLLSTEN0=0,PRDIV0=3 */
	  MCG_C5 = MCG_C5_PRDIV0(0x03);
	  /* MCG_C6: LOLIE0=0,PLLS=0,CME0=0,VDIV0=0 */
	  MCG_C6 = MCG_C6_VDIV0(0x00);
	  while((MCG_S & MCG_S_IREFST_MASK) != 0x00U) { /* Check that the source of the FLL reference clock is the external reference clock. */
	  }
	  while((MCG_S & 0x0CU) != 0x08U) {    /* Wait until external reference clock is selected as MCG output */
	  }
	  /* Switch to PBE Mode */
	  /* MCG_C6: LOLIE0=0,PLLS=1,CME0=0,VDIV0=0 */
	  MCG_C6 = (MCG_C6_PLLS_MASK | MCG_C6_VDIV0(0x00));
	  while((MCG_S & 0x0CU) != 0x08U) {    /* Wait until external reference clock is selected as MCG output */
	  }
	  while((MCG_S & MCG_S_LOCK0_MASK) == 0x00U) { /* Wait until locked */
	  }
	  /* Switch to PEE Mode */
	  /* MCG_C1: CLKS=0,FRDIV=3,IREFS=0,IRCLKEN=1,IREFSTEN=0 */
	  MCG_C1 = (MCG_C1_CLKS(0x00) | MCG_C1_FRDIV(0x03) | MCG_C1_IRCLKEN_MASK);
	  while((MCG_S & 0x0CU) != 0x0CU) {    /* Wait until output of the PLL is selected */
	  }
	  /* MCG_C6: CME0=1 */
	  MCG_C6 |= MCG_C6_CME0_MASK;          /* Enable the clock monitor */
	  /*** End of PE initialization code after reset ***/
}
Example #13
0
void __startup(void) {
  // The CPU has a watchdog feature which is on by default,
  // so we have to configure it to not have nasty reset-surprises
  // later on.
  startup_watchdog_hook();

  // If the system was in VLLS mode, some peripherials and 
  // the I/O pins are in latched mode. We need to restore
  // config and can then acknowledge the isolation to get back
  // to normal. For now, we'll just ack TODO: properly do this
  if (PMC_REGSC & PMC_REGSC_ACKISO_MASK) PMC_REGSC |= PMC_REGSC_ACKISO_MASK;

  // There is a write-once-after-reset register that allows to
  // set which power states are available. Let's set it here.
  SMC_PMPROT = ENABLED_POWER_MODES;

  // For the sake of simplicity, enable all GPIO port clocks
  SIM_SCGC5 |= (  SIM_SCGC5_PORTA_MASK
                | SIM_SCGC5_PORTB_MASK
                | SIM_SCGC5_PORTC_MASK
	        | SIM_SCGC5_PORTD_MASK
	        | SIM_SCGC5_PORTE_MASK);

  // ----------------------------------------------------------------------------------
  // Setup clocks
  // ----------------------------------------------------------------------------------
  // See section 5 in the Freescale K20 manual for how clock distribution works
  // The limits are outlined in section 5.5:
  //   Core and System clocks: max 72 MHz
  //   Bus/peripherial clock:  max 50 MHz (integer divide of core)
  //   Flash clock:            max 25 MHz
  //
  // The teensy 3.x has a 16 MHz external oscillator
  // So we'll enable the external clock for the OSC module. Since
  // we're in high-frequency mode, also enable capacitors
  OSC_CR = OSC_CR_SC8P_MASK | OSC_CR_SC2P_MASK; // TODO This does not actually seem enable the ext crystal

  // Set MCG to very high frequency crystal and request oscillator. We have
  // to do this first so that the divisor will be correct (512 and not 16)
  MCG_C2 = MCG_C2_RANGE0(2) | MCG_C2_EREFS0_MASK;

  // Select the external reference clock for MCGOUTCLK
  // The divider for the FLL has to be chosen that we get something in 31.25 to 39.0625 kHz
  // 16MHz / 512 = 31.25 kHz -> set FRDIV to 4
  MCG_C1 =  MCG_C1_CLKS(2) | MCG_C1_FRDIV(4);

  // Wait for OSC to become ready
  while ((MCG_S & MCG_S_OSCINIT0_MASK) == 0) ;

  // Wait for the FLL to synchronize to external reference
  while ((MCG_S & MCG_S_IREFST_MASK) != 0) ;

  // Wait for the clock mode to synchronize to external
  while ((MCG_S & MCG_S_CLKST_MASK) != MCG_S_CLKST(2)) ;

  // The clock is now in FBE mode

#if F_CPU <= 16000000
  // For 16 MHz and below, the crystal is fast enough
  // -> enable BLPE mode which will disable both FLL and PLL
  MCG_C2 = MCG_C2_RANGE0(2) | MCG_C2_EREFS_MASK | MCG_C2_LP_MASK;
#else
  // We need PLL to go above 16 MHz
  #if   F_CPU == 96000000
    MCG_C5 = MCG_C5_PRDIV0(3); // 16MHz / 4 = 4MHz (this needs to be 2-4MHz)
    MCG_C6 = MCG_C6_PLLS_MASK | MCG_C6_VDIV0(0); // Enable PLL*24 = 96 MHz
  #elif F_CPU == 72000000
    MCG_C5 = MCG_C5_PRDIV0(5); // 16 MHz / 6 = 2.66 MHz (this needs to be 2-4MHz)
    MCG_C6 = MCG_C6_PLLS_MASK | MCG_C6_VDIV0(3); // Enable PLL*27 = 71.82 MHz
  #elif F_CPU == 48000000
    MCG_C5 = MCG_C5_PRDIV0(7); // 16 MHz / 8 = 2 MHz (this needs to be 2-4MHz)
    MCG_C6 = MCG_C6_PLLS_MASK | MCG_C6_VDIV0(0); // Enable PLL*24 = 48 MHz
  #elif F_CPU == 24000000
    // For 24 MHz, we'll use a 48 MHz PLL and divide in the SIM
    MCG_C5 = MCG_C5_PRDIV0(7); // 16 MHz / 8 = 2 MHz (this needs to be 2-4MHz)
    MCG_C6 = MCG_C6_PLLS_MASK | MCG_C6_VDIV0(0); // Enable PLL*24 = 48 MHz
  #else
    #error "Unknown F_CPU value"
  #endif

  // Now that we setup and enabled the PLL, wait for it to become active
  while (!(MCG_S & MCG_S_PLLST_MASK)) ;
  // and locked
  while (!(MCG_S & MCG_S_LOCK0_MASK)) ;
#endif

  // Next up: Setup clock dividers for MCU, peripherials, flash and USB
  // This is done by the SIM (System Integration Module)
  // There are two registers:
  //  SIM_CLKDIV1:
  //   OUTDIV1: Core/system clock divider
  //   OUTDIV2: Peripherial/Bus clock
  //   OUTDIV4: Flash clock
  //  SIM_CLKDIV2:
  //   USBDIV: Divisor
  //   USBFRAC: Fraction
  //   Output is input_clock*(USBFRAC+1)/(USBDIV+1)
  //
  // USB needs a 48MHz clock, so the divider should be setup accordingly. Also,
  // for the USB FS OTG controller to work, the system clock needs to be >= 20 MHz
#if F_CPU == 96000000
  // 96 MHz core, 48 MHz bus, 24 MHz flash (OVERCLOCKED!)
  SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(1) | SIM_CLKDIV1_OUTDIV4(3);
  SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(1); // 96 * 1/2 = 48
#elif F_CPU == 72000000
  // 72 MHz core, 36 MHz bus, 24 MHz flash
  SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(1) | SIM_CLKDIV1_OUTDIV4(2);
  SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(2) | SIM_CLKDIV2_USBFRAC_MASK; // 72 * 2/3 = 48
#elif F_CPU == 48000000
  // 48 MHz core, 48 MHz bus, 24 MHz flash, USB = 96 / 2
  SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(0) | SIM_CLKDIV1_OUTDIV4(1);
  SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(0); // 48 * 1/1 = 48
#elif F_CPU == 24000000
  // PLL is 48 MHz
  // 24 MHz core, 24 MHz bus, 24 MHz flash
  SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(1) | SIM_CLKDIV1_OUTDIV2(1) | SIM_CLKDIV1_OUTDIV4(1);
  SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(0); // 48 * 1/1 = 48

  // -- For the modes <= 16 MHz, we have the MCG clock on 16 MHz, without FLL/PLL
  //    Also, USB is not possible
#elif F_CPU == 16000000
  // 16 MHz core, 16 MHz bus, 16 MHz flash
  SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(0) | SIM_CLKDIV1_OUTDIV4(0);
#elif F_CPU == 8000000
  // 8 MHz core, 8 MHz bus, 8 MHz flash
  SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(1) | SIM_CLKDIV1_OUTDIV2(1) | SIM_CLKDIV1_OUTDIV4(1);
#else
  #error "Unsupported F_CPU value"
#endif

  // The dividers are set, so we can transition over to PLL for > 16 MHz
#if F_CPU > 16000000
  // Switch clock source to PLL, keep FLL divider at 512
  MCG_C1 = MCG_C1_CLKS(0) | MCG_C1_FRDIV(4);

  // Wait for the clock to sync
  while ((MCG_S & MCG_S_CLKST_MASK) != MCG_S_CLKST(3)) ;

  // Use PLL for USB and Bus/peripherals, core for trace and put OSCERCLK0 on CLKOUT pin
  SIM_SOPT2 = SIM_SOPT2_USBSRC_MASK | SIM_SOPT2_PLLFLLSEL_MASK | SIM_SOPT2_TRACECLKSEL_MASK | SIM_SOPT2_CLKOUTSEL(6);
#endif


  // ----------------------------------------------------------------------------------
  // Relocate data from flash to RAM as necessary
  // ----------------------------------------------------------------------------------
  //
  // At the minimum, the .data and .bss sections have to be setup in RAM. Also, since
  // they are aligned to 4 bytes, we can use uint32s for copying (which is faster than
  // byte by byte)
  uint32_t * src = &_etext;
  uint32_t * dest = &_sdata;
  while (dest < &_edata) *dest++ = *src++;

  // Also zero out .bss
  dest = &_sbss;
  while (dest < &_ebss) *dest++ = 0;

  // TODO: Relocate interrupt vector to RAM for speed?


  // Init systick?
#if ENABLE_SYSTICK_HANDLER
  systick_init();
#endif

  // Enable interrupts before entering main?
#if ENABLE_INTERRUPTS_ON_STARTUP
  interrupt_enable();
#endif

  // After everthing is done, call main
  main(); 

  // This should be unreachable code as long as main() does not return.
  // To avoid running the instruction pointer into places it shouldn't go, 
  // loop forever
  // TODO: Going into sleep would maybe be a better solution
  while (1);
}
/*lint -esym(765,Cpu_Interrupt) Disable MISRA rule (8.10) checking for symbols (Cpu_Interrupt). */
void __init_hardware(void)
{

  /*** !!! Here you can place your own code before PE initialization using property "User code before PE initialization" on the build options tab. !!! ***/

  /*** ### MK60DN512ZVLQ10 "Cpu" init code ... ***/
  /*** PE initialization code after reset ***/
  SCB_VTOR = (uint32_t)(&__vect_table); /* Set the interrupt vector table position */
  /* Disable the WDOG module */
  /* WDOG_UNLOCK: WDOGUNLOCK=0xC520 */
  WDOG_UNLOCK = WDOG_UNLOCK_WDOGUNLOCK(0xC520); /* Key 1 */
  /* WDOG_UNLOCK: WDOGUNLOCK=0xD928 */
  WDOG_UNLOCK = WDOG_UNLOCK_WDOGUNLOCK(0xD928); /* Key 2 */
  /* WDOG_STCTRLH: ??=0,DISTESTWDOG=0,BYTESEL=0,TESTSEL=0,TESTWDOG=0,??=0,STNDBYEN=1,WAITEN=1,STOPEN=1,DBGEN=0,ALLOWUPDATE=1,WINEN=0,IRQRSTEN=0,CLKSRC=1,WDOGEN=0 */
  WDOG_STCTRLH = WDOG_STCTRLH_BYTESEL(0x00) |
                 WDOG_STCTRLH_STNDBYEN_MASK |
                 WDOG_STCTRLH_WAITEN_MASK |
                 WDOG_STCTRLH_STOPEN_MASK |
                 WDOG_STCTRLH_ALLOWUPDATE_MASK |
                 WDOG_STCTRLH_CLKSRC_MASK;

  /* System clock initialization */
  /* SIM_CLKDIV1: OUTDIV1=0,OUTDIV2=1,OUTDIV3=3,OUTDIV4=3,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0 */
  SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0x00) |
                SIM_CLKDIV1_OUTDIV2(0x01) |
                SIM_CLKDIV1_OUTDIV3(0x03) |
                SIM_CLKDIV1_OUTDIV4(0x03); /* Set the system prescalers to safe value */
  /* SIM_SCGC5: PORTC=1,PORTA=1 */
  SIM_SCGC5 |= (SIM_SCGC5_PORTC_MASK | SIM_SCGC5_PORTA_MASK); /* Enable clock gate for ports to enable pin routing */
  /* SIM_CLKDIV1: OUTDIV1=0,OUTDIV2=0,OUTDIV3=1,OUTDIV4=1,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0 */
  SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0x00) |
                SIM_CLKDIV1_OUTDIV2(0x00) |
                SIM_CLKDIV1_OUTDIV3(0x01) |
                SIM_CLKDIV1_OUTDIV4(0x01); /* Update system prescalers */
  /* SIM_CLKDIV2: USBDIV=0,USBFRAC=1 */
  SIM_CLKDIV2 = (uint32_t)((SIM_CLKDIV2 & (uint32_t)~(uint32_t)(
                 SIM_CLKDIV2_USBDIV(0x07)
                )) | (uint32_t)(
                 SIM_CLKDIV2_USBFRAC_MASK
                ));                    /* Update USB clock prescalers */
  /* SIM_SOPT2: PLLFLLSEL=0 */
  SIM_SOPT2 &= (uint32_t)~(uint32_t)(SIM_SOPT2_PLLFLLSEL_MASK); /* Select FLL as a clock source for various peripherals */
  /* SIM_SOPT1: OSC32KSEL=0 */
  SIM_SOPT1 &= (uint32_t)~(uint32_t)(SIM_SOPT1_OSC32KSEL_MASK); /* System oscillator drives 32 kHz clock for various peripherals */
  /* Switch to FEI Mode */
  /* MCG_C1: CLKS=0,FRDIV=0,IREFS=1,IRCLKEN=1,IREFSTEN=0 */
  MCG_C1 = MCG_C1_CLKS(0x00) |
           MCG_C1_FRDIV(0x00) |
           MCG_C1_IREFS_MASK |
           MCG_C1_IRCLKEN_MASK;
  /* MCG_C2: ??=0,??=0,RANGE=0,HGO=0,EREFS=0,LP=0,IRCS=0 */
  MCG_C2 = MCG_C2_RANGE(0x00);
  /* MCG_C4: DMX32=0,DRST_DRS=0 */
  MCG_C4 &= (uint8_t)~(uint8_t)((MCG_C4_DMX32_MASK | MCG_C4_DRST_DRS(0x03)));
  /* OSC_CR: ERCLKEN=1,??=0,EREFSTEN=0,??=0,SC2P=0,SC4P=0,SC8P=0,SC16P=0 */
  OSC_CR = OSC_CR_ERCLKEN_MASK;
  /* SIM_SOPT2: MCGCLKSEL=0 */
  SIM_SOPT2 &= (uint32_t)~(uint32_t)(SIM_SOPT2_MCGCLKSEL_MASK);
  /* MCG_C5: ??=0,PLLCLKEN=0,PLLSTEN=0,PRDIV=0 */
  MCG_C5 = MCG_C5_PRDIV(0x00);
  /* MCG_C6: LOLIE=0,PLLS=0,CME=0,VDIV=0 */
  MCG_C6 = MCG_C6_VDIV(0x00);
  while((MCG_S & MCG_S_IREFST_MASK) == 0x00U) { /* Check that the source of the FLL reference clock is the internal reference clock. */
  }
  while((MCG_S & 0x0CU) != 0x00U) {    /* Wait until output of the FLL is selected */
  }
  /*** End of PE initialization code after reset ***/

  /*** !!! Here you can place your own code after PE initialization using property "User code after PE initialization" on the build options tab. !!! ***/

}
Example #15
0
status_t CLOCK_SetFeeMode(uint8_t frdiv, mcg_dmx32_t dmx32, mcg_drs_t drs, void (*fllStableDelay)(void))
{
    uint8_t mcg_c4;
    bool change_drs = false;

#if (defined(MCG_CONFIG_CHECK_PARAM) && MCG_CONFIG_CHECK_PARAM)
    mcg_mode_t mode = CLOCK_GetMode();
    if (!((kMCG_ModeFEE == mode) || (kMCG_ModeFBI == mode) || (kMCG_ModeFBE == mode) || (kMCG_ModeFEI == mode)))
    {
        return kStatus_MCG_ModeUnreachable;
    }
#endif
    mcg_c4 = MCG->C4;

    /*
       Errata: ERR007993
       Workaround: Invert MCG_C4[DMX32] or change MCG_C4[DRST_DRS] before
       reference clock source changes, then reset to previous value after
       reference clock changes.
     */
    if (kMCG_FllSrcInternal == MCG_S_IREFST_VAL)
    {
        change_drs = true;
        /* Change the LSB of DRST_DRS. */
        MCG->C4 ^= (1U << MCG_C4_DRST_DRS_SHIFT);
    }

    /* Set CLKS and IREFS. */
    MCG->C1 = ((MCG->C1 & ~(MCG_C1_CLKS_MASK | MCG_C1_FRDIV_MASK | MCG_C1_IREFS_MASK)) |
               (MCG_C1_CLKS(kMCG_ClkOutSrcOut)         /* CLKS = 0 */
                | MCG_C1_FRDIV(frdiv)                  /* FRDIV */
                | MCG_C1_IREFS(kMCG_FllSrcExternal))); /* IREFS = 0 */

    /* If use external crystal as clock source, wait for it stable. */
    {
        if (MCG->C2 & MCG_C2_EREFS_MASK)
        {
            while (!(MCG->S & MCG_S_OSCINIT0_MASK))
            {
            }
        }
    }

    /* Wait and check status. */
    while (kMCG_FllSrcExternal != MCG_S_IREFST_VAL)
    {
    }

    /* Errata: ERR007993 */
    if (change_drs)
    {
        MCG->C4 = mcg_c4;
    }

    /* Set DRS and DMX32. */
    mcg_c4 = ((mcg_c4 & ~(MCG_C4_DMX32_MASK | MCG_C4_DRST_DRS_MASK)) | (MCG_C4_DMX32(dmx32) | MCG_C4_DRST_DRS(drs)));
    MCG->C4 = mcg_c4;

    /* Wait for DRST_DRS update. */
    while (MCG->C4 != mcg_c4)
    {
    }

    /* Check MCG_S[CLKST] */
    while (kMCG_ClkOutStatFll != MCG_S_CLKST_VAL)
    {
    }

    /* Wait for FLL stable time. */
    if (fllStableDelay)
    {
        fllStableDelay();
    }

    return kStatus_Success;
}
/*! Sets up the clock out of RESET
 *!
 */
void clock_initialise(void) {
#ifdef ENABLE_CLKOUT
   showClocks();
#endif

#if (CLOCK_MODE == CLOCK_MODE_RESET)
   // No clock setup
#else
   // XTAL/EXTAL Pins
   SIM_SCGC6 |= SIM_SCGC6_PORTB_MASK;
   MXC_PTBPF1 = (MXC_PTBPF1&~MXC_PTBPF1_B6_MASK)|MXC_PTBPF1_B6(0);
   MXC_PTBPF2 = (MXC_PTBPF2&~MXC_PTBPF2_B5_MASK)|MXC_PTBPF2_B5(0);

   // Configure OSC2 (XTAL1/EXTAL1
   OSC1_CR = OSC1_CR_ERCLKEN_M|OSC1_CR_EREFSTEN_M|OSC1_CR_SCP_M;

   // Configure OSC2 (XTAL2/EXTAL2
   OSC2_CR = OSC2_CR_ERCLKEN_M|OSC2_CR_EREFSTEN_M|OSC2_CR_SCP_M;

   // Configure OSC1 (XTAL1/EXTAL1
   SIM_OSC1 = SIM_OSC1_OSC1EN_M|SIM_OSC1_OSC1RANGE_M|SIM_OSC1_OSC1HGO_M|SIM_OSC1_OSC1EREFS_M;

   // Out of reset MCG is in FEI mode
   // =============================================================

   // Switch from FEI -> FEI/FBI/FEE/FBE
   // =============================================================

   // Set up crystal or external clock source
   MCG_C2 = MCG_C2_RANGE_M     | // RANGE = 0,1,2 -> Oscillator low/high/very high clock range
            MCG_C2_HGO_M       | // HGO   = 0,1   -> Oscillator low power/high gain
            MCG_C2_EREFS_M     | // EREFS = 0,1   -> Select external clock/crystal oscillator
            MCG_C2_IRCS_M;       // IRCS  = 0,1   -> Select slow/fast internal clock for internal reference

   SIM_CLKDIV0 = SIM_CLKDIV0_OUTDIV(3);

#if ((CLOCK_MODE == CLOCK_MODE_FEI) || (CLOCK_MODE == CLOCK_MODE_FBI) || (CLOCK_MODE == CLOCK_MODE_BLPI) )
   // Transition via FBI
   //=====================================
#define BYPASS (1) // CLKS value used while FLL locks
   MCG_C1 =  MCG_C1_CLKS(BYPASS)     | // CLKS     = 1     -> Internal reference source while PLL locks
             MCG_C1_FRDIV_M          | // FRDIV    = N     -> XTAL/2^n ~ 31.25 kHz
             MCG_C1_IREFS_M          | // IREFS    = 0,1   -> External/Slow IRC for FLL source
             MCG_C1_IRCLKEN_M        | // IRCLKEN  = 0,1   -> IRCLK disable/enable
             MCG_C1_IREFSTEN_M;        // IREFSTEN = 0,1   -> Internal reference enabled in STOP mode

   // Wait for S_IREFST to indicate FLL Reference has switched
   do {
      __asm__("nop");
   } while ((MCG_S & MCG_S_IREFST_MASK) != (MCG_C1_IREFS_V<<MCG_S_IREFST_SHIFT));

   // Wait for S_CLKST to indicating that OUTCLK has switched to bypass PLL/FLL
   do {
      __asm__("nop");
   } while ((MCG_S & MCG_S_CLKST_MASK) != MCG_S_CLKST(BYPASS));

   // Set FLL Parameters
   MCG_C4 = (MCG_C4&~(MCG_C4_DMX32_MASK|MCG_C4_DRST_DRS_MASK))|MCG_C4_DMX32_M|MCG_C4_DRST_DRS_M;
#endif

#if ((CLOCK_MODE == CLOCK_MODE_FBE) || (CLOCK_MODE == CLOCK_MODE_FEE) || (CLOCK_MODE == CLOCK_MODE_PLBE) || (CLOCK_MODE == CLOCK_MODE_PBE) || (CLOCK_MODE == CLOCK_MODE_PEE))

   // Transition via FBE
   //=====================================
#define BYPASS (2) // CLKS value used while PLL locks
   MCG_C1 =  MCG_C1_CLKS(BYPASS)     | // CLKS     = 2     -> External reference source while PLL locks
             MCG_C1_FRDIV_M          | // FRDIV    = N     -> XTAL/2^n ~ 31.25 kHz
             MCG_C1_IREFS_M          | // IREFS    = 0,1   -> External/Slow IRC for FLL source
             MCG_C1_IRCLKEN_M        | // IRCLKEN  = 0,1   -> IRCLK disable/enable
             MCG_C1_IREFSTEN_M;        // IREFSTEN = 0,1   -> Internal reference enabled in STOP mode

#if (MCG_C2_EREFS_V != 0)
   // Wait for oscillator stable (if used)
   do {
      __asm__("nop");
   } while ((MCG_S & MCG_S_OSCINIT_MASK) == 0);
#endif

   // Wait for S_IREFST to indicate FLL Reference has switched
   do {
      __asm__("nop");
   } while ((MCG_S & MCG_S_IREFST_MASK) != (MCG_C1_IREFS_V<<MCG_S_IREFST_SHIFT));

   // Wait for S_CLKST to indicating that OUTCLK has switched to bypass PLL/FLL
   do {
      __asm__("nop");
   } while ((MCG_S & MCG_S_CLKST_MASK) != MCG_S_CLKST(BYPASS));

   // Set FLL Parameters
   MCG_C4 = (MCG_C4&~(MCG_C4_DMX32_MASK|MCG_C4_DRST_DRS_MASK))|MCG_C4_DMX32_M|MCG_C4_DRST_DRS_M;
#endif

#if ((CLOCK_MODE == CLOCK_MODE_PBE) || (CLOCK_MODE == CLOCK_MODE_PEE))

   // Configure PLL Reference Frequency
   // =============================================================
   MCG_C5 =  MCG_C5_PLLCLKEN_M    |  // PLLCLKEN = 0,1 -> PLL -/enabled (irrespective of PLLS)
             MCG_C5_PLLSTEN_M     |  // PLLSTEN0 = 0,1 -> disabled/enabled in normal stop mode
             MCG_C5_PRDIV_M;         // PRDIV0   = N   -> PLL divider so PLL Ref. Freq. = 2-4 MHz

   // Transition via PBE
   // =============================================================
   MCG_C6 = MCG_C6_LOLIE_M    |
            MCG_C6_PLLS_M      |  // PLLS  = 0,1 -> Enable PLL
            MCG_C6_CME_M      |  // CME0  = 0,1 -> Disable/enable clock monitor
            MCG_C6_VDIV_M;       // VDIV0 = N   -> PLL Multiplication factor

   // Wait for PLL to lock
   do {
      __asm__("nop");
   } while((MCG_S & MCG_S_LOCK_MASK) == 0);

   // Wait until PLLS clock source changes to the PLL clock out
   do {
      __asm__("nop");
   } while((MCG_S & MCG_S_PLLST_MASK) == 0);

#endif

#if ((CLOCK_MODE == CLOCK_MODE_FEI) || (CLOCK_MODE == CLOCK_MODE_FEE))
   // Wait for FLL to lock
   do {
      __asm__("nop");
   } while ((MCG_C4&MCG_C4_DRST_DRS_MASK) != MCG_C4_DRST_DRS_M);
#endif


   // Select FEI/FBI/FEE/FBE/PBE/PEE clock mode
   MCG_C1 =  MCG_C1_CLKS_M       | // CLKS     = 0,1,2 -> Select FLL/IRCSCLK/ERCLK
             MCG_C1_FRDIV_M      | // FRDIV    = N     -> XTAL/2^n ~ 31.25 kHz
             MCG_C1_IREFS_M      | // IREFS    = 0,1   -> External/Slow IRC for FLL source
             MCG_C1_IRCLKEN_M    | // IRCLKEN  = 0,1   -> IRCLK disable/enable
             MCG_C1_IREFSTEN_M;    // IREFSTEN = 0,1   -> Internal reference enabled in STOP mode

   // Wait for mode change
   do {
      __asm__("nop");
   } while ((MCG_S & MCG_S_IREFST_MASK) != (MCG_C1_IREFS_V<<MCG_S_IREFST_SHIFT));

#if defined (MCG_C6_PLLS_V) && (MCG_C1_CLKS_V == 0) // FLL or PLL
#define MCG_S_CLKST_M MCG_S_CLKST(MCG_C6_PLLS_V?3:0)
#else
   #define MCG_S_CLKST_M MCG_S_CLKST(MCG_C1_CLKS_V)
#endif

   // Wait for S_CLKST to indicating that OUTCLK has switched
   do {
      __asm__("nop");
   } while ((MCG_S & MCG_S_CLKST_MASK) != MCG_S_CLKST_M);

#if (CLOCK_MODE == CLOCK_MODE_BLPE) || (CLOCK_MODE == CLOCK_MODE_BLPI)
   // Select BLPE/BLPI clock mode
   MCG_C2 =
            MCG_C2_LOCRE_M      | // LOCRE0 = 0,1   -> Loss of clock reset
            MCG_C2_RANGE_M      | // RANGE0 = 0,1,2 -> Oscillator low/high/very high clock range
            MCG_C2_HGO_M        | // HGO0   = 0,1   -> Oscillator low power/high gain
            MCG_C2_EREFS_M      | // EREFS0 = 0,1   -> Select external clock/crystal oscillator
            MCG_C2_LP_M         | // LP     = 0,1   -> Select FLL enabled/disabled in bypass mode
            MCG_C2_IRCS_M;        // IRCS   = 0,1   -> Select slow/fast internal clock for internal reference

#endif // (CLOCK_MODE == CLOCK_MODE_BLPE) || (CLOCK_MODE == CLOCK_MODE_BLPI)
#endif // (CLOCK_MODE == CLOCK_MODE_RESET)

   // Basic clock multiplexing
#if defined(MCU_mcf51jf128)
//   SIM_SOPT2 = SIM_SOPT2_UART0SRC_M      | // UART0 clock - 0,1,2,3 -> Disabled, (MCGFLLCLK, MCGPLLCLK/2),  OSCERCLK, MCGIRCLK
//               SIM_SOPT2_TPMSRC_M ;        // TPM2 source
#else
   #error "CPU not set"
#endif

#ifdef SIM_CLKDIV1_USBFRAC_MASK
   SIM_CLKDIV1 = SIM_CLKDIV1_USBDIV_M | SIM_CLKDIV1_USBFRAC_M | SIM_CLKDIV1_USBSRC_M;
#endif

   SIM_CLKDIV0 = SIM_CLKDIV0_M;

   SystemCoreClockUpdate();
}
/*----------------------------------------------------------------------------
  MAIN function
 *----------------------------------------------------------------------------*/
int main (void) {
	#if USE_VLPR == 1
		// enter low power run
		SIM->CLKDIV1 = (0x1 << SIM_CLKDIV1_OUTDIV1_SHIFT) | (0x5 << SIM_CLKDIV1_OUTDIV4_SHIFT);		// reduce core clock < 4 MHz and flash < 1 MHz
		MCG->C6 &= ~MCG_C6_CME0_MASK;			// disable MCG clock monitor
		MCG->C2 |= MCG_C2_IRCS_MASK;			// don't use slow internal reference clock
		MCG->C1 |= MCG_C1_CLKS(2);				// enter BLPE mode
		MCG->C1 &= ~MCG_C1_IREFS_MASK;
		MCG->C6 &= ~MCG_C6_PLLS_MASK;
		while(!(MCG->S & MCG_S_IREFST_MASK >> MCG_S_IREFST_SHIFT));		// wait to ensure clock change
		MCG->C2 |= MCG_C2_LP_MASK;
	#endif
	
	Init_RGB_LEDs();
	
	#if DEBUG_SIGNALS == 1
		Init_Debug_Signals();
	#endif
	
	// I2C and MMA
	i2c_init();																/* init i2c	*/
	if (!init_mma()) {												/* init mma peripheral */
		Control_RGB_LEDs(1, 0, 0);							/* Light red error LED */
		while (1)																/* not able to initialize mma */
			;
	}
	
	#if RUN_I2C_FAST == 1
		// increase i2c baud rate
		I2C_DISABLE;
		I2C0->F = (I2C_F_ICR(0x00) | I2C_F_MULT(0));
		I2C_ENABLE;
	#endif
	
	// configure low power modes
	SMC->PMPROT = SMC_PMPROT_ALLS_MASK | SMC_PMPROT_AVLP_MASK;				// allow low leakage stop mode
	SMC->PMCTRL = SMC_PMCTRL_RUNM(2) | SMC_PMCTRL_STOPM(3);	// enable low power run mode (10) and low leakage stop mode (011)
	SMC->STOPCTRL = SMC_STOPCTRL_PSTOPO(0) | SMC_STOPCTRL_VLLSM(3);	// normal stop mode and VLL stop3 (not needed?)
	
	// configure low leakage wakeup unit (LLWU)
	LLWU->ME |= LLWU_ME_WUME0_MASK;						// internal module 0 is wakeup source which is apparently the LPTMR
	
	// enable stop mode (deep sleep)
	SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk;
	
	// LPTMR
	Init_LPTMR();
	Start_LPTMR();

	__enable_irq();
	
	while (1) {				
		// read acceleration every 100 ms
		if (run_Read_Accel){
			run_Read_Accel = 0;
			Read_Accel();
		}
		
		// update LEDs every 500 ms; keep them on for 10 ms
		if (run_Update_LEDs){
			run_Update_LEDs = 0;
			Update_LEDs();
			
			#if USE_PWM == 1
				#if PWM_SLEEP == 1
					SCB->SCR &= ~SCB_SCR_SLEEPDEEP_Msk;		// switch to regular sleep mode
					#if USE_SLEEP_MODES == 1
						#if DEBUG_SIGNALS == 1
							PTE->PSOR |= MASK(30);
						#endif
						__wfi();															// PWM does not work in LLS mode
					#endif
					SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk;		// switch back to LLS mode
				#else
					while(led_on_period);									// poll -> bad solution
				#endif
			#endif
		}
				
		#if USE_SLEEP_MODES == 1
			#if DEBUG_SIGNALS == 1
					PTE->PSOR |= MASK(30);
			#endif
			__wfi();			// go to sleep
		#endif
	}
}
Example #18
0
/*lint -esym(765,Cpu_Interrupt) Disable MISRA rule (8.10) checking for symbols (Cpu_Interrupt). */
void __init_hardware(void)
{

  /*** !!! Here you can place your own code before PE initialization using property "User code before PE initialization" on the build options tab. !!! ***/

  /*** ### MKL46Z256VMC4 "Cpu" init code ... ***/
  /*** PE initialization code after reset ***/
  SCB_VTOR = (uint32_t)(&__vect_table); /* Set the interrupt vector table position */
  /* Disable the WDOG module */
  /* SIM_COPC: ??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,COPT=0,COPCLKS=0,COPW=0 */
  SIM_COPC = SIM_COPC_COPT(0x00);                                   
  /* System clock initialization */
  /* SIM_SCGC5: PORTE=1,PORTC=1,PORTB=1,PORTA=1 */
  SIM_SCGC5 |= SIM_SCGC5_PORTE_MASK |
               SIM_SCGC5_PORTC_MASK |
               SIM_SCGC5_PORTB_MASK |
               SIM_SCGC5_PORTA_MASK;   /* Enable clock gate for ports to enable pin routing */
  /* SIM_CLKDIV1: OUTDIV1=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,OUTDIV4=1,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0 */
  SIM_CLKDIV1 = (SIM_CLKDIV1_OUTDIV1(0x00) | SIM_CLKDIV1_OUTDIV4(0x01)); /* Update system prescalers */
  /* SIM_SOPT2: PLLFLLSEL=1 */
  SIM_SOPT2 |= SIM_SOPT2_PLLFLLSEL_MASK; /* Select PLL as a clock source for various peripherals */
  /* SIM_SOPT1: OSC32KSEL=2 */
  SIM_SOPT1 = (uint32_t)((SIM_SOPT1 & (uint32_t)~(uint32_t)(
               SIM_SOPT1_OSC32KSEL(0x01)
              )) | (uint32_t)(
               SIM_SOPT1_OSC32KSEL(0x02)
              ));                      /* System oscillator drives 32 kHz clock for various peripherals */
  /* SIM_SOPT2: TPMSRC=1 */
  SIM_SOPT2 = (uint32_t)((SIM_SOPT2 & (uint32_t)~(uint32_t)(
               SIM_SOPT2_TPMSRC(0x02)
              )) | (uint32_t)(
               SIM_SOPT2_TPMSRC(0x01)
              ));                      /* Set the TPM clock */
  /* PORTA_PCR18: ISF=0,MUX=0 */
  PORTA_PCR18 &= (uint32_t)~(uint32_t)((PORT_PCR_ISF_MASK | PORT_PCR_MUX(0x07)));                                   
  /* PORTA_PCR19: ISF=0,MUX=0 */
  PORTA_PCR19 &= (uint32_t)~(uint32_t)((PORT_PCR_ISF_MASK | PORT_PCR_MUX(0x07)));                                   
  /* Switch to FBE Mode */
  /* MCG_C2: LOCRE0=0,RANGE0=2,HGO0=0,EREFS0=1,LP=0,IRCS=0 */
  MCG_C2 = (uint8_t)((MCG_C2 & (uint8_t)~(uint8_t)(
            MCG_C2_LOCRE0_MASK |
            MCG_C2_RANGE0(0x01) |
            MCG_C2_HGO0_MASK |
            MCG_C2_LP_MASK |
            MCG_C2_IRCS_MASK
           )) | (uint8_t)(
            MCG_C2_RANGE0(0x02) |
            MCG_C2_EREFS0_MASK
           ));                                  
  /* OSC0_CR: ERCLKEN=1,??=0,EREFSTEN=0,??=0,SC2P=0,SC4P=0,SC8P=0,SC16P=0 */
  OSC0_CR = OSC_CR_ERCLKEN_MASK;                                   
  /* MCG_C1: CLKS=2,FRDIV=3,IREFS=0,IRCLKEN=1,IREFSTEN=0 */
  MCG_C1 = (MCG_C1_CLKS(0x02) | MCG_C1_FRDIV(0x03) | MCG_C1_IRCLKEN_MASK);                                   
  /* MCG_C4: DMX32=0,DRST_DRS=0 */
  MCG_C4 &= (uint8_t)~(uint8_t)((MCG_C4_DMX32_MASK | MCG_C4_DRST_DRS(0x03)));                                   
  /* MCG_C5: ??=0,PLLCLKEN0=0,PLLSTEN0=0,PRDIV0=3 */
  MCG_C5 = MCG_C5_PRDIV0(0x03);                                   
  /* MCG_C6: LOLIE0=0,PLLS=0,CME0=0,VDIV0=0 */
  MCG_C6 = MCG_C6_VDIV0(0x00);                                   
  while((MCG_S & MCG_S_IREFST_MASK) != 0x00U) { /* Check that the source of the FLL reference clock is the external reference clock. */
  }
  while((MCG_S & 0x0CU) != 0x08U) {    /* Wait until external reference clock is selected as MCG output */
  }
  /* Switch to PBE Mode */
  /* MCG_C6: LOLIE0=0,PLLS=1,CME0=0,VDIV0=0 */
  MCG_C6 = (MCG_C6_PLLS_MASK | MCG_C6_VDIV0(0x00));                                   
  while((MCG_S & 0x0CU) != 0x08U) {    /* Wait until external reference clock is selected as MCG output */
  }
  while((MCG_S & MCG_S_LOCK0_MASK) == 0x00U) { /* Wait until locked */
  }
  /* Switch to PEE Mode */
  /* MCG_C1: CLKS=0,FRDIV=3,IREFS=0,IRCLKEN=1,IREFSTEN=0 */
  MCG_C1 = (MCG_C1_CLKS(0x00) | MCG_C1_FRDIV(0x03) | MCG_C1_IRCLKEN_MASK);                                   
  while((MCG_S & 0x0CU) != 0x0CU) {    /* Wait until output of the PLL is selected */
  }
  /* Initialization of the RTC_CLKIN pin */
  /* PORTC_PCR1: ISF=0,MUX=1 */
  PORTC_PCR1 = (uint32_t)((PORTC_PCR1 & (uint32_t)~(uint32_t)(
                PORT_PCR_ISF_MASK |
                PORT_PCR_MUX(0x06)
               )) | (uint32_t)(
                PORT_PCR_MUX(0x01)
               ));                                  
  /*** End of PE initialization code after reset ***/

  /*** !!! Here you can place your own code after PE initialization using property "User code after PE initialization" on the build options tab. !!! ***/

}
void ResetHandler(void)
{
        uint32_t *src = &_etext;
        uint32_t *dest = &_sdata;

	WDOG_UNLOCK = WDOG_UNLOCK_SEQ1;
	WDOG_UNLOCK = WDOG_UNLOCK_SEQ2;
	WDOG_STCTRLH = WDOG_STCTRLH_ALLOWUPDATE;
	startup_early_hook();

	// enable clocks to always-used peripherals
	SIM_SCGC5 = 0x00043F82;		// clocks active to all GPIO
	SIM_SCGC6 = SIM_SCGC6_RTC | SIM_SCGC6_FTM0 | SIM_SCGC6_FTM1 | SIM_SCGC6_ADC0 | SIM_SCGC6_FTFL;
	// if the RTC oscillator isn't enabled, get it started early
	if (!(RTC_CR & RTC_CR_OSCE)) {
		RTC_SR = 0;
		RTC_CR = RTC_CR_SC16P | RTC_CR_SC4P | RTC_CR_OSCE;
	}

	// TODO: do this while the PLL is waiting to lock....
        while (dest < &_edata) *dest++ = *src++;
        dest = &_sbss;
        while (dest < &_ebss) *dest++ = 0;
	SCB_VTOR = 0;	// use vector table in flash

        // start in FEI mode
        // enable capacitors for crystal
        OSC0_CR = OSC_SC8P | OSC_SC2P;
        // enable osc, 8-32 MHz range, low power mode
        MCG_C2 = MCG_C2_RANGE0(2) | MCG_C2_EREFS;
        // switch to crystal as clock source, FLL input = 16 MHz / 512
        MCG_C1 =  MCG_C1_CLKS(2) | MCG_C1_FRDIV(4);
        // wait for crystal oscillator to begin
        while ((MCG_S & MCG_S_OSCINIT0) == 0) ;
        // wait for FLL to use oscillator
        while ((MCG_S & MCG_S_IREFST) != 0) ;
        // wait for MCGOUT to use oscillator
        while ((MCG_S & MCG_S_CLKST_MASK) != MCG_S_CLKST(2)) ;
        // now we're in FBE mode
        // config PLL input for 16 MHz Crystal / 4 = 4 MHz
        MCG_C5 = MCG_C5_PRDIV0(3);
        // config PLL for 96 MHz output
        MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(0);
        // wait for PLL to start using xtal as its input
        while (!(MCG_S & MCG_S_PLLST)) ;
        // wait for PLL to lock
        while (!(MCG_S & MCG_S_LOCK0)) ;
        // now we're in PBE mode
#if F_CPU == 96000000
        // config divisors: 96 MHz core, 48 MHz bus, 24 MHz flash
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0) | SIM_CLKDIV1_OUTDIV2(1) |  SIM_CLKDIV1_OUTDIV4(3);
#elif F_CPU == 48000000
        // config divisors: 48 MHz core, 48 MHz bus, 24 MHz flash
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(1) | SIM_CLKDIV1_OUTDIV2(1) |  SIM_CLKDIV1_OUTDIV4(3);
#elif F_CPU == 24000000
        // config divisors: 24 MHz core, 24 MHz bus, 24 MHz flash
        SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(3) | SIM_CLKDIV1_OUTDIV2(3) |  SIM_CLKDIV1_OUTDIV4(3);
#else
#error "Error, F_CPU must be 96000000, 48000000, or 24000000"
#endif
        // switch to PLL as clock source, FLL input = 16 MHz / 512
        MCG_C1 = MCG_C1_CLKS(0) | MCG_C1_FRDIV(4);
        // wait for PLL clock to be used
        while ((MCG_S & MCG_S_CLKST_MASK) != MCG_S_CLKST(3)) ;
        // now we're in PEE mode
        // configure USB for 48 MHz clock
        SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(1); // USB = 96 MHz PLL / 2
        // USB uses PLL clock, trace is CPU clock, CLKOUT=OSCERCLK0
        SIM_SOPT2 = SIM_SOPT2_USBSRC | SIM_SOPT2_PLLFLLSEL | SIM_SOPT2_TRACECLKSEL | SIM_SOPT2_CLKOUTSEL(6);

        // initialize the SysTick counter
        SYST_RVR = (F_CPU / 1000) - 1;
        SYST_CSR = SYST_CSR_CLKSOURCE | SYST_CSR_TICKINT | SYST_CSR_ENABLE;

	//init_pins();
	__enable_irq();

	_init_Teensyduino_internal_();
	if (RTC_SR & RTC_SR_TIF) rtc_set(TIME_T);

	__libc_init_array();

/*
	for (ptr = &__init_array_start; ptr < &__init_array_end; ptr++) {
		(*ptr)();
	}
*/
	startup_late_hook();
        main();
        while (1) ;
}
Example #20
0
void ResetHandler(void)
{
    /*
     * Enable watchdog timer. Allow settings to be changed later, in case the
     * application firmware wants to adjust its settings or disable it.
     *
     * Originally I tried using the 1 kHz low-power oscillator here, but that seemed to
     * run into an issue where refreshes weren't taking effect. It seems similar to
     * this problem on the Freescale forums, which didn't really have a satisfactory
     * solution:
     *
     *  https://community.freescale.com/thread/309519
     *
     * As a workaround, I'm using the "alternate" system clock.
     */
    {
        const uint32_t watchdog_timeout = F_BUS / 100;  // 10ms

        WDOG_UNLOCK = WDOG_UNLOCK_SEQ1;
        WDOG_UNLOCK = WDOG_UNLOCK_SEQ2;
        asm volatile ("nop");
        asm volatile ("nop");
        WDOG_STCTRLH = WDOG_STCTRLH_ALLOWUPDATE | WDOG_STCTRLH_WDOGEN |
            WDOG_STCTRLH_WAITEN | WDOG_STCTRLH_STOPEN | WDOG_STCTRLH_CLKSRC;
        WDOG_PRESC = 0;
        WDOG_TOVALH = watchdog_timeout >> 16;
        WDOG_TOVALL = watchdog_timeout;
    }

    // enable clocks to always-used peripherals
    SIM_SCGC5 = 0x00043F82;     // clocks active to all GPIO
    SIM_SCGC6 = SIM_SCGC6_RTC | SIM_SCGC6_FTM0 | SIM_SCGC6_FTM1 | SIM_SCGC6_ADC0 | SIM_SCGC6_FTFL;

    // release I/O pins hold, if we woke up from VLLS mode
    if (PMC_REGSC & PMC_REGSC_ACKISO) PMC_REGSC |= PMC_REGSC_ACKISO;

    // start in FEI mode
    // enable capacitors for crystal
    OSC0_CR = OSC_SC8P | OSC_SC2P;
    // enable osc, 8-32 MHz range, low power mode
    MCG_C2 = MCG_C2_RANGE0(2) | MCG_C2_EREFS;
    // switch to crystal as clock source, FLL input = 16 MHz / 512
    MCG_C1 =  MCG_C1_CLKS(2) | MCG_C1_FRDIV(4);
    // wait for crystal oscillator to begin
    while ((MCG_S & MCG_S_OSCINIT0) == 0) ;
    // wait for FLL to use oscillator
    while ((MCG_S & MCG_S_IREFST) != 0) ;
    // wait for MCGOUT to use oscillator
    while ((MCG_S & MCG_S_CLKST_MASK) != MCG_S_CLKST(2)) ;
    // now we're in FBE mode
    // config PLL input for 16 MHz Crystal / 4 = 4 MHz
    MCG_C5 = MCG_C5_PRDIV0(3);
    // config PLL for 96 MHz output
    MCG_C6 = MCG_C6_PLLS | MCG_C6_VDIV0(0);

    // Copy things while we're waiting on the PLL
    {
        // Relocate data and text to RAM
        uint32_t *src = &_eflash;
        uint32_t *dest = &_sdtext;
        while (dest < &_edtext) *dest++ = *src++;

        // Clear BSS
        dest = &_sbss;
        while (dest < &_ebss) *dest++ = 0;

        // Copy IVT to RAM
        src = (uint32_t*) &gVectors[0];
        dest = &ramVectors[0];
        while (dest <= &ramVectors[63]) *dest++ = *src++;

        // Switch to ram IVT
        SCB_VTOR = (uint32_t) &ramVectors[0];
    }

    // wait for PLL to start using xtal as its input
    while (!(MCG_S & MCG_S_PLLST)) ;
    // wait for PLL to lock
    while (!(MCG_S & MCG_S_LOCK0)) ;
    // now we're in PBE mode

    // config divisors: 48 MHz core, 48 MHz bus, 24 MHz flash
    SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(1) | SIM_CLKDIV1_OUTDIV2(1) |  SIM_CLKDIV1_OUTDIV4(3);
    // switch to PLL as clock source, FLL input = 16 MHz / 512
    MCG_C1 = MCG_C1_CLKS(0) | MCG_C1_FRDIV(4);
    // wait for PLL clock to be used
    while ((MCG_S & MCG_S_CLKST_MASK) != MCG_S_CLKST(3)) ;
    // now we're in PEE mode
    // configure USB for 48 MHz clock
    SIM_CLKDIV2 = SIM_CLKDIV2_USBDIV(1); // USB = 96 MHz PLL / 2
    // USB uses PLL clock, trace is CPU clock, CLKOUT=OSCERCLK0
    SIM_SOPT2 = SIM_SOPT2_USBSRC | SIM_SOPT2_PLLFLLSEL | SIM_SOPT2_TRACECLKSEL | SIM_SOPT2_CLKOUTSEL(6);

    __enable_irq();
    main();
}
/*! Sets up the clock out of RESET
 *!
 */
void clock_initialise(void) {

#if (CLOCK_MODE == CLOCK_MODE_RESET)
   // No clock setup
#else
   // XTAL/EXTAL Pins
   SIM_SCGC5  |= SIM_SCGC5_PORTA_MASK;
   PORTA_PCR3  = PORT_PCR_MUX(0);
   PORTA_PCR4  = PORT_PCR_MUX(0);

   // Configure the Crystal Oscillator
   OSC0_CR = OSC_CR_ERCLKEN_M|OSC_CR_EREFSTEN_M|OSC_CR_SCP_M;

   // Fast Internal Clock divider
   MCG_SC = MCG_SC_FCRDIV_M;

   // Out of reset MCG is in FEI mode
   // =============================================================

   SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(3) | SIM_CLKDIV1_OUTDIV2(7) | SIM_CLKDIV1_OUTDIV3(3) | SIM_CLKDIV1_OUTDIV4(7);

   // Switch from FEI -> FEI/FBI/FEE/FBE
   // =============================================================

   // Set up crystal or external clock source
   MCG_C2 =
            MCG_C2_LOCRE0_M     | // LOCRE0 = 0,1   -> Loss of clock reset
            MCG_C2_RANGE0_M     | // RANGE0 = 0,1,2 -> Oscillator low/high/very high clock range
            MCG_C2_HGO0_M       | // HGO0   = 0,1   -> Oscillator low power/high gain
            MCG_C2_EREFS0_M     | // EREFS0 = 0,1   -> Select external clock/crystal oscillator
            MCG_C2_IRCS_M;        // IRCS   = 0,1   -> Select slow/fast internal clock for internal reference

#if ((CLOCK_MODE == CLOCK_MODE_FEI) || (CLOCK_MODE == CLOCK_MODE_FBI) || (CLOCK_MODE == CLOCK_MODE_BLPI) )
   // Transition via FBI
   //=====================================
#define BYPASS (1) // CLKS value used while FLL locks
   MCG_C1 =  MCG_C1_CLKS(BYPASS)     | // CLKS     = 2     -> External reference source while PLL locks
             MCG_C1_FRDIV_M          | // FRDIV    = N     -> XTAL/2^n ~ 31.25 kHz
             MCG_C1_IREFS_M          | // IREFS    = 0,1   -> External/Slow IRC for FLL source
             MCG_C1_IRCLKEN_M        | // IRCLKEN  = 0,1   -> IRCLK disable/enable
             MCG_C1_IREFSTEN_M;        // IREFSTEN = 0,1   -> Internal reference enabled in STOP mode

   // Wait for S_IREFST to indicate FLL Reference has switched
   do {
      __asm__("nop");
   } while ((MCG_S & MCG_S_IREFST_MASK) != (MCG_C1_IREFS_V<<MCG_S_IREFST_SHIFT));

   // Wait for S_CLKST to indicating that OUTCLK has switched to bypass PLL/FLL
   do {
      __asm__("nop");
   } while ((MCG_S & MCG_S_CLKST_MASK) != MCG_S_CLKST(BYPASS));

   // Set FLL Parameters
   MCG_C4 = (MCG_C4&~(MCG_C4_DMX32_MASK|MCG_C4_DRST_DRS_MASK))|MCG_C4_DMX32_M|MCG_C4_DRST_DRS_M;
#endif

#if ((CLOCK_MODE == CLOCK_MODE_FBE) || (CLOCK_MODE == CLOCK_MODE_FEE) || (CLOCK_MODE == CLOCK_MODE_PLBE) || (CLOCK_MODE == CLOCK_MODE_PBE) || (CLOCK_MODE == CLOCK_MODE_PEE))

   // Transition via FBE
   //=====================================
#define BYPASS (2) // CLKS value used while PLL locks
   MCG_C1 =  MCG_C1_CLKS(BYPASS)     | // CLKS     = 2     -> External reference source while PLL locks
             MCG_C1_FRDIV_M          | // FRDIV    = N     -> XTAL/2^n ~ 31.25 kHz
             MCG_C1_IREFS_M          | // IREFS    = 0,1   -> External/Slow IRC for FLL source
             MCG_C1_IRCLKEN_M        | // IRCLKEN  = 0,1   -> IRCLK disable/enable
             MCG_C1_IREFSTEN_M;        // IREFSTEN = 0,1   -> Internal reference enabled in STOP mode

#if (MCG_C2_EREFS_V != 0)
   // Wait for oscillator stable (if used)
   do {
      __asm__("nop");
   } while ((MCG_S & MCG_S_OSCINIT0_MASK) == 0);
#endif

   // Wait for S_IREFST to indicate FLL Reference has switched
   do {
      __asm__("nop");
   } while ((MCG_S & MCG_S_IREFST_MASK) != (MCG_C1_IREFS_V<<MCG_S_IREFST_SHIFT));

   // Wait for S_CLKST to indicating that OUTCLK has switched to bypass PLL/FLL
   do {
      __asm__("nop");
   } while ((MCG_S & MCG_S_CLKST_MASK) != MCG_S_CLKST(BYPASS));

   // Set FLL Parameters
   MCG_C4 = (MCG_C4&~(MCG_C4_DMX32_MASK|MCG_C4_DRST_DRS_MASK))|MCG_C4_DMX32_M|MCG_C4_DRST_DRS_M;
#endif

   // Select FEI/FBI/FEE/FBE clock mode
   MCG_C1 =  MCG_C1_CLKS_M       | // CLKS     = 0,1,2 -> Select FLL/IRCSCLK/ERCLK
             MCG_C1_FRDIV_M      | // FRDIV    = N     -> XTAL/2^n ~ 31.25 kHz
             MCG_C1_IREFS_M      | // IREFS    = 0,1   -> External/Slow IRC for FLL source
             MCG_C1_IRCLKEN_M    | // IRCLKEN  = 0,1   -> IRCLK disable/enable
             MCG_C1_IREFSTEN_M;    // IREFSTEN = 0,1   -> Internal reference enabled in STOP mode

   // Wait for mode change
   do {
      __asm__("nop");
   } while ((MCG_S & MCG_S_IREFST_MASK) != (MCG_C1_IREFS_V<<MCG_S_IREFST_SHIFT));

#if defined (MCG_C6_PLLS_V) && (MCG_C1_CLKS_V == 0) // FLL or PLL
#define MCG_S_CLKST_M MCG_S_CLKST(MCG_C6_PLLS_V?3:0)
#else
   #define MCG_S_CLKST_M MCG_S_CLKST(MCG_C1_CLKS_V)
#endif

   // Wait for S_CLKST to indicating that OUTCLK has switched
   do {
      __asm__("nop");
   } while ((MCG_S & MCG_S_CLKST_MASK) != MCG_S_CLKST_M);

   // Set the SIM _CLKDIV dividers
   SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1_M | SIM_CLKDIV1_OUTDIV2_M | SIM_CLKDIV1_OUTDIV3_M | SIM_CLKDIV1_OUTDIV4_M;

#if (CLOCK_MODE == CLOCK_MODE_BLPE) || (CLOCK_MODE == CLOCK_MODE_BLPI)
   // Select BLPE/BLPI clock mode
   MCG_C2 =
            MCG_C2_LOCRE0_M      | // LOCRE0 = 0,1   -> Loss of clock reset
            MCG_C2_RANGE0_M      | // RANGE0 = 0,1,2 -> Oscillator low/high/very high clock range
            MCG_C2_HGO0_M        | // HGO0   = 0,1   -> Oscillator low power/high gain
            MCG_C2_EREFS0_M      | // EREFS0 = 0,1   -> Select external clock/crystal oscillator
            MCG_C2_LP_M          | // LP     = 0,1   -> Select FLL enabled/disabled in bypass mode
            MCG_C2_IRCS_M;         // IRCS   = 0,1   -> Select slow/fast internal clock for internal reference

#endif // (CLOCK_MODE == CLOCK_MODE_BLPE) || (CLOCK_MODE == CLOCK_MODE_BLPI)
#endif // (CLOCK_MODE == CLOCK_MODE_RESET)

   // Basic clock multiplexing
#if defined(MCU_MK20D5) || defined(MCU_MK20D7) || defined(MCU_MK40D10) || defined(MCU_MK40DZ10)
   // Peripheral clock choice (incl. USB), USBCLK = MCGCLK
   SIM_SOPT2 |= SIM_SOPT2_PLLFLLSEL_M    | // PLL rather than FLL for peripheral clock
                SIM_SOPT2_USBSRC_MASK;     // MCGPLLCLK/2 Source as USB clock (48MHz req.)
   SIM_SOPT1 = (SIM_SOPT1&~SIM_SOPT1_OSC32KSEL_MASK)|SIM_SOPT1_OSC32KSEL_M; // ERCLK32K source
#elif defined(MCU_MK60D10) || defined(MCU_MK60DZ10)
   // Peripheral clock choice (incl. USB), USBCLK = MCGCLK
   SIM_SOPT2 |= SIM_SOPT2_PLLFLLSEL_MASK | // PLL rather than FLL for peripheral clock
                SIM_SOPT2_USBSRC_MASK;     // MCGPLLCLK/2 Source as USB clock (48MHz req.)
#elif defined(MCU_MKL24Z4) || defined(MCU_MKL25Z4) || defined(MCU_MKL26Z4) || defined(MCU_MKL46Z4)
   SIM_SOPT2 = SIM_SOPT2_UART0SRC_M      | // UART0 clock - 0,1,2,3 -> Disabled, (MCGFLLCLK, MCGPLLCLK/2),  OSCERCLK, MCGIRCLK
               SIM_SOPT2_TPMSRC_M        | // TPM clock - 0,1,2,3 -> Disabled, (MCGFLLCLK, MCGPLLCLK/2),  OSCERCLK, MCGIRCLK
               SIM_SOPT2_PLLFLLSEL_M     | // Peripheral clock - 0,1 -> MCGFLLCLK,MCGPLLCLK/2
               SIM_SOPT2_USBSRC_MASK;      // MCGPLLCLK/2 Source as USB clock (48MHz req.)
   SIM_SOPT1 = (SIM_SOPT1&~SIM_SOPT1_OSC32KSEL_MASK)|SIM_SOPT1_OSC32KSEL_M; // ERCLK32K clock - 0,1,2,3 -> OSC32KCLK, - , RTC_CLKIN, LPO (1kHz)
#elif defined(MCU_MKL14Z4) || defined(MCU_MKL15Z4) || defined(MCU_MKL16Z4) || defined(MCU_MKL34Z4) || defined(MCU_MKL36Z4)
   SIM_SOPT2 = SIM_SOPT2_UART0SRC_M      | // UART0 clock - 0,1,2,3 -> Disabled, (MCGFLLCLK, MCGPLLCLK/2),  OSCERCLK, MCGIRCLK
               SIM_SOPT2_TPMSRC_M        | // TPM clock - 0,1,2,3 -> Disabled, (MCGFLLCLK, MCGPLLCLK/2),  OSCERCLK, MCGIRCLK
               SIM_SOPT2_PLLFLLSEL_M;      // Peripheral clock - 0,1 -> MCGFLLCLK,MCGPLLCLK/2
   SIM_SOPT1 = (SIM_SOPT1&~SIM_SOPT1_OSC32KSEL_MASK)|SIM_SOPT1_OSC32KSEL_M; // ERCLK32K clock - 0,1,2,3 -> OSC32KCLK, - , RTC_CLKIN, LPO (1kHz)
#elif defined(MCU_MKL02Z4) || defined(MCU_MKL04Z4) || defined(MCU_MKL05Z4)
   SIM_SOPT2 = SIM_SOPT2_UART0SRC_M      | // UART0 clock - 0,1,2,3 -> Disabled, (MCGFLLCLK, MCGPLLCLK/2),  OSCERCLK, MCGIRCLK
               SIM_SOPT2_TPMSRC_M ;        // TPM2 source
#else
   #error "CPU not set"
#endif
   SystemCoreClockUpdate();
}
Example #22
0
void __pe_initialize_hardware(void)
{

  /*** !!! Here you can place your own code before PE initialization using property "User code before PE initialization" on the build options tab. !!! ***/

  /*** ### MK21FN1M0VMC12 "Cpu" init code ... ***/
  /*** PE initialization code after reset ***/

  /* Disable the WDOG module */
  /* WDOG_UNLOCK: WDOGUNLOCK=0xC520 */
  WDOG_UNLOCK = WDOG_UNLOCK_WDOGUNLOCK(0xC520); /* Key 1 */
  /* WDOG_UNLOCK: WDOGUNLOCK=0xD928 */
  WDOG_UNLOCK = WDOG_UNLOCK_WDOGUNLOCK(0xD928); /* Key 2 */
  /* WDOG_STCTRLH: ??=0,DISTESTWDOG=0,BYTESEL=0,TESTSEL=0,TESTWDOG=0,??=0,??=1,WAITEN=1,STOPEN=1,DBGEN=0,ALLOWUPDATE=1,WINEN=0,IRQRSTEN=0,CLKSRC=1,WDOGEN=0 */
  WDOG_STCTRLH = WDOG_STCTRLH_BYTESEL(0x00) |
                 WDOG_STCTRLH_WAITEN_MASK |
                 WDOG_STCTRLH_STOPEN_MASK |
                 WDOG_STCTRLH_ALLOWUPDATE_MASK |
                 WDOG_STCTRLH_CLKSRC_MASK |
                 0x0100U;

#if MQX_ENABLE_LOW_POWER
    /* Reset from LLWU wake up source */
    if (_lpm_get_reset_source() == MQX_RESET_SOURCE_LLWU)
    {
        PMC_REGSC |= PMC_REGSC_ACKISO_MASK;
    }
#endif
  /* SIM_SCGC6: RTC=1 */
  SIM_SCGC6 |= SIM_SCGC6_RTC_MASK;
  if ((RTC_CR & RTC_CR_OSCE_MASK) == 0u) { /* Only if the OSCILLATOR is not already enabled */
    /* RTC_CR: SC2P=0,SC4P=0,SC8P=0,SC16P=0 */
    RTC_CR &= (uint32_t)~(uint32_t)(
               RTC_CR_SC2P_MASK |
               RTC_CR_SC4P_MASK |
               RTC_CR_SC8P_MASK |
               RTC_CR_SC16P_MASK
              );
    /* RTC_CR: OSCE=1 */
    RTC_CR |= RTC_CR_OSCE_MASK;
    /* RTC_CR: CLKO=0 */
    RTC_CR &= (uint32_t)~(uint32_t)(RTC_CR_CLKO_MASK);
  }

  /* System clock initialization */
  /* SIM_CLKDIV1: OUTDIV1=0,OUTDIV2=1,OUTDIV3=3,OUTDIV4=3,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0 */
  SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0x00) |
                SIM_CLKDIV1_OUTDIV2(0x01) |
                SIM_CLKDIV1_OUTDIV3(0x03) |
                SIM_CLKDIV1_OUTDIV4(0x03); /* Set the system prescalers to safe value */
  /* SIM_SCGC5: PORTD=1,PORTC=1,PORTA=1 */
  SIM_SCGC5 |= SIM_SCGC5_PORTD_MASK |
               SIM_SCGC5_PORTC_MASK |
               SIM_SCGC5_PORTA_MASK;   /* Enable clock gate for ports to enable pin routing */
  /* SIM_CLKDIV1: OUTDIV1=0,OUTDIV2=1,OUTDIV3=2,OUTDIV4=4,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0 */
  SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0x00) |
                SIM_CLKDIV1_OUTDIV2(0x01) |
                SIM_CLKDIV1_OUTDIV3(0x02) |
                SIM_CLKDIV1_OUTDIV4(0x04); /* Update system prescalers */
  /* SIM_CLKDIV2: USBDIV=0,USBFRAC=0 */
  SIM_CLKDIV2 = (uint32_t)0x09UL; /* Update USB clock prescalers */
  /* SIM_SOPT2: PLLFLLSEL=1 */
  SIM_SOPT2 |= SIM_SOPT2_PLLFLLSEL_MASK; /* Select PLL as a clock source for various peripherals */
  /* SIM_SOPT1: OSC32KSEL=0 */
  SIM_SOPT1 &= (uint32_t)~(uint32_t)(SIM_SOPT1_OSC32KSEL(0x03)); /* System oscillator drives 32 kHz clock for various peripherals */
  /* PORTA_PCR18: ISF=0,MUX=0 */
  PORTA_PCR18 &= (uint32_t)~(uint32_t)((PORT_PCR_ISF_MASK | PORT_PCR_MUX(0x07)));
  /* PORTA_PCR19: ISF=0,MUX=0 */
  PORTA_PCR19 &= (uint32_t)~(uint32_t)((PORT_PCR_ISF_MASK | PORT_PCR_MUX(0x07)));
  /* Switch to FBE Mode */
  /* MCG_C2: LOCRE0=0,??=0,RANGE0=2,HGO0=0,EREFS0=1,LP=0,IRCS=0 */
  MCG_C2 = (MCG_C2_RANGE0(0x02) | MCG_C2_EREFS0_MASK);
  /* OSC_CR: ERCLKEN=1,??=0,EREFSTEN=1,??=0,SC2P=0,SC4P=0,SC8P=0,SC16P=0 */
  OSC_CR = (OSC_CR_ERCLKEN_MASK | OSC_CR_EREFSTEN_MASK);

  /* MCG_C7: OSCSEL=0 */
  MCG_C7 &= (uint8_t)~(uint8_t)(MCG_C7_OSCSEL_MASK);
  /* MCG_C1: CLKS=2,FRDIV=3,IREFS=0,IRCLKEN=0,IREFSTEN=0 */
  MCG_C1 = (MCG_C1_CLKS(0x02) | MCG_C1_FRDIV(0x03));
  /* MCG_C4: DMX32=0,DRST_DRS=0 */
  MCG_C4 &= (uint8_t)~(uint8_t)((MCG_C4_DMX32_MASK | MCG_C4_DRST_DRS(0x03)));
  /* MCG_C5: ??=0,PLLCLKEN0=0,PLLSTEN0=0,PRDIV0=1 */
  MCG_C5 = MCG_C5_PRDIV0(0x01);
  /* MCG_C6: LOLIE0=0,PLLS=0,CME0=0,VDIV0=6 */
  MCG_C6 = MCG_C6_VDIV0(0x06);
  while((MCG_S & MCG_S_OSCINIT0_MASK) == 0x00U) { /* Check that the oscillator is running */
  }
  while((MCG_S & MCG_S_IREFST_MASK) != 0x00U) { /* Check that the source of the FLL reference clock is the external reference clock. */
  }
  while((MCG_S & 0x0CU) != 0x08U) {    /* Wait until external reference clock is selected as MCG output */
  }
  /* Switch to PBE Mode */
  /* MCG_C6: LOLIE0=0,PLLS=1,CME0=0,VDIV0=6 */
  MCG_C6 = (MCG_C6_PLLS_MASK | MCG_C6_VDIV0(0x06));
  while((MCG_S & 0x0CU) != 0x08U) {    /* Wait until external reference clock is selected as MCG output */
  }
  while((MCG_S & MCG_S_LOCK0_MASK) == 0x00U) { /* Wait until locked */
  }
  /* Switch to PEE Mode */
  /* MCG_C1: CLKS=0,FRDIV=3,IREFS=0,IRCLKEN=0,IREFSTEN=0 */
  MCG_C1 = (MCG_C1_CLKS(0x00) | MCG_C1_FRDIV(0x03));
  while((MCG_S & 0x0CU) != 0x0CU) {    /* Wait until output of the PLL is selected */
  }
  /*** End of PE initialization code after reset ***/

  /*** !!! Here you can place your own code after PE initialization using property "User code after PE initialization" on the build options tab. !!! ***/

}
Example #23
0
/*
 * LPLD_PLL_Setup
 * 初始化内核时钟及其他系统时钟
 * 
 * 参数:
 *    core_clk_mhz--期望内核时钟频率
 *      |__PLLx--参见HAL_MCG.h中的PLL_option定义
 *
 * 输出:
 *    内核频率,单位MHz
 */
uint8 LPLD_PLL_Setup(PllOptionEnum_Type core_clk_mhz)
{
  uint8 pll_freq;
  uint8 prdiv, vdiv;
  uint8 core_div, bus_div, flexbus_div, flash_div;
  
/*
 *************************************************
  【LPLD注解】MCG关键系数
  prdiv(PLL分频系数): 0~31(1~32)
  vdiv(PLL倍频系数): 0~31(24~55)
  PLL参考时钟范围: 2MHz~4MHz
  PLL参考时钟 = 外部参考时钟(CPU_XTAL_CLK_HZ)/prdiv
  CoreClk = PLL参考时钟 x PLL倍频系数 /OUTDIV1
 *************************************************
 */
  
  // 对于MK60DZ10来说,core_clk_mhz建议不要超过100,这里限制为最高200
  core_clk_mhz = (PllOptionEnum_Type)(core_clk_mhz>200u?200u:core_clk_mhz);
  
  // 根据期望主频选择分频和倍频系数
  switch(core_clk_mhz)
  {
  case PLL_48:
    prdiv = 24u;
    vdiv = 0u;
    break;
  case PLL_50:
    prdiv = 24u;
    vdiv = 1u;
    break;
  case PLL_96:
    prdiv = 24u;
    vdiv = 24u;
    break;
  case PLL_100:
    prdiv = 24u;
    vdiv = 26u;
    break;
  case PLL_120:
    prdiv = 19u;
    vdiv = 24u;
    break;
  case PLL_150:
    prdiv = 15u;
    vdiv = 24u;
    break;
  case PLL_180:
    prdiv = 14u;
    vdiv = 30u;
    break;
  case PLL_200:
    prdiv = 12u;
    vdiv = 28u;
    break;
  default:
    return LPLD_PLL_Setup(PLL_96);
  }
  
  pll_freq = core_clk_mhz * 1;
  core_div = 0;
  if((bus_div = (uint8)(core_clk_mhz/BUS_CLK_MHZ - 1u)) == (uint8)-1)
  {
    bus_div = 0;
  }
  else if(core_clk_mhz/(bus_div+1) > BUS_CLK_MHZ)
  {
    bus_div += 1;
  }
  if((flexbus_div = (core_clk_mhz/FLEXBUS_CLK_MHZ - 1u)) == (uint8)-1)
  {
    flexbus_div = 0;
  }
  else if(core_clk_mhz/(flexbus_div+1) > FLEXBUS_CLK_MHZ)
  {
    flexbus_div += 1;
  }
  if((flash_div = (core_clk_mhz/FLASH_CLK_MHZ - 1u)) == (uint8)-1)
  {
    flash_div = 0;
  }
  else if(core_clk_mhz/(flash_div+1) > FLASH_CLK_MHZ)
  {
    flash_div += 1;
  }
  
  // 这里假设复位后 MCG 模块默认为 FEI 模式
  
  // 首先移动到 FBE 模式
  MCG->C2 = 0;
  
  // 振荡器初始化完成后,释放锁存状态下的 oscillator 和 GPIO 
  SIM->SCGC4 |= SIM_SCGC4_LLWU_MASK;
  LLWU->CS |= LLWU_CS_ACKISO_MASK;
  
  // 选择外部 oscilator 、参考分频器 and 清零 IREFS 启动外部osc
  // CLKS=2, FRDIV=3, IREFS=0, IRCLKEN=0, IREFSTEN=0
  MCG->C1 = MCG_C1_CLKS(2) | MCG_C1_FRDIV(3);  
  
  while (MCG->S & MCG_S_IREFST_MASK){}; // 等待参考时钟清零
  
  while (((MCG->S & MCG_S_CLKST_MASK) >> MCG_S_CLKST_SHIFT) != 0x2){}; // 等待时钟状态显示为外部参考时钟(ext ref clk)
  
  // 进入FBE模式
  // 配置 PLL 参考分频器, PLLCLKEN=0, PLLSTEN=0, PRDIV=5
  // 用晶振频率来选择 PRDIV 值. 仅在有频率晶振的时候支持
  // 产生 2MHz 的参考时钟给 PLL.
  MCG->C5 = MCG_C5_PRDIV(prdiv); // 设置 PLL 匹配晶振的参考分频数 
  
  // 确保MCG_C6处于复位状态,禁止LOLIE、PLL、和时钟控制器,清PLL VCO分频器
  MCG->C6 = 0x0;
  
  //设置系统时钟分频系数
  LPLD_Set_SYS_DIV(core_div, bus_div, flexbus_div, flash_div);  
  
  //设置倍频系数
  MCG->C6 = MCG_C6_PLLS_MASK | MCG_C6_VDIV(vdiv); 
  
  while (!(MCG->S & MCG_S_PLLST_MASK)){}; // wait for PLL status bit to set
  
  while (!(MCG->S & MCG_S_LOCK_MASK)){}; // Wait for LOCK bit to set
  
  // 已经进入PBE模式
  
  // Transition into PEE by setting CLKS to 0
  // CLKS=0, FRDIV=3, IREFS=0, IRCLKEN=0, IREFSTEN=0
  MCG->C1 &= ~MCG_C1_CLKS_MASK;
  
  // Wait for clock status bits to update
  while (((MCG->S & MCG_S_CLKST_MASK) >> MCG_S_CLKST_SHIFT) != 0x3){};
  
  // 已经进入PEE模式
  
  return pll_freq;
} 
Example #24
0
/**
 * @brief   KL2x clocks and PLL initialization.
 * @note    All the involved constants come from the file @p board.h.
 * @note    This function should be invoked just after the system reset.
 *
 * @special
 */
void kl2x_clock_init(void) {
#if !KINETIS_NO_INIT
  /* Disable COP watchdog */
  SIM->COPC = 0;

  /* Enable PORTA */
  SIM->SCGC5 |= SIM_SCGC5_PORTA;

  /* --- MCG mode: FEI (default out of reset) ---
     f_MCGOUTCLK = f_int * F
     F is the FLL factor selected by C4[DRST_DRS] and C4[DMX32] bits.
     Typical f_MCGOUTCLK = 21 MHz immediately after reset.
     C4[DMX32]=0 and C4[DRST_DRS]=00  =>  FLL factor=640.
     C3[SCTRIM] and C4[SCFTRIM] factory trim values apply to f_int. */

  /* System oscillator drives 32 kHz clock (OSC32KSEL=0) */
  SIM->SOPT1 &= ~SIM_SOPT1_OSC32KSEL_MASK;

#if KINETIS_MCG_MODE == KINETIS_MCG_MODE_FEI
  /* This is the default mode at reset. */
  /* The MCGOUTCLK is divided by OUTDIV1 and OUTDIV4:
   * OUTDIV1 (divider for core/system and bus/flash clock)
   * OUTDIV4 (additional divider for bus/flash clock) */
  SIM->CLKDIV1 =
          SIM_CLKDIV1_OUTDIV1(1) |  /* OUTDIV1 = divide-by-2 => 24 MHz */
          SIM_CLKDIV1_OUTDIV4(0);   /* OUTDIV4 = divide-by-1 => 24 MHz */

#elif KINETIS_MCG_MODE == KINETIS_MCG_MODE_FEE
  /*
   * FLL Enabled External (FEE) MCG Mode
   * 24 MHz core, 12 MHz bus - using 32.768 kHz crystal with FLL.
   * f_MCGOUTCLK = (f_ext / FLL_R) * F
   *             = (32.768 kHz ) *
   *  FLL_R is the reference divider selected by C1[FRDIV]
   *  F is the FLL factor selected by C4[DRST_DRS] and C4[DMX32].
   *
   * Then the core/system and bus/flash clocks are divided:
   *   f_SYS = f_MCGOUTCLK / OUTDIV1 = 48 MHz / 1 = 48 MHz
   *   f_BUS = f_MCGOUTCLK / OUTDIV1 / OUTDIV4 =  MHz / 4 = 24 MHz
   */

  SIM->SOPT2 =
          SIM_SOPT2_TPMSRC(1);  /* MCGFLLCLK clock or MCGPLLCLK/2 */
          /* PLLFLLSEL=0 -> MCGFLLCLK */

  /* The MCGOUTCLK is divided by OUTDIV1 and OUTDIV4:
   * OUTDIV1 (divider for core/system and bus/flash clock)
   * OUTDIV4 (additional divider for bus/flash clock) */
  SIM->CLKDIV1 =
          SIM_CLKDIV1_OUTDIV1(KINETIS_MCG_FLL_OUTDIV1 - 1) |
          SIM_CLKDIV1_OUTDIV4(KINETIS_MCG_FLL_OUTDIV4 - 1);

  /* EXTAL0 and XTAL0 */
  PORTA->PCR[18] &= ~0x01000700; /* Set PA18 to analog (default) */
  PORTA->PCR[19] &= ~0x01000700; /* Set PA19 to analog (default) */

  OSC0->CR = 0;

  /* From KL25P80M48SF0RM section 24.5.1.1 "Initializing the MCG". */
  /* To change from FEI mode to FEE mode: */
  /* (1) Select the external clock source in C2 register.
         Use low-power OSC mode (HGO0=0) which enables internal feedback
         resistor, for 32.768 kHz crystal configuration.  */
  MCG->C2 =
          MCG_C2_RANGE0(0) |  /* low frequency range (<= 40 kHz) */
          MCG_C2_EREFS0;      /* external reference (using a crystal) */
  /* (2) Write to C1 to select the clock mode. */
  MCG->C1 = /* Clear the IREFS bit to switch to the external reference. */
          MCG_C1_CLKS_FLLPLL |  /* Use FLL for system clock, MCGCLKOUT. */
          MCG_C1_FRDIV(0);      /* Don't divide 32kHz ERCLK FLL reference. */
  MCG->C6 = 0;  /* PLLS=0: Select FLL as MCG source, not PLL */

  /* Loop until S[OSCINIT0] is 1, indicating the
     crystal selected by C2[EREFS0] has been initialized. */
  while ((MCG->S & MCG_S_OSCINIT0) == 0)
    ;
  /* Loop until S[IREFST] is 0, indicating the
     external reference is the current reference clock source. */
  while ((MCG->S & MCG_S_IREFST) != 0)
    ;  /* Wait until external reference clock is FLL reference. */
  /* (1)(e) Loop until S[CLKST] indicates FLL feeds MCGOUTCLK. */
  while ((MCG->S & MCG_S_CLKST_MASK) != MCG_S_CLKST_FLL)
    ;  /* Wait until FLL has been selected. */

  /* --- MCG mode: FEE --- */
  /* Set frequency range for DCO output (MCGFLLCLK). */
  MCG->C4 = (KINETIS_MCG_FLL_DMX32 ? MCG_C4_DMX32 : 0) |
            MCG_C4_DRST_DRS(KINETIS_MCG_FLL_DRS);

  /* Wait for the FLL lock time; t[fll_acquire][max] = 1 ms */
  /* TODO - not implemented - is it required? Freescale example code
     seems to omit it. */

#elif KINETIS_MCG_MODE == KINETIS_MCG_MODE_PEE
  /*
   * PLL Enabled External (PEE) MCG Mode
   * 48 MHz core, 24 MHz bus - using 8 MHz crystal with PLL.
   * f_MCGOUTCLK = (OSCCLK / PLL_R) * M
   *             =  8 MHz / 2 * 24 = 96 MHz
   *  PLL_R is the reference divider selected by C5[PRDIV0]
   *  M is the multiplier selected by C6[VDIV0]
   *
   * Then the core/system and bus/flash clocks are divided:
   *   f_SYS = f_MCGOUTCLK / OUTDIV1 = 96 MHz / 2 = 48 MHz
   *   f_BUS = f_MCGOUTCLK / OUTDIV1 / OUTDIV4 = 96 MHz / 4 = 24 MHz
   */

  /* The MCGOUTCLK is divided by OUTDIV1 and OUTDIV4:
   * OUTDIV1 (divider for core/system and bus/flash clock)
   * OUTDIV4 (additional divider for bus/flash clock) */
  SIM->CLKDIV1 =
          SIM_CLKDIV1_OUTDIV1(1) |  /* OUTDIV1 = divide-by-2 => 48 MHz */
          SIM_CLKDIV1_OUTDIV4(1);   /* OUTDIV4 = divide-by-2 => 24 MHz */

  SIM->SOPT2 =
          SIM_SOPT2_TPMSRC(1) | /* MCGFLLCLK clock or MCGPLLCLK/2 */
          SIM_SOPT2_PLLFLLSEL;  /* PLLFLLSEL=MCGPLLCLK/2 */

  /* EXTAL0 and XTAL0 */
  PORTA->PCR[18] &= ~0x01000700; /* Set PA18 to analog (default) */
  PORTA->PCR[19] &= ~0x01000700; /* Set PA19 to analog (default) */

  OSC0->CR = 0;

  /* From KL25P80M48SF0RM section 24.5.1.1 "Initializing the MCG". */
  /* To change from FEI mode to FBE mode: */
  /* (1) Select the external clock source in C2 register.
         Use low-power OSC mode (HGO0=0) which enables internal feedback
         resistor since FRDM-KL25Z has feedback resistor R25 unpopulated.
         Use high-gain mode by setting C2[HGO0] instead if external
         feedback resistor Rf is installed.  */
  MCG->C2 =
          MCG_C2_RANGE0(2) |  /* very high frequency range */
          MCG_C2_EREFS0;      /* external reference (using a crystal) */
  /* (2) Write to C1 to select the clock mode. */
  MCG->C1 = /* Clear the IREFS bit to switch to the external reference. */
          MCG_C1_CLKS_ERCLK |  /* Use ERCLK for system clock, MCGCLKOUT. */
          MCG_C1_FRDIV(3);     /* Divide ERCLK / 256 for FLL reference. */
  /* Note: FLL reference frequency must be 31.25 kHz to 39.0625 kHz.
     8 MHz / 256 = 31.25 kHz. */
  MCG->C4 &= ~(MCG_C4_DMX32 | MCG_C4_DRST_DRS_MASK);
  MCG->C6 = 0;  /* PLLS=0: Select FLL as MCG source, not PLL */

  /* (3) Once configuration is set, wait for MCG mode change. */

  /* From KL25P80M48SF0RM section 24.5.31: */
  /* (1)(c) Loop until S[OSCINIT0] is 1, indicating the
     crystal selected by C2[EREFS0] has been initialized. */
  while ((MCG->S & MCG_S_OSCINIT0) == 0)
    ;
  /* (1)(d) Loop until S[IREFST] is 0, indicating the
     external reference is the current reference clock source. */
  while ((MCG->S & MCG_S_IREFST) != 0)
    ;  /* Wait until external reference clock is FLL reference. */
  /* (1)(e) Loop until S[CLKST] is 2'b10, indicating
     the external reference clock is selected to feed MCGOUTCLK. */
  while ((MCG->S & MCG_S_CLKST_MASK) != MCG_S_CLKST_ERCLK)
    ;  /* Wait until external reference clock has been selected. */

  /* --- MCG mode: FBE (FLL bypassed, external crystal) ---
     Now the MCG is in FBE mode.
     Although the FLL is bypassed, it is still on. */

  /* (2)    Then configure C5[PRDIV0] to generate the
     correct PLL reference frequency. */
  MCG->C5 = MCG_C5_PRDIV0(1);  /* PLL External Reference Divide by 2 */
  /* (3)    Then from FBE transition to PBE mode. */
  /* (3)(b) C6[PLLS]=1 to select PLL. */
  /* (3)(b) C6[VDIV0]=5'b0000 (x24) 2 MHz * 24 = 48 MHz. */
  MCG->C6 = MCG_C6_PLLS | MCG_C6_VDIV0(0);
  /* (3)(d) Loop until S[PLLST], indicating PLL
     is the PLLS clock source. */
  while ((MCG->S & MCG_S_PLLST) == 0)
    ;  /* wait until PLL is the PLLS clock source. */
  /* (3)(e) Loop until S[LOCK0] is set, indicating the PLL has acquired lock. */
  /* PLL selected as MCG source. VDIV0=00000 (Multiply=24). */
  while ((MCG->S & MCG_S_LOCK0) == 0)
    ;  /* wait until PLL locked */

  /* --- MCG mode: PBE (PLL bypassed, external crystal) --- */

  /* (4)    Transition from PBE mode to PEE mode. */
  /* (4)(a) C1[CLKS] = 2'b00 to select PLL output as system clock source. */
  // Switch to PEE mode
  //    Select PLL output (CLKS=0)
  //    FLL external reference divider (FRDIV=3)
  //    External reference clock for FLL (IREFS=0)
  MCG->C1 = MCG_C1_CLKS(0) |
            MCG_C1_FRDIV(3);
  /* (4)(b) Loop until S[CLKST] are 2'b11, indicating the PLL output is selected for MCGOUTCLK. */
  while ((MCG->S & MCG_S_CLKST_MASK) != MCG_S_CLKST_PLL)
    ;  /* wait until clock switched to PLL output */

  /* --- MCG mode: PEE (PLL enabled, external crystal) --- */

#else /* KINETIS_MCG_MODE != KINETIS_MCG_MODE_PEE */
#error Unimplemented KINETIS_MCG_MODE
#endif /* KINETIS_MCG_MODE != KINETIS_MCG_MODE_PEE */

#endif /* !KINETIS_NO_INIT */
}
Example #25
0
status_t CLOCK_SetFbeMode(uint8_t frdiv, mcg_dmx32_t dmx32, mcg_drs_t drs, void (*fllStableDelay)(void))
{
    uint8_t mcg_c4;
    bool change_drs = false;

#if (defined(MCG_CONFIG_CHECK_PARAM) && MCG_CONFIG_CHECK_PARAM)
    mcg_mode_t mode = CLOCK_GetMode();
    if (!((kMCG_ModeFEE == mode) || (kMCG_ModeFBI == mode) || (kMCG_ModeFBE == mode) || (kMCG_ModeFEI == mode) ||
          (kMCG_ModePBE == mode) || (kMCG_ModeBLPE == mode)))
    {
        return kStatus_MCG_ModeUnreachable;
    }
#endif

    /* Change to FLL mode. */
    MCG->C6 &= ~MCG_C6_PLLS_MASK;
    while (MCG->S & MCG_S_PLLST_MASK)
    {
    }

    /* Set LP bit to enable the FLL */
    MCG->C2 &= ~MCG_C2_LP_MASK;

    mcg_c4 = MCG->C4;

    /*
       Errata: ERR007993
       Workaround: Invert MCG_C4[DMX32] or change MCG_C4[DRST_DRS] before
       reference clock source changes, then reset to previous value after
       reference clock changes.
     */
    if (kMCG_FllSrcInternal == MCG_S_IREFST_VAL)
    {
        change_drs = true;
        /* Change the LSB of DRST_DRS. */
        MCG->C4 ^= (1U << MCG_C4_DRST_DRS_SHIFT);
    }

    /* Set CLKS and IREFS. */
    MCG->C1 = ((MCG->C1 & ~(MCG_C1_CLKS_MASK | MCG_C1_FRDIV_MASK | MCG_C1_IREFS_MASK)) |
               (MCG_C1_CLKS(kMCG_ClkOutSrcExternal)    /* CLKS = 2 */
                | MCG_C1_FRDIV(frdiv)                  /* FRDIV = frdiv */
                | MCG_C1_IREFS(kMCG_FllSrcExternal))); /* IREFS = 0 */

    /* Wait for Reference clock Status bit to clear */
    while (kMCG_FllSrcExternal != MCG_S_IREFST_VAL)
    {
    }

    /* Errata: ERR007993 */
    if (change_drs)
    {
        MCG->C4 = mcg_c4;
    }

    /* Set DRST_DRS and DMX32. */
    mcg_c4 = ((mcg_c4 & ~(MCG_C4_DMX32_MASK | MCG_C4_DRST_DRS_MASK)) | (MCG_C4_DMX32(dmx32) | MCG_C4_DRST_DRS(drs)));

    /* Wait for clock status bits to show clock source is ext ref clk */
    while (kMCG_ClkOutStatExt != MCG_S_CLKST_VAL)
    {
    }

    /* Wait for fll stable time. */
    if (fllStableDelay)
    {
        fllStableDelay();
    }

    return kStatus_Success;
}
/*! @brief Sets up the clock out of RESET
 *
 */
void clock_initialise(void) {

#if (CLOCK_MODE == CLOCK_MODE_NONE)
   // No clock setup
#else
   // XTAL0/EXTAL0 Pins
   // Shouldn't be needed as default
//   SIM->SCGC5  |= SIM_SCGC5_PORTA_MASK;
//   PORTA->PCR[18] = PORT_PCR_MUX(0);
//   PORTA->PCR[19] = PORT_PCR_MUX(0);

   // Configure the Crystal Oscillators
   OSC0->CR    = OSC0_CR_ERCLKEN_M|OSC0_CR_EREFSTEN_M|OSC0_CR_SCP_M;

   // XTAL/EXTAL Pins
   // Shouldn't be needed as default
//   SIM->SCGC5  |= SIM_SCGC5_PORTE_MASK;
//   PORTE_PCR24 = PORT_PCR_MUX(0);
//   PORTE_PCR25 = PORT_PCR_MUX(0);

   SIM->SCGC1 |= SIM_SCGC1_OSC1_MASK;
   OSC1->CR    = OSC1_CR_ERCLKEN_M|OSC1_CR_EREFSTEN_M|OSC1_CR_SCP_M;

#if (MCG_C7_OSCSEL_V != 0)
   SIM->SCGC6 |= SIM_SCGC6_RTC_MASK;

   // Configure the RTC Crystal Oscillator
   RTC->CR = RTC_CR_SCP_M|RTC_CR_CLKO_M|RTC_CR_OSCE_M|RTC_CR_UM_M|RTC_CR_SUP_M|RTC_CR_WPE_M;
#endif

   // Select OSCCLK Source
   MCG->C7 = MCG_C7_OSCSEL_M; // OSCSEL = 0,1 -> XTAL/XTAL32

   // Fast Internal Clock divider
   MCG->SC = MCG_SC_FCRDIV_M;

   // Out of reset MCG is in FEI mode
   // =============================================================

   // Set conservative SIM clock dividers BEFORE switching to ensure the clock speed remain within specification
   SIM->CLKDIV1 = SIM_CLKDIV1_OUTDIV1(3) | SIM_CLKDIV1_OUTDIV2(7) | SIM_CLKDIV1_OUTDIV3(3) | SIM_CLKDIV1_OUTDIV4(7);

   // Switch from FEI -> FEI/FBI/FEE/FBE
   // =============================================================

   // Set up crystal or external clock source for OSC0
   MCG->C2 = 
            MCG_C2_LOCRE0_M     | // LOCRE0 = 0,1   -> Loss of clock reset enable
            MCG_C2_RANGE0_M     | // RANGE0 = 0,1,2 -> Oscillator low/high/very high clock range
            MCG_C2_HGO0_M       | // HGO0   = 0,1   -> Oscillator low power/high gain
            MCG_C2_EREFS0_M     | // EREFS0 = 0,1   -> Select external clock/crystal oscillator
            MCG_C2_IRCS_M;        // IRCS   = 0,1   -> Select slow/fast internal clock for internal reference

   // Set up crystal or external clock source for OSC1
   MCG->C10 = MCG_C10_LOCRE2_M     | // LOCRE1 = 0,1   -> Loss of clock reset enable
              MCG_C10_RANGE1_M     | // RANGE1 = 0,1,2 -> Oscillator low/high/very high clock range
              MCG_C10_HGO1_M       | // HGO1   = 0,1   -> Oscillator low power/high gain
              MCG_C10_EREFS1_M;      // EREFS1 = 0,1   -> Select external clock/crystal oscillator

   // Set up RTC clock monitor
   MCG->C8 = MCG_C8_LOCRE1_M |    // LOCRE1 = 0,1 -> Loss of Lock Reset enable
             MCG_C8_CME1_M;       // CME1   = 0,1 -> Clock monitor enable

#if ((CLOCK_MODE == CLOCK_MODE_FEI) || (CLOCK_MODE == CLOCK_MODE_FBI) || (CLOCK_MODE == CLOCK_MODE_BLPI) )
   // Transition via FBI
   //=====================================
#define BYPASS (1) // CLKS value used while FLL locks
   MCG->C1 =  MCG_C1_CLKS(BYPASS)     | // CLKS     = X     -> External reference source while PLL locks
              MCG_C1_FRDIV_M          | // FRDIV    = N     -> XTAL/2^n ~ 31.25 kHz
              MCG_C1_IREFS_M          | // IREFS    = 0,1   -> External/Slow IRC for FLL source
              MCG_C1_IRCLKEN_M        | // IRCLKEN  = 0,1   -> IRCLK disable/enable
              MCG_C1_IREFSTEN_M;        // IREFSTEN = 0,1   -> Internal reference enabled in STOP mode

   // Wait for S_IREFST to indicate FLL Reference has switched
   do {
      __asm__("nop");
   } while ((MCG->S & MCG_S_IREFST_MASK) != (MCG_C1_IREFS_V<<MCG_S_IREFST_SHIFT));

   // Wait for S_CLKST to indicating that OUTCLK has switched to bypass PLL/FLL
   do {
      __asm__("nop");
   } while ((MCG->S & MCG_S_CLKST_MASK) != MCG_S_CLKST(BYPASS));

   // Set FLL Parameters
   MCG->C4 = (MCG->C4&~(MCG_C4_DMX32_MASK|MCG_C4_DRST_DRS_MASK))|MCG_C4_DMX32_M|MCG_C4_DRST_DRS_M;
#endif

#if ((CLOCK_MODE == CLOCK_MODE_FBE) || (CLOCK_MODE == CLOCK_MODE_FEE) || (CLOCK_MODE == CLOCK_MODE_PLBE) || (CLOCK_MODE == CLOCK_MODE_PBE) || (CLOCK_MODE == CLOCK_MODE_PEE))

   // Transition via FBE
   //=====================================
#define BYPASS (2) // CLKS value used while PLL locks
   MCG->C1 =  MCG_C1_CLKS(BYPASS)     | // CLKS     = 2     -> External reference source while PLL locks
              MCG_C1_FRDIV_M          | // FRDIV    = N     -> XTAL/2^n ~ 31.25 kHz
              MCG_C1_IREFS_M          | // IREFS    = 0,1   -> External/Slow IRC for FLL source
              MCG_C1_IRCLKEN_M        | // IRCLKEN  = 0,1   -> IRCLK disable/enable
              MCG_C1_IREFSTEN_M;        // IREFSTEN = 0,1   -> Internal reference enabled in STOP mode

#if (MCG_C2_EREFS0_V != 0)
   // Wait for oscillator 0 stable (if used)
   do {
      __asm__("nop");
   } while ((MCG->S & MCG_S_OSCINIT0_MASK) == 0);
#endif

#if (MCG_C10_EREFS1_V != 0)
   // Wait for oscillator 1 stable (if used)
   do {
      __asm__("nop");
   } while ((MCG->S2 & MCG_S2_OSCINIT1_MASK) == 0);
#endif

   // Wait for S_IREFST to indicate FLL Reference has switched
   do {
      __asm__("nop");
   } while ((MCG->S & MCG_S_IREFST_MASK) != (MCG_C1_IREFS_V<<MCG_S_IREFST_SHIFT));

   // Wait for S_CLKST to indicating that OUTCLK has switched to bypass PLL/FLL
   do {
      __asm__("nop");
   } while ((MCG->S & MCG_S_CLKST_MASK) != MCG_S_CLKST(BYPASS));

   // Set FLL Parameters
   MCG->C4 = (MCG->C4&~(MCG_C4_DMX32_MASK|MCG_C4_DRST_DRS_MASK))|MCG_C4_DMX32_M|MCG_C4_DRST_DRS_M;
#endif

   // Configure PLL0 Reference Frequency
   // =============================================================
   MCG->C5 =   MCG_C5_PLLREFSEL0_M   |  // PLLREFSEL0 = 0,1 -> OSC0/OSC1 select
               MCG_C5_PLLCLKEN0_M    |  // PLLCLKEN0  = 0,1 -> PLL -/enabled (irrespective of PLLS)
               MCG_C5_PLLSTEN0_M     |  // PLLSTEN0   = 0,1 -> disabled/enabled in normal stop mode
               MCG_C5_PRDIV0_M;         // PRDIV0     = N   -> PLL divider so PLL Ref. Freq. = 8-16 MHz

   // Configure PLL1 Reference Frequency
   // =============================================================
   MCG->C11 =  MCG_C11_PLLREFSEL1_M   |  // PLLREFSEL1 = 0,1 -> OSC0/OSC1 select
               MCG_C11_PLLCLKEN1_M    |  // PLLCLKEN   = 0,1 -> PLL -/enabled (irrespective of PLLS)
               MCG_C11_PLLSTEN1_M     |  // PLLSTEN0   = 0,1 -> disabled/enabled in normal stop mode
               MCG_C11_PLLCS_M        |  // PLLCS      = 0,1 -> PLL0/PLL1 used as MCG source
               MCG_C11_PRDIV1_M;         // PRDIV0     = N   -> PLL divider so PLL Ref. Freq. = 8-16 MHz

   // Set up PLL0
   // =============================================================
   MCG->C6 = MCG_C6_LOLIE0_M    |  // LOLIE0 = 0,1 -> Loss of Lock interrupt
             MCG_C6_PLLS_M      |  // PLLS   = 0,1 -> Enable PLL
             MCG_C6_CME0_M      |  // CME0   = 0,1 -> Disable/enable clock monitor
             MCG_C6_VDIV0_M;       // VDIV0  = N   -> PLL Multiplication factor

   // Set up PLL1
   // =============================================================
   MCG->C12 = MCG_C12_LOLIE1_M    |  // LOLIE1 = 0,1 -> Loss of Lock interrupt
              MCG_C12_CME2_M      |  // CME2   = 0,1 -> Disable/enable clock monitor
              MCG_C12_VDIV1_M;       // VDIV1  = N   -> PLL Multiplication factor


#if ((CLOCK_MODE == CLOCK_MODE_PBE) || (CLOCK_MODE == CLOCK_MODE_PEE))
   // Transition via PBE
   // =============================================================

#if (MCG_C11_PLLCS_M == 0)
   // Wait for PLL0 to lock
   do {
      __asm__("nop");
   } while((MCG->S & MCG_S_LOCK0_MASK) == 0);
#else
   // Wait for PLL1 to lock
   do {
      __asm__("nop");
   } while((MCG->S2 & MCG_S2_LOCK1_MASK) == 0);
#endif
   // Wait until PLLS clock source changes to the PLL clock out
   do {
      __asm__("nop");
   } while((MCG->S & MCG_S_PLLST_MASK) == 0);
#endif

#if ((CLOCK_MODE == CLOCK_MODE_FEI) || (CLOCK_MODE == CLOCK_MODE_FEE))
   // Wait for FLL to lock
   do {
      __asm__("nop");
   } while ((MCG->C4&MCG_C4_DRST_DRS_MASK) != MCG_C4_DRST_DRS_M);
#endif

   // Select FEI/FBI/FEE/FBE/PBE/PEE clock mode
   MCG->C1 =  MCG_C1_CLKS_M       | // CLKS     = 0,1,2 -> Select FLL/IRCSCLK/ERCLK
              MCG_C1_FRDIV_M      | // FRDIV    = N     -> XTAL/2^n ~ 31.25 kHz
              MCG_C1_IREFS_M      | // IREFS    = 0,1   -> External/Slow IRC for FLL source
              MCG_C1_IRCLKEN_M    | // IRCLKEN  = 0,1   -> IRCLK disable/enable
              MCG_C1_IREFSTEN_M;    // IREFSTEN = 0,1   -> Internal reference enabled in STOP mode

   // Wait for mode change
   do {
      __asm__("nop");
   } while ((MCG->S & MCG_S_IREFST_MASK) != (MCG_C1_IREFS_V<<MCG_S_IREFST_SHIFT));

#if defined (MCG_C6_PLLS_V) && (MCG_C1_CLKS_V == 0) // FLL or PLL
#define MCG_S_CLKST_M MCG_S_CLKST(MCG_C6_PLLS_V?3:0)
#else
   #define MCG_S_CLKST_M MCG_S_CLKST(MCG_C1_CLKS_V)
#endif

   // Wait for S_CLKST to indicating that OUTCLK has switched
   do {
      __asm__("nop");
   } while ((MCG->S & MCG_S_CLKST_MASK) != MCG_S_CLKST_M);

   // Set the SIM _CLKDIV dividers
   SIM->CLKDIV1 = SIM_CLKDIV1_OUTDIV1_M | SIM_CLKDIV1_OUTDIV2_M | SIM_CLKDIV1_OUTDIV3_M | SIM_CLKDIV1_OUTDIV4_M;

#if (CLOCK_MODE == CLOCK_MODE_BLPE) || (CLOCK_MODE == CLOCK_MODE_BLPI)
   // Select BLPE/BLPI clock mode
   MCG->C2 =
            MCG_C2_LOCRE0_M      | // LOCRE0 = 0,1   -> Loss of clock reset
            MCG_C2_RANGE0_M      | // RANGE0 = 0,1,2 -> Oscillator low/high/very high clock range
            MCG_C2_HGO0_M        | // HGO0   = 0,1   -> Oscillator low power/high gain
            MCG_C2_EREFS0_M      | // EREFS0 = 0,1   -> Select external clock/crystal oscillator
            MCG_C2_LP_M          | // LP     = 0,1   -> Select FLL enabled/disabled in bypass mode
            MCG_C2_IRCS_M;         // IRCS   = 0,1   -> Select slow/fast internal clock for internal reference

#endif // (CLOCK_MODE == CLOCK_MODE_BLPE) || (CLOCK_MODE == CLOCK_MODE_BLPI)
#endif // (CLOCK_MODE == CLOCK_MODE_NONE)


   /*!
    * SOPT1 Clock multiplexing
    */
#if defined(SIM_SOPT1_OSC32KSEL_MASK) && defined(SIM_SOPT1_OSC32KSEL_M) // ERCLK32K source
   SIM->SOPT1 = (SIM->SOPT1&~SIM_SOPT1_OSC32KSEL_MASK)|SIM_SOPT1_OSC32KSEL_M;
#endif

   /*!
    * SOPT2 Clock multiplexing
    */
#if defined(SIM_SOPT2_SDHCSRC_MASK) && defined(SIM_SOPT2_SDHCSRC_M) // SDHC clock
   SIM->SOPT2 = (SIM->SOPT2&~SIM_SOPT2_SDHCSRC_MASK)|SIM_SOPT2_SDHCSRC_M;
#endif

#if defined(SIM_SOPT2_TIMESRC_MASK) && defined(SIM_SOPT2_TIMESRC_M) // Ethernet time-stamp clock
   SIM->SOPT2 = (SIM->SOPT2&~SIM_SOPT2_TIMESRC_MASK)|SIM_SOPT2_TIMESRC_M;
#endif

#if defined(SIM_SOPT2_RMIISRC_MASK) && defined(SIM_SOPT2_RMIISRC_M) // RMII clock
   SIM->SOPT2 = (SIM->SOPT2&~SIM_SOPT2_RMIISRC_MASK)|SIM_SOPT2_RMIISRC_M;
#endif

#ifdef SIM_SCGC4_USBOTG_MASK
   // !! WARNING !! The USB interface must be disabled for clock changes to have effect !! WARNING !!
   SIM->SCGC4 &= ~SIM_SCGC4_USBOTG_MASK;
#endif

#if defined(SIM_SOPT2_USBSRC_MASK) && defined(SIM_SOPT2_USBSRC_M) // USB clock (48MHz req.)
   SIM->SOPT2 = (SIM->SOPT2&~SIM_SOPT2_USBSRC_MASK)|SIM_SOPT2_USBSRC_M;
#endif

#if defined(SIM_SOPT2_USBFSRC_MASK) && defined(SIM_SOPT2_USBFSRC_M) // USB clock (48MHz req.)
   SIM->SOPT2 = (SIM->SOPT2&~SIM_SOPT2_USBFSRC_MASK)|SIM_SOPT2_USBFSRC_M;
#endif

#if defined(SIM_SOPT2_PLLFLLSEL_MASK) && defined(SIM_SOPT2_PLLFLLSEL_M) // Peripheral clock
   SIM->SOPT2 = (SIM->SOPT2&~SIM_SOPT2_PLLFLLSEL_MASK)|SIM_SOPT2_PLLFLLSEL_M;
#endif

#if defined(SIM_SOPT2_UART0SRC_MASK) && defined(SIM_SOPT2_UART0SRC_M) // UART0 clock
   SIM->SOPT2 = (SIM->SOPT2&~SIM_SOPT2_UART0SRC_MASK)|SIM_SOPT2_UART0SRC_M;
#endif

#if defined(SIM_SOPT2_TPMSRC_MASK) && defined(SIM_SOPT2_TPMSRC_M) // TPM clock
   SIM->SOPT2 = (SIM->SOPT2&~SIM_SOPT2_TPMSRC_MASK)|SIM_SOPT2_TPMSRC_M;
#endif

#if defined(SIM_SOPT2_CLKOUTSEL_MASK) && defined(SIM_SOPT2_CLKOUTSEL_M)
   SIM->SOPT2 = (SIM->SOPT2&~SIM_SOPT2_CLKOUTSEL_MASK)|SIM_SOPT2_CLKOUTSEL_M;
#endif

#if defined(SIM_SOPT2_RTCCLKOUTSEL_MASK) && defined(SIM_SOPT2_RTCCLKOUTSEL_M)
   SIM->SOPT2 = (SIM->SOPT2&~SIM_SOPT2_RTCCLKOUTSEL_MASK)|SIM_SOPT2_RTCCLKOUTSEL_M;
#endif

#if defined(SIM_CLKDIV2_USBDIV_MASK) && defined(SIM_CLKDIV2_USBFRAC_MASK) && defined(SIM_CLKDIV2_USB_M)
   SIM->CLKDIV2 = (SIM->CLKDIV2&~(SIM_CLKDIV2_USBDIV_MASK|SIM_CLKDIV2_USBFRAC_MASK)) | SIM_CLKDIV2_USB_M;
#endif

   SystemCoreClockUpdate();
}
Example #27
0
// =============================================================================
// 功能:PLL初始化部分,主要对PLL和晶振初始化,是时间从内部时钟切换到外部时钟的主要部
//       分,此处使用PLL0和OSC0作为内部时钟源,经分频和倍频,使内核时钟达到150M
// 参数:crystal_fre_hz,外部晶振频率
//       prdiv,PLL分频参数
//       vdiv,PLL倍频参数
// 返回:实际配置的MCG输出频率
// =============================================================================
u32 PLL_Init(u32 crystal_fre_hz, u8 prdiv, u8 vdiv)
{
    //reset后,系统处于FEI模式,时钟配置过程为:
    //FEI--->FBE--->PBE--->PEE(手册640页table25-22)

    //默认使用振荡器0,设置振荡器0
    // 配置控制寄存器MCG_C2
    // 先清bit位,配置高速晶振,high-gain operation,外部晶振
    MCG->C2 &= ~(MCG_C2_RANGE0_MASK | MCG_C2_HGO0_MASK | MCG_C2_EREFS0_MASK);
    MCG->C2 |= (MCG_C2_RANGE0(1)
                | (0 << MCG_C2_HGO0_SHIFT)
                | (0 << MCG_C2_EREFS0_SHIFT));

    // 配置控制寄存器MCG_C1
    //先清bit位,CLK为外部时钟,FRDIV为5时,配置分频为1024,即配置FLL处于
    //31.25-39.0625 kHz 之间
    MCG->C1 &= ~(MCG_C1_CLKS_MASK | MCG_C1_FRDIV_MASK | MCG_C1_IREFS_MASK);
    MCG->C1 = MCG_C1_CLKS(2) | MCG_C1_FRDIV(5);

    while((MCG->S & MCG_S_IREFST_MASK));    //等待FLL时钟转为外部源
    while(((MCG->S & MCG_S_CLKST_MASK) >> MCG_S_CLKST_SHIFT) != 0x2);

    // Now in FBE
    MCG->C6 |= MCG_C6_CME0_MASK;
    // start Configure PLL0
    MCG->C5 &= ~MCG_C5_PLLREFSEL0_MASK;         // ensure OSC0
    MCG->C11 &= ~MCG_C11_PLLCS_MASK;            // select PLL0

    // Configure MCG_C5
    MCG->C5 &= ~MCG_C5_PRDIV0_MASK;             // clear settings
    MCG->C5 |= MCG_C5_PRDIV0(prdiv - 1);            //set PLL ref divider

    // Configure MCG_C6
    MCG->C6 &= ~MCG_C6_VDIV0_MASK;                          // clear settings
    MCG->C6 |= MCG_C6_PLLS_MASK | MCG_C6_VDIV0(vdiv - 16); // write new VDIV

    while(!(MCG->S & MCG_S_PLLST_MASK));        // wait for PLLST status bit to set
    while(!(MCG->S & MCG_S_LOCK0_MASK));        // Wait for LOCK bit to set

    // Use actual PLL settings to calculate PLL frequency
    prdiv = ((MCG->C5 & MCG_C5_PRDIV0_MASK) + 1);
    vdiv = ((MCG->C6 & MCG_C6_VDIV0_MASK) + 16);

    // now in PBE
    MCG->C1 &= ~MCG_C1_CLKS_MASK; // 清CLKS,选择MCG_OUT源为PLL
    while(((MCG->S & MCG_S_CLKST_MASK) >> MCG_S_CLKST_SHIFT) != 0x3);

    // start Configure PLL1 if needed, for DDR,so, CLK = 100MHz
#if (CN_CFG_DDR_USED == 1)
    // Configure MCG_C12
    MCG->C11 &= ~MCG_C11_PLLREFSEL1_MASK;       // Clear select bit to choose OSC0
    MCG->C11 &= ~MCG_C11_PRDIV1_MASK;
    MCG->C11 |= MCG_C11_PRDIV1(5 - 1);
    MCG->C12 &= ~MCG_C12_VDIV1_MASK;            // clear VDIV settings
    MCG->C12 |=  MCG_C12_VDIV1(24 - 16); // write new VDIV and enable PLL
    // Now enable the PLL
    MCG->C11 |= MCG_C11_PLLCLKEN1_MASK; // Set PLLCLKEN2 to enable PLL1

    while(!(MCG->S2 & MCG_S2_LOCK1_MASK));  // Wait for PLL1 locked
#endif

    //MCGOUT equals PLL output frequency/2
    return (((crystal_fre_hz / prdiv) * vdiv) / 2);
}
Example #28
0
/**
 * @brief   MK20D5 clock initialization.
 * @note    All the involved constants come from the file @p board.h.
 * @note    This function is meant to be invoked early during the system
 *          initialization, it is usually invoked from the file
 *          @p board.c.
 * @todo    This function needs to be more generic.
 *
 * @special
 */
void mk20d50_clock_init(void) {

  /* Disable the watchdog */
  WDOG->UNLOCK = 0xC520;
  WDOG->UNLOCK = 0xD928;
  WDOG->STCTRLH &= ~WDOG_STCTRLH_WDOGEN;

  SIM->SCGC5 |= SIM_SCGC5_PORTA |
                SIM_SCGC5_PORTB |
                SIM_SCGC5_PORTC |
                SIM_SCGC5_PORTD |
                SIM_SCGC5_PORTE;

  /* EXTAL0 and XTAL0 */
  PORTA->PCR[18] = 0;
  PORTA->PCR[19] = 0;

  /*
   * Start in FEI mode
   */

  /* Disable capacitors for crystal */
  OSC->CR = 0;

  /* Enable OSC, 8-32 MHz range, low power mode */
  MCG->C2 = MCG_C2_RANGE0(1) | MCG_C2_LOCRE0 | MCG_C2_EREFS0;

  /* Switch to crystal as clock source, FLL input of 8 MHz / 256 = 31.25 KHz */
  MCG->C1 = MCG_C1_CLKS(2) | MCG_C1_FRDIV(3);

  /* Wait for crystal oscillator to begin */
  while (!(MCG->S & MCG_S_OSCINIT0));

  /* Wait for the FLL to use the oscillator */
  while (MCG->S & MCG_S_IREFST);

  /* Wait for the MCGOUTCLK to use the oscillator */
  while ((MCG->S & MCG_S_CLKST_MASK) != MCG_S_CLKST(2));

  /*
   * Now in FBE mode
   */

  /* Config PLL input for 2 MHz (8 MHz crystal / 4) */
  MCG->C5 = MCG_C5_PRDIV0(3);

  /* Config PLL for 96 MHz output */
  MCG->C6 = MCG_C6_PLLS | MCG_C6_VDIV0(0);

  /* Wait for PLL to start using crystal as its input */
  while (!(MCG->S & MCG_S_PLLST));

  /* Wait for PLL to lock */
  while (!(MCG->S & MCG_S_LOCK0));

  /*
   * Now in PBE mode
   */

  /* Switch to PLL as clock source */
  MCG->C1 = MCG_C1_CLKS(0);

  /* Wait for PLL clock to be used */
  while ((MCG->S & MCG_S_CLKST_MASK) != MCG_S_CLKST_PLL);

  /*
   * Now in PEE mode
   */
}
Example #29
0
/*lint -esym(765,Cpu_Interrupt) Disable MISRA rule (8.10) checking for symbols (Cpu_Interrupt). */
void __init_hardware(void)
{

  /*** !!! Here you can place your own code before PE initialization using property "User code before PE initialization" on the build options tab. !!! ***/

  /*** ### MK22FX512VLQ12 "Cpu" init code ... ***/
  /*** PE initialization code after reset ***/
  SCB_VTOR = (uint32_t)(&__vect_table); /* Set the interrupt vector table position */
  /* Disable the WDOG module */
  /* WDOG_UNLOCK: WDOGUNLOCK=0xC520 */
  WDOG_UNLOCK = WDOG_UNLOCK_WDOGUNLOCK(0xC520); /* Key 1 */
  /* WDOG_UNLOCK: WDOGUNLOCK=0xD928 */
  WDOG_UNLOCK = WDOG_UNLOCK_WDOGUNLOCK(0xD928); /* Key 2 */
  /* WDOG_STCTRLH: ??=0,DISTESTWDOG=0,BYTESEL=0,TESTSEL=0,TESTWDOG=0,??=0,??=1,WAITEN=1,STOPEN=1,DBGEN=0,ALLOWUPDATE=1,WINEN=0,IRQRSTEN=0,CLKSRC=1,WDOGEN=0 */
  WDOG_STCTRLH = WDOG_STCTRLH_BYTESEL(0x00) |
                 WDOG_STCTRLH_WAITEN_MASK |
                 WDOG_STCTRLH_STOPEN_MASK |
                 WDOG_STCTRLH_ALLOWUPDATE_MASK |
                 WDOG_STCTRLH_CLKSRC_MASK |
                 0x0100U;

  /* System clock initialization */
  /* SIM_CLKDIV1: OUTDIV1=0,OUTDIV2=1,OUTDIV3=3,OUTDIV4=3,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0 */
  SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0x00) |
                SIM_CLKDIV1_OUTDIV2(0x01) |
                SIM_CLKDIV1_OUTDIV3(0x03) |
                SIM_CLKDIV1_OUTDIV4(0x03); /* Set the system prescalers to safe value */
  /* SIM_SCGC5: PORTE=1,PORTD=1,PORTB=1,PORTA=1 */
  SIM_SCGC5 |= SIM_SCGC5_PORTE_MASK |
               SIM_SCGC5_PORTD_MASK |
               SIM_SCGC5_PORTB_MASK |
               SIM_SCGC5_PORTA_MASK;   /* Enable clock gate for ports to enable pin routing */
  /* SIM_SCGC5: LPTMR=1 */
  SIM_SCGC5 |= SIM_SCGC5_LPTMR_MASK;
  if ((PMC_REGSC & PMC_REGSC_ACKISO_MASK) != 0x0U) {
    /* PMC_REGSC: ACKISO=1 */
    PMC_REGSC |= PMC_REGSC_ACKISO_MASK; /* Release IO pads after wakeup from VLLS mode. */
  }
  /* SIM_CLKDIV1: OUTDIV1=0,OUTDIV2=1,OUTDIV3=4,OUTDIV4=4,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0 */
  SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0x00) |
                SIM_CLKDIV1_OUTDIV2(0x01) |
                SIM_CLKDIV1_OUTDIV3(0x04) |
                SIM_CLKDIV1_OUTDIV4(0x04); /* Update system prescalers */
  /* SIM_SOPT2: PLLFLLSEL=1 */
  SIM_SOPT2 |= SIM_SOPT2_PLLFLLSEL_MASK; /* Select PLL as a clock source for various peripherals */
  /* SIM_SOPT1: OSC32KSEL=3 */
  SIM_SOPT1 |= SIM_SOPT1_OSC32KSEL(0x03); /* LPO 1kHz oscillator drives 32 kHz clock for various peripherals */
  /* PORTA_PCR18: ISF=0,MUX=0 */
  PORTA_PCR18 &= (uint32_t)~(uint32_t)((PORT_PCR_ISF_MASK | PORT_PCR_MUX(0x07)));
  /* PORTA_PCR19: ISF=0,MUX=0 */
  PORTA_PCR19 &= (uint32_t)~(uint32_t)((PORT_PCR_ISF_MASK | PORT_PCR_MUX(0x07)));
  /* Switch to FBE Mode */
  /* MCG_C2: LOCRE0=0,??=0,RANGE0=2,HGO0=0,EREFS0=1,LP=0,IRCS=0 */
  MCG_C2 = (MCG_C2_RANGE0(0x02) | MCG_C2_EREFS0_MASK);
  /* OSC_CR: ERCLKEN=1,??=0,EREFSTEN=0,??=0,SC2P=0,SC4P=0,SC8P=0,SC16P=0 */
  OSC_CR = OSC_CR_ERCLKEN_MASK;
  /* MCG_C7: OSCSEL=0 */
  MCG_C7 &= (uint8_t)~(uint8_t)(MCG_C7_OSCSEL_MASK);
  /* MCG_C1: CLKS=2,FRDIV=3,IREFS=0,IRCLKEN=1,IREFSTEN=0 */
  MCG_C1 = (MCG_C1_CLKS(0x02) | MCG_C1_FRDIV(0x03) | MCG_C1_IRCLKEN_MASK);
  /* MCG_C4: DMX32=0,DRST_DRS=0 */
  MCG_C4 &= (uint8_t)~(uint8_t)((MCG_C4_DMX32_MASK | MCG_C4_DRST_DRS(0x03)));
  /* MCG_C5: ??=0,PLLCLKEN0=0,PLLSTEN0=0,PRDIV0=1 */
  MCG_C5 = MCG_C5_PRDIV0(0x01);
  /* MCG_C6: LOLIE0=0,PLLS=0,CME0=0,VDIV0=6 */
  MCG_C6 = MCG_C6_VDIV0(0x06);
  while((MCG_S & MCG_S_OSCINIT0_MASK) == 0x00U) { /* Check that the oscillator is running */
  }
  while((MCG_S & MCG_S_IREFST_MASK) != 0x00U) { /* Check that the source of the FLL reference clock is the external reference clock. */
  }
  while((MCG_S & 0x0CU) != 0x08U) {    /* Wait until external reference clock is selected as MCG output */
  }
  /* Switch to PBE Mode */
  /* MCG_C1: CLKS=2,FRDIV=4,IREFS=0,IRCLKEN=1,IREFSTEN=0 */
  MCG_C1 = (MCG_C1_CLKS(0x02) | MCG_C1_FRDIV(0x04) | MCG_C1_IRCLKEN_MASK);
  /* MCG_C6: LOLIE0=0,PLLS=1,CME0=0,VDIV0=6 */
  MCG_C6 = (MCG_C6_PLLS_MASK | MCG_C6_VDIV0(0x06));
  while((MCG_S & 0x0CU) != 0x08U) {    /* Wait until external reference clock is selected as MCG output */
  }
  while((MCG_S & MCG_S_LOCK0_MASK) == 0x00U) { /* Wait until locked */
  }
  /* Switch to PEE Mode */
  /* MCG_C1: CLKS=0,FRDIV=4,IREFS=0,IRCLKEN=1,IREFSTEN=0 */
  MCG_C1 = (MCG_C1_CLKS(0x00) | MCG_C1_FRDIV(0x04) | MCG_C1_IRCLKEN_MASK);
  while((MCG_S & 0x0CU) != 0x0CU) {    /* Wait until output of the PLL is selected */
  }
  /*** End of PE initialization code after reset ***/

  /*** !!! Here you can place your own code after PE initialization using property "User code after PE initialization" on the build options tab. !!! ***/

}
/*lint -esym(765,Cpu_Interrupt) Disable MISRA rule (8.10) checking for symbols (Cpu_Interrupt). */
void __init_hardware(void)
{

  /*** !!! Here you can place your own code before PE initialization using property "User code before PE initialization" on the build options tab. !!! ***/

  /*** ### MK70FN1M0VMJ12 "Cpu" init code ... ***/
  /*** PE initialization code after reset ***/
  SCB_VTOR = (uint32_t)(&__vect_table); /* Set the interrupt vector table position */
  /* Disable the WDOG module */
  /* WDOG_UNLOCK: WDOGUNLOCK=0xC520 */
  WDOG_UNLOCK = WDOG_UNLOCK_WDOGUNLOCK(0xC520); /* Key 1 */
  /* WDOG_UNLOCK: WDOGUNLOCK=0xD928 */
  WDOG_UNLOCK = WDOG_UNLOCK_WDOGUNLOCK(0xD928); /* Key 2 */
  /* WDOG_STCTRLH: ??=0,DISTESTWDOG=0,BYTESEL=0,TESTSEL=0,TESTWDOG=0,??=0,??=1,WAITEN=1,STOPEN=1,DBGEN=0,ALLOWUPDATE=1,WINEN=0,IRQRSTEN=0,CLKSRC=1,WDOGEN=0 */
  WDOG_STCTRLH = WDOG_STCTRLH_BYTESEL(0x00) |
                 WDOG_STCTRLH_WAITEN_MASK |
                 WDOG_STCTRLH_STOPEN_MASK |
                 WDOG_STCTRLH_ALLOWUPDATE_MASK |
                 WDOG_STCTRLH_CLKSRC_MASK |
                 0x0100U;

  /* System clock initialization */
  /* SIM_CLKDIV1: OUTDIV1=0,OUTDIV2=1,OUTDIV3=3,OUTDIV4=3,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0 */
  SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0x00) |
                SIM_CLKDIV1_OUTDIV2(0x01) |
                SIM_CLKDIV1_OUTDIV3(0x03) |
                SIM_CLKDIV1_OUTDIV4(0x03); /* Set the system prescalers to safe value */
  /* SIM_SCGC5: PORTE=1,PORTA=1 */
  SIM_SCGC5 |= (SIM_SCGC5_PORTE_MASK | SIM_SCGC5_PORTA_MASK); /* Enable clock gate for ports to enable pin routing */
  if ((PMC_REGSC & PMC_REGSC_ACKISO_MASK) != 0x0U) {
    /* PMC_REGSC: ACKISO=1 */
    PMC_REGSC |= PMC_REGSC_ACKISO_MASK; /* Release IO pads after wakeup from VLLS mode. */
  }
  /* SIM_CLKDIV1: OUTDIV1=0,OUTDIV2=0,OUTDIV3=1,OUTDIV4=1,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0,??=0 */
  SIM_CLKDIV1 = SIM_CLKDIV1_OUTDIV1(0x00) |
                SIM_CLKDIV1_OUTDIV2(0x00) |
                SIM_CLKDIV1_OUTDIV3(0x01) |
                SIM_CLKDIV1_OUTDIV4(0x01); /* Update system prescalers */
  /* SIM_SOPT2: PLLFLLSEL=0 */
  SIM_SOPT2 &= (uint32_t)~(uint32_t)(SIM_SOPT2_PLLFLLSEL(0x03)); /* Select FLL as a clock source for various peripherals */
  /* SIM_SOPT1: OSC32KSEL=0 */
  SIM_SOPT1 &= (uint32_t)~(uint32_t)(SIM_SOPT1_OSC32KSEL_MASK); /* System oscillator drives 32 kHz clock for various peripherals */
  /* SIM_SCGC1: OSC1=1 */
  SIM_SCGC1 |= SIM_SCGC1_OSC1_MASK;
  /* Switch to FEI Mode */
  /* MCG_C1: CLKS=0,FRDIV=0,IREFS=1,IRCLKEN=1,IREFSTEN=0 */
  MCG_C1 = MCG_C1_CLKS(0x00) |
           MCG_C1_FRDIV(0x00) |
           MCG_C1_IREFS_MASK |
           MCG_C1_IRCLKEN_MASK;
  /* MCG_C2: LOCRE0=0,??=0,RANGE0=0,HGO0=0,EREFS0=0,LP=0,IRCS=0 */
  MCG_C2 = MCG_C2_RANGE0(0x00);
  /* MCG_C4: DMX32=0,DRST_DRS=0 */
  MCG_C4 &= (uint8_t)~(uint8_t)((MCG_C4_DMX32_MASK | MCG_C4_DRST_DRS(0x03)));
  /* OSC0_CR: ERCLKEN=1,??=0,EREFSTEN=0,??=0,SC2P=0,SC4P=0,SC8P=0,SC16P=0 */
  OSC0_CR = OSC_CR_ERCLKEN_MASK;
  /* MCG_C10: LOCRE2=0,??=0,RANGE1=0,HGO1=0,EREFS1=0,??=0,??=0 */
  MCG_C10 = MCG_C10_RANGE1(0x00);
  /* OSC1_CR: ERCLKEN=1,??=0,EREFSTEN=0,??=0,SC2P=0,SC4P=0,SC8P=0,SC16P=0 */
  OSC1_CR = OSC_CR_ERCLKEN_MASK;
  /* MCG_C7: OSCSEL=0 */
  MCG_C7 &= (uint8_t)~(uint8_t)(MCG_C7_OSCSEL_MASK);
  /* MCG_C5: PLLREFSEL0=0,PLLCLKEN0=0,PLLSTEN0=0,??=0,??=0,PRDIV0=0 */
  MCG_C5 = MCG_C5_PRDIV0(0x00);
  /* MCG_C6: LOLIE0=0,PLLS=0,CME0=0,VDIV0=0 */
  MCG_C6 = MCG_C6_VDIV0(0x00);
  /* MCG_C11: PLLREFSEL1=0,PLLCLKEN1=0,PLLSTEN1=0,PLLCS=0,??=0,PRDIV1=0 */
  MCG_C11 = MCG_C11_PRDIV1(0x00);
  /* MCG_C12: LOLIE1=0,??=0,CME2=0,VDIV1=0 */
  MCG_C12 = MCG_C12_VDIV1(0x00);       /* 3 */
  while((MCG_S & MCG_S_IREFST_MASK) == 0x00U) { /* Check that the source of the FLL reference clock is the internal reference clock. */
  }
  while((MCG_S & 0x0CU) != 0x00U) {    /* Wait until output of the FLL is selected */
  }
  /*** End of PE initialization code after reset ***/

  /*** !!! Here you can place your own code after PE initialization using property "User code after PE initialization" on the build options tab. !!! ***/

}