Example #1
0
void
nedffamc231(int dummy,...)
#endif
{

  med_int *fid;
  char    *maa;
  med_int *lon1;
  char    *fam;
  med_int *lon2; 
  med_int *num;
  med_int *attr_ident;
  med_int *attr_val;
  char    *attr_desc; 
  med_int *lon3;
  med_int *n_attr;
  char    *groupe ;
  med_int *lon4; 
  med_int *n_groupe;
  med_err *fret;

  med_int ret=-1;
  char *  fn1, *fn2, *fn3, *fn4;

  va_list params;
  va_start(params,dummy);

  fid        = va_arg(params,  med_int* );
  maa        = va_arg(params,  char*    );
  lon1       = va_arg(params,  med_int* );
  fam        = va_arg(params,  char*    );
  lon2       = va_arg(params,  med_int* ); 
  num        = va_arg(params,  med_int* );
  attr_ident = va_arg(params,  med_int* );
  attr_val   = va_arg(params,  med_int* );
  attr_desc  = va_arg(params,  char*    ); 
  lon3       = va_arg(params,  med_int* );
  n_attr     = va_arg(params,  med_int* );
  groupe     = va_arg(params,  char*    );
  lon4       = va_arg(params,  med_int* ); 
  n_groupe   = va_arg(params,  med_int* );
  fret       = va_arg(params,  med_err* );


  fn1 = _MED2cstring(maa, (int) * lon1);
  fn2 = _MED1cstring(fam, (int) * lon2,MED_TAILLE_NOM);
  fn3 = _MED1cstring(attr_desc,(int) * lon3,
		     (int) *n_attr*MED_TAILLE_DESC);
  fn4 = _MED1cstring(groupe, (int) * lon4,
		     (int) *n_groupe*MED_TAILLE_LNOM);
  
  if (!fn1 || !fn2 || !fn3 || !fn4)
    goto ERROR; 

  if( MEDfamCr((med_idt) *fid,fn1,fn2,(med_int) *num, 
	       (med_int *) attr_ident,
	       (med_int *) attr_val, fn3, (med_int) *n_attr, fn4, 
	       (med_int) *n_groupe) < 0 )
    goto ERROR;

  _MEDcstringFree(fn1);
  _MEDcstringFree(fn2); 
  _MEDcstringFree(fn3);
  _MEDcstringFree(fn4);

  ret=0;
 ERROR:
  va_end(params);
  *fret = ret;
  return;
 
}
Example #2
0
int GModel::readMED(const std::string &name)
{
  med_idt fid = MEDouvrir((char*)name.c_str(), MED_LECTURE);
  if(fid < 0) {
    Msg::Error("Unable to open file '%s'", name.c_str());
    return 0;
  }

  med_int v[3], vf[3];
  MEDversionDonner(&v[0], &v[1], &v[2]);
  MEDversionLire(fid, &vf[0], &vf[1], &vf[2]);
  Msg::Info("Reading MED file V%d.%d.%d using MED library V%d.%d.%d",
            vf[0], vf[1], vf[2], v[0], v[1], v[2]);
  if(vf[0] < 2 || (vf[0] == 2 && vf[1] < 2)){
    Msg::Error("Cannot read MED file older than V2.2");
    return 0;
  }

  std::vector<std::string> meshNames;
  for(int i = 0; i < MEDnMaa(fid); i++){
    char meshName[MED_TAILLE_NOM + 1], meshDesc[MED_TAILLE_DESC + 1];
    med_int spaceDim;
    med_maillage meshType;
#if (MED_MAJOR_NUM == 3)
    med_int meshDim, nStep;
    char dtUnit[MED_SNAME_SIZE + 1];
    char axisName[3 * MED_SNAME_SIZE + 1], axisUnit[3 * MED_SNAME_SIZE + 1];
    med_sorting_type sortingType;
    med_axis_type axisType;
    if(MEDmeshInfo(fid, i + 1, meshName, &spaceDim, &meshDim, &meshType, meshDesc,
                   dtUnit, &sortingType, &nStep, &axisType, axisName, axisUnit) < 0){
#else
    if(MEDmaaInfo(fid, i + 1, meshName, &spaceDim, &meshType, meshDesc) < 0){
#endif
      Msg::Error("Unable to read mesh information");
      return 0;
    }
    meshNames.push_back(meshName);
  }

  if(MEDfermer(fid) < 0){
    Msg::Error("Unable to close file '%s'", (char*)name.c_str());
    return 0;
  }

  int ret = 1;
  for(unsigned int i = 0; i < meshNames.size(); i++){
    // we use the filename as a kind of "partition" indicator, allowing to
    // complete a model part by part (used e.g. in DDM, since MED does not store
    // a partition index)
    GModel *m = findByName(meshNames[i], name);
    if(!m) m = new GModel(meshNames[i]);
    ret = m->readMED(name, i);
    if(!ret) return 0;
  }
  return ret;
}

int GModel::readMED(const std::string &name, int meshIndex)
{
  med_idt fid = MEDouvrir((char*)name.c_str(), MED_LECTURE);
  if(fid < 0){
    Msg::Error("Unable to open file '%s'", name.c_str());
    return 0;
  }

  int numMeshes = MEDnMaa(fid);
  if(meshIndex >= numMeshes){
    Msg::Info("Could not find mesh %d in MED file", meshIndex);
    return 0;
  }

  checkPointMaxNumbers();
  GModel::setCurrent(this); // make sure we increment max nums in this model

  // read mesh info
  char meshName[MED_TAILLE_NOM + 1], meshDesc[MED_TAILLE_DESC + 1];
  med_int spaceDim, nStep = 1;
  med_maillage meshType;
#if (MED_MAJOR_NUM == 3)
  med_int meshDim;
  char dtUnit[MED_SNAME_SIZE + 1];
  char axisName[3 * MED_SNAME_SIZE + 1], axisUnit[3 * MED_SNAME_SIZE + 1];
  med_sorting_type sortingType;
  med_axis_type axisType;
  if(MEDmeshInfo(fid, meshIndex + 1, meshName, &spaceDim, &meshDim, &meshType, meshDesc,
                 dtUnit, &sortingType, &nStep, &axisType, axisName, axisUnit) < 0){
#else
  if(MEDmaaInfo(fid, meshIndex + 1, meshName, &spaceDim, &meshType, meshDesc) < 0){
#endif
    Msg::Error("Unable to read mesh information");
    return 0;
  }

  // FIXME: we should support multi-step MED3 meshes (probably by
  // storing each mesh as a separate model, with a naming convention
  // e.g. meshName_step%d). This way we could also handle multi-mesh
  // time sequences in MED3.
  if(nStep > 1)
    Msg::Warning("Discarding %d last meshes in multi-step MED mesh", nStep - 1);

  setName(meshName);
  setFileName(name);
  if(meshType == MED_NON_STRUCTURE){
    Msg::Info("Reading %d-D unstructured mesh <<%s>>", spaceDim, meshName);
  }
  else{
    Msg::Error("Reading structured MED meshes is not supported");
    return 0;
  }
  med_int vf[3];
  MEDversionLire(fid, &vf[0], &vf[1], &vf[2]);

  // read nodes
#if (MED_MAJOR_NUM == 3)
  med_bool changeOfCoord, geoTransform;
  med_int numNodes = MEDmeshnEntity(fid, meshName, MED_NO_DT, MED_NO_IT, MED_NODE,
                                    MED_NO_GEOTYPE, MED_COORDINATE, MED_NO_CMODE,
                                    &changeOfCoord, &geoTransform);
#else
  med_int numNodes = MEDnEntMaa(fid, meshName, MED_COOR, MED_NOEUD, MED_NONE,
                                MED_NOD);
#endif
  if(numNodes < 0){
    Msg::Error("Could not read number of MED nodes");
    return 0;
  }
  if(numNodes == 0){
    Msg::Error("No nodes in MED mesh");
    return 0;
  }
  std::vector<MVertex*> verts(numNodes);
  std::vector<med_float> coord(spaceDim * numNodes);
#if (MED_MAJOR_NUM == 3)
  if(MEDmeshNodeCoordinateRd(fid, meshName, MED_NO_DT, MED_NO_IT, MED_FULL_INTERLACE,
                             &coord[0]) < 0){
#else
  std::vector<char> coordName(spaceDim * MED_TAILLE_PNOM + 1);
  std::vector<char> coordUnit(spaceDim * MED_TAILLE_PNOM + 1);
  med_repere rep;
  if(MEDcoordLire(fid, meshName, spaceDim, &coord[0], MED_FULL_INTERLACE,
                  MED_ALL, 0, 0, &rep, &coordName[0], &coordUnit[0]) < 0){
#endif
    Msg::Error("Could not read MED node coordinates");
    return 0;
  }

  std::vector<med_int> nodeTags(numNodes);
#if (MED_MAJOR_NUM == 3)
  if(MEDmeshEntityNumberRd(fid, meshName, MED_NO_DT, MED_NO_IT, MED_NODE,
                           MED_NO_GEOTYPE, &nodeTags[0]) < 0)
#else
  if(MEDnumLire(fid, meshName, &nodeTags[0], numNodes, MED_NOEUD, MED_NONE) < 0)
#endif
    nodeTags.clear();

  for(int i = 0; i < numNodes; i++)
    verts[i] = new MVertex(coord[spaceDim * i],
                           (spaceDim > 1) ? coord[spaceDim * i + 1] : 0.,
                           (spaceDim > 2) ? coord[spaceDim * i + 2] : 0.,
                           0, nodeTags.empty() ? 0 : nodeTags[i]);

  // read elements (loop over all possible MSH element types)
  for(int mshType = 0; mshType < MSH_NUM_TYPE; mshType++){
    med_geometrie_element type = msh2medElementType(mshType);
    if(type == MED_NONE) continue;
#if (MED_MAJOR_NUM == 3)
    med_bool changeOfCoord;
    med_bool geoTransform;
    med_int numEle = MEDmeshnEntity(fid, meshName, MED_NO_DT, MED_NO_IT, MED_CELL,
                                    type, MED_CONNECTIVITY, MED_NODAL, &changeOfCoord,
                                    &geoTransform);
#else
    med_int numEle = MEDnEntMaa(fid, meshName, MED_CONN, MED_MAILLE, type, MED_NOD);
#endif
    if(numEle <= 0) continue;
    int numNodPerEle = type % 100;
    std::vector<med_int> conn(numEle * numNodPerEle);
#if (MED_MAJOR_NUM == 3)
    if(MEDmeshElementConnectivityRd(fid, meshName, MED_NO_DT, MED_NO_IT, MED_CELL,
                                    type, MED_NODAL, MED_FULL_INTERLACE, &conn[0]) < 0){
#else
    if(MEDconnLire(fid, meshName, spaceDim, &conn[0], MED_FULL_INTERLACE, 0, MED_ALL,
                   MED_MAILLE, type, MED_NOD) < 0){
#endif
      Msg::Error("Could not read MED elements");
      return 0;
    }
    std::vector<med_int> fam(numEle, 0);
#if (MED_MAJOR_NUM == 3)
    if(MEDmeshEntityFamilyNumberRd(fid, meshName, MED_NO_DT, MED_NO_IT, MED_CELL,
                                   type, &fam[0]) < 0){
#else
    if(MEDfamLire(fid, meshName, &fam[0], numEle, MED_MAILLE, type) < 0){
#endif
      Msg::Info("No family number for elements: using 0 as default family number");
    }
    std::vector<med_int> eleTags(numEle);
#if (MED_MAJOR_NUM == 3)
    if(MEDmeshEntityNumberRd(fid, meshName, MED_NO_DT, MED_NO_IT, MED_CELL,
                             type, &eleTags[0]) < 0)
#else
    if(MEDnumLire(fid, meshName, &eleTags[0], numEle, MED_MAILLE, type) < 0)
#endif
      eleTags.clear();
    std::map<int, std::vector<MElement*> > elements;
    MElementFactory factory;
    for(int j = 0; j < numEle; j++){
      std::vector<MVertex*> v(numNodPerEle);
      for(int k = 0; k < numNodPerEle; k++)
        v[k] = verts[conn[numNodPerEle * j + med2mshNodeIndex(type, k)] - 1];
      MElement *e = factory.create(mshType, v, eleTags.empty() ? 0 : eleTags[j]);
      if(e) elements[-fam[j]].push_back(e);
    }
    _storeElementsInEntities(elements);
  }
  _associateEntityWithMeshVertices();
  _storeVerticesInEntities(verts);

  // read family info
  med_int numFamilies = MEDnFam(fid, meshName);
  if(numFamilies < 0){
    Msg::Error("Could not read MED families");
    return 0;
  }
  for(int i = 0; i < numFamilies; i++){
#if (MED_MAJOR_NUM == 3)
    med_int numAttrib = (vf[0] == 2) ? MEDnFamily23Attribute(fid, meshName, i + 1) : 0;
    med_int numGroups = MEDnFamilyGroup(fid, meshName, i + 1);
#else
    med_int numAttrib = MEDnAttribut(fid, meshName, i + 1);
    med_int numGroups = MEDnGroupe(fid, meshName, i + 1);
#endif
    if(numAttrib < 0 || numGroups < 0){
      Msg::Error("Could not read MED groups or attributes");
      return 0;
    }
    std::vector<med_int> attribId(numAttrib + 1);
    std::vector<med_int> attribVal(numAttrib + 1);
    std::vector<char> attribDes(MED_TAILLE_DESC * numAttrib + 1);
    std::vector<char> groupNames(MED_TAILLE_LNOM * numGroups + 1);
    char familyName[MED_TAILLE_NOM + 1];
    med_int familyNum;
#if (MED_MAJOR_NUM == 3)
    if(vf[0] == 2){ // MED2 file
      if(MEDfamily23Info(fid, meshName, i + 1, familyName, &attribId[0],
                         &attribVal[0], &attribDes[0], &familyNum,
                         &groupNames[0]) < 0){
        Msg::Error("Could not read info for MED2 family %d", i + 1);
        continue;
      }
    }
    else{
      if(MEDfamilyInfo(fid, meshName, i + 1, familyName, &familyNum,
                       &groupNames[0]) < 0){
        Msg::Error("Could not read info for MED3 family %d", i + 1);
        continue;
      }
    }
#else
    if(MEDfamInfo(fid, meshName, i + 1, familyName, &familyNum, &attribId[0],
                  &attribVal[0], &attribDes[0], &numAttrib, &groupNames[0],
                  &numGroups) < 0){
      Msg::Error("Could not read info for MED family %d", i + 1);
      continue;
    }
#endif
    // family tags are unique (for all dimensions)
    GEntity *ge;
    if((ge = getRegionByTag(-familyNum))){}
    else if((ge = getFaceByTag(-familyNum))){}
    else if((ge = getEdgeByTag(-familyNum))){}
    else ge = getVertexByTag(-familyNum);
    if(ge){
      elementaryNames[std::pair<int, int>(ge->dim(), -familyNum)] = familyName;
      if(numGroups > 0){
        for(int j = 0; j < numGroups; j++){
          char tmp[MED_TAILLE_LNOM + 1];
          strncpy(tmp, &groupNames[j * MED_TAILLE_LNOM], MED_TAILLE_LNOM);
          tmp[MED_TAILLE_LNOM] = '\0';
          // don't use same physical number across dimensions, as e.g. getdp
          // does not support this
          int pnum = setPhysicalName(tmp, ge->dim(), getMaxPhysicalNumber(-1) + 1);
          if(std::find(ge->physicals.begin(), ge->physicals.end(), pnum) ==
             ge->physicals.end())
            ge->physicals.push_back(pnum);
        }
      }
    }
  }

  // check if we need to read some post-processing data later
#if (MED_MAJOR_NUM == 3)
  bool postpro = (MEDnField(fid) > 0) ? true : false;
#else
  bool postpro = (MEDnChamp(fid, 0) > 0) ? true : false;
#endif

  if(MEDfermer(fid) < 0){
    Msg::Error("Unable to close file '%s'", (char*)name.c_str());
    return 0;
  }

  return postpro ? 2 : 1;
}

template<class T>
static void fillElementsMED(med_int family, std::vector<T*> &elements,
                            std::vector<med_int> &conn, std::vector<med_int> &fam,
                            med_geometrie_element &type)
{
  if(elements.empty()) return;
  type = msh2medElementType(elements[0]->getTypeForMSH());
  if(type == MED_NONE){
    Msg::Warning("Unsupported element type in MED format");
    return;
  }
  for(unsigned int i = 0; i < elements.size(); i++){
    elements[i]->setVolumePositive();
    for(int j = 0; j < elements[i]->getNumVertices(); j++)
      conn.push_back(elements[i]->getVertex(med2mshNodeIndex(type, j))->getIndex());
    fam.push_back(family);
  }
}

static void writeElementsMED(med_idt &fid, char *meshName, std::vector<med_int> &conn,
                             std::vector<med_int> &fam, med_geometrie_element type)
{
  if(fam.empty()) return;
#if (MED_MAJOR_NUM == 3)
  if(MEDmeshElementWr(fid, meshName, MED_NO_DT, MED_NO_IT, 0., MED_CELL, type,
                      MED_NODAL, MED_FULL_INTERLACE, (med_int)fam.size(),
                      &conn[0], MED_FALSE, 0, MED_FALSE, 0, MED_TRUE, &fam[0]) < 0)
#else
  if(MEDelementsEcr(fid, meshName, (med_int)3, &conn[0], MED_FULL_INTERLACE,
                    0, MED_FAUX, 0, MED_FAUX, &fam[0], (med_int)fam.size(),
                    MED_MAILLE, type, MED_NOD) < 0)
#endif
    Msg::Error("Could not write MED elements");
}

int GModel::writeMED(const std::string &name, bool saveAll, double scalingFactor)
{
  med_idt fid = MEDouvrir((char*)name.c_str(), MED_CREATION);
  if(fid < 0){
    Msg::Error("Unable to open file '%s'", name.c_str());
    return 0;
  }

  // write header
  if(MEDfichDesEcr(fid, (char*)"MED file generated by Gmsh") < 0){
    Msg::Error("Unable to write MED descriptor");
    return 0;
  }

  char *meshName = (char*)getName().c_str();

  // Gmsh always writes 3D unstructured meshes
#if (MED_MAJOR_NUM == 3)
  char dtUnit[MED_SNAME_SIZE + 1] = "";
  char axisName[3 * MED_SNAME_SIZE + 1] = "";
  char axisUnit[3 * MED_SNAME_SIZE + 1] = "";
  if(MEDmeshCr(fid, meshName, 3, 3, MED_UNSTRUCTURED_MESH, "Mesh created with Gmsh",
               dtUnit, MED_SORT_DTIT, MED_CARTESIAN, axisName, axisUnit) < 0){
#else
  if(MEDmaaCr(fid, meshName, 3, MED_NON_STRUCTURE,
              (char*)"Mesh created with Gmsh") < 0){
#endif
    Msg::Error("Could not create MED mesh");
    return 0;
  }

  // if there are no physicals we save all the elements
  if(noPhysicalGroups()) saveAll = true;

  // index the vertices we save in a continuous sequence (MED
  // connectivity is given in terms of vertex indices)
  indexMeshVertices(saveAll);

  // get a vector containing all the geometrical entities in the
  // model (the ordering of the entities must be the same as the one
  // used during the indexing of the vertices)
  std::vector<GEntity*> entities;
  getEntities(entities);

  std::map<GEntity*, int> families;
  // write the families
  {
    // always create a "0" family, with no groups or attributes
#if (MED_MAJOR_NUM == 3)
    if(MEDfamilyCr(fid, meshName, "F_0", 0, 0, "") < 0)
#else
    if(MEDfamCr(fid, meshName, (char*)"F_0", 0, 0, 0, 0, 0, 0, 0) < 0)
#endif
      Msg::Error("Could not create MED family 0");

    // create one family per elementary entity, with one group per
    // physical entity and no attributes
    for(unsigned int i = 0; i < entities.size(); i++){
      if(saveAll || entities[i]->physicals.size()){
        int num = - ((int)families.size() + 1);
        families[entities[i]] = num;
        std::ostringstream fs;
        fs << entities[i]->dim() << "D_" << entities[i]->tag();
        std::string familyName = "F_" + fs.str();
        std::string groupName;
        for(unsigned j = 0; j < entities[i]->physicals.size(); j++){
          std::string tmp = getPhysicalName
            (entities[i]->dim(), entities[i]->physicals[j]);
          if(tmp.empty()){ // create unique name
            std::ostringstream gs;
            gs << entities[i]->dim() << "D_" << entities[i]->physicals[j];
            groupName += "G_" + gs.str();
          }
          else
            groupName += tmp;
          groupName.resize((j + 1) * MED_TAILLE_LNOM, ' ');
        }
#if (MED_MAJOR_NUM == 3)
        if(MEDfamilyCr(fid, meshName, familyName.c_str(),
                       (med_int)num, (med_int)entities[i]->physicals.size(),
                       groupName.c_str()) < 0)
#else
        if(MEDfamCr(fid, meshName, (char*)familyName.c_str(),
                    (med_int)num, 0, 0, 0, 0, (char*)groupName.c_str(),
                    (med_int)entities[i]->physicals.size()) < 0)
#endif
          Msg::Error("Could not create MED family %d", num);
      }
    }
  }

  // write the nodes
  {
    std::vector<med_float> coord;
    std::vector<med_int> fam;
    for(unsigned int i = 0; i < entities.size(); i++){
      for(unsigned int j = 0; j < entities[i]->mesh_vertices.size(); j++){
        MVertex *v = entities[i]->mesh_vertices[j];
        if(v->getIndex() >= 0){
          coord.push_back(v->x() * scalingFactor);
          coord.push_back(v->y() * scalingFactor);
          coord.push_back(v->z() * scalingFactor);
          fam.push_back(0); // we never create node families
        }
      }
    }
    if(fam.empty()){
      Msg::Error("No nodes to write in MED mesh");
      return 0;
    }
#if (MED_MAJOR_NUM == 3)
    if(MEDmeshNodeWr(fid, meshName, MED_NO_DT, MED_NO_IT, 0., MED_FULL_INTERLACE,
                     (med_int)fam.size(), &coord[0], MED_FALSE, "", MED_FALSE, 0,
                     MED_TRUE, &fam[0]) < 0)
#else
    char coordName[3 * MED_TAILLE_PNOM + 1] =
      "x               y               z               ";
    char coordUnit[3 * MED_TAILLE_PNOM + 1] =
      "unknown         unknown         unknown         ";
    if(MEDnoeudsEcr(fid, meshName, (med_int)3, &coord[0], MED_FULL_INTERLACE,
                    MED_CART, coordName, coordUnit, 0, MED_FAUX, 0, MED_FAUX,
                    &fam[0], (med_int)fam.size()) < 0)
#endif
      Msg::Error("Could not write nodes");
  }

  // write the elements
  {
    { // points
      med_geometrie_element typ = MED_NONE;
      std::vector<med_int> conn, fam;
      for(viter it = firstVertex(); it != lastVertex(); it++)
        if(saveAll || (*it)->physicals.size())
          fillElementsMED(families[*it], (*it)->points, conn, fam, typ);
      writeElementsMED(fid, meshName, conn, fam, typ);
    }
    { // lines
      med_geometrie_element typ = MED_NONE;
      std::vector<med_int> conn, fam;
      for(eiter it = firstEdge(); it != lastEdge(); it++)
        if(saveAll || (*it)->physicals.size())
          fillElementsMED(families[*it], (*it)->lines, conn, fam, typ);
      writeElementsMED(fid, meshName, conn, fam, typ);
    }
    { // triangles
      med_geometrie_element typ = MED_NONE;
      std::vector<med_int> conn, fam;
      for(fiter it = firstFace(); it != lastFace(); it++)
        if(saveAll || (*it)->physicals.size())
          fillElementsMED(families[*it], (*it)->triangles, conn, fam, typ);
      writeElementsMED(fid, meshName, conn, fam, typ);
    }
    { // quads
      med_geometrie_element typ = MED_NONE;
      std::vector<med_int> conn, fam;
      for(fiter it = firstFace(); it != lastFace(); it++)
        if(saveAll || (*it)->physicals.size())
          fillElementsMED(families[*it], (*it)->quadrangles, conn, fam, typ);
      writeElementsMED(fid, meshName, conn, fam, typ);
    }
    { // tets
      med_geometrie_element typ = MED_NONE;
      std::vector<med_int> conn, fam;
      for(riter it = firstRegion(); it != lastRegion(); it++)
        if(saveAll || (*it)->physicals.size())
          fillElementsMED(families[*it], (*it)->tetrahedra, conn, fam, typ);
      writeElementsMED(fid, meshName, conn, fam, typ);
    }
    { // hexas
      med_geometrie_element typ = MED_NONE;
      std::vector<med_int> conn, fam;
      for(riter it = firstRegion(); it != lastRegion(); it++)
        if(saveAll || (*it)->physicals.size())
          fillElementsMED(families[*it], (*it)->hexahedra, conn, fam, typ);
      writeElementsMED(fid, meshName, conn, fam, typ);
    }
    { // prisms
      med_geometrie_element typ = MED_NONE;
      std::vector<med_int> conn, fam;
      for(riter it = firstRegion(); it != lastRegion(); it++)
        if(saveAll || (*it)->physicals.size())
          fillElementsMED(families[*it], (*it)->prisms, conn, fam, typ);
      writeElementsMED(fid, meshName, conn, fam, typ);
    }
    { // pyramids
      med_geometrie_element typ = MED_NONE;
      std::vector<med_int> conn, fam;
      for(riter it = firstRegion(); it != lastRegion(); it++)
        if(saveAll || (*it)->physicals.size())
          fillElementsMED(families[*it], (*it)->pyramids, conn, fam, typ);
      writeElementsMED(fid, meshName, conn, fam, typ);
    }
  }

  if(MEDfermer(fid) < 0){
    Msg::Error("Unable to close file '%s'", (char*)name.c_str());
    return 0;
  }

  return 1;
}

#else

int GModel::readMED(const std::string &name)
{
  Msg::Error("Gmsh must be compiled with MED support to read '%s'",
             name.c_str());
  return 0;
}
Example #3
0
int main (int argc, char **argv)


{
  med_idt fid;
  char maa[MED_TAILLE_NOM+1] = "maillage_test19";
  char desc[MED_TAILLE_DESC+1]="un maillage pour test19.med";
  med_int mdim=2;
  /* Donnees de tests pour MEDgro2FamCr() 
     Les noeuds/mailles sont numerotes de 1 a 5 et les
     groupes de 1 a 3.
     Au depart, on a :
     - G1 : 1,2
     - G2 : 3,4,6
     - G3 : 1,4
     Au retour, on foit avoir 4 familles de noeuds + 4 familles de mailles 
     + la famille 0 dans le fichier :
     - F0 : 5       - groupes : aucun groupe par defaut (convention habituelle).
     - F1 : 1       - groupes : G1,G3  
     - F2 : 2       - groupes : G1
     - F3 : 3,6     - groupes : G2
     - F4 : 4       - groupes : G2,G3
  */
  med_int ngroup = 3;
  med_int nent = 6;
  char nom_groupes[MED_TAILLE_LNOM*3+1];
  /*                     0 1  2 3 4  5 6 */
  med_int entites[7] = { 1,2, 3,4,6, 1,4};
  med_int index[4] =   { 1,   3,     6,   8};
  int i;
  char nom_famille0[MED_TAILLE_NOM+1] = "FAMILLE0";
  /* on fait la meme distribution pour des mailles */
  med_int ngeo = 3;
  med_geometrie_element geo[3] = {MED_SEG2,MED_TRIA3,MED_TETRA4};
  /* MED_SEG2 : M1,M2,M3 - MED_TRI3 : M4,M5 - MED_TETRA4 : M6 */
  med_int index_geo[4] = {1,4,6,7};

  /* Creation du fichier test19.med */
  if ((fid = MEDouvrir("test19.med",MODE_ACCES)) < 0) {
    MESSAGE("Erreur a la creation du fichier test19.med");
    return -1;
  }
  printf("Creation du fichier test19.med \n");

  /* Creation du maillage */
  if (MEDmaaCr(fid,maa,mdim,MED_NON_STRUCTURE,desc) < 0) {
    MESSAGE("Erreur a la creation du maillage");
    return -1;
  }
  printf("Creation du maillage \n");

  /* on teste la fonction MEDgro2fam() */
  /* on definit les noms des groupes */
  strcpy(nom_groupes,"GROUPE 1");
  for (i=8;i<MED_TAILLE_LNOM;i++)
    nom_groupes[i] = ' ';
  nom_groupes[MED_TAILLE_LNOM] = '\0';
  strcat(nom_groupes,"GROUPE 2");
  for (i=8;i<MED_TAILLE_LNOM;i++)
    nom_groupes[MED_TAILLE_LNOM+i] = ' ';
  nom_groupes[2*MED_TAILLE_LNOM] = '\0';
  strcat(nom_groupes,"GROUPE 3");
  for (i=8;i<MED_TAILLE_LNOM;i++)
    nom_groupes[2*MED_TAILLE_LNOM+i] = ' ';
  nom_groupes[3*MED_TAILLE_LNOM] = '\0';

  /* On cree la famille 0 */
  if (MEDfamCr(fid,maa,nom_famille0,0,NULL,NULL,NULL,0,NULL,0) < 0) {
    MESSAGE("Erreur a la creation de la famille 0");
    return -1;
  }
  printf("Creation de la famille 0 \n");

  /* 
   * On definit et on archive les familles de noeuds dans test.19.med 
   */
  if (MEDgro2famCr(fid,maa,nom_groupes,index,ngroup,entites,nent,
		   MED_NOEUD,NULL,NULL,0) < 0) {
    MESSAGE("Erreur a la creation des familles de noeuds ");
    return -1;
  }
  printf("On constuit les familles de noeuds et on les stocke dans test19.med \n");

  /* 
   * On fait la meme chose pour des mailles de differents types 
   */
  if (MEDgro2famCr(fid,maa,nom_groupes,index,ngroup,entites,nent,
		   MED_MAILLE,geo,index_geo,ngeo) < 0) {
    MESSAGE("Erreur a la creation des familles d'elements ");
    return -1;
  }
  printf("On constuit les familles d'elements et on les stocke dans test19.med \n");  

  /* Fermeture du fichier */
  if (MEDfermer(fid) <0) {
    MESSAGE("Erreur a la fermeture du fichier");
    return -1;
  }
  printf("Fermeture du fichier \n");
  
  return 0;
}
Example #4
0
int main (int argc, char **argv)


{
  med_idt fid;
  char maa[MED_TAILLE_NOM+1] ="maa1";
  med_int mdim = 2;
  char nomfam[MED_TAILLE_NOM+1]="";
  med_int numfam;
  char attdes[MED_TAILLE_DESC+1]="";
  med_int natt;
  med_int attide;
  med_int attval;
  med_int ngro;
  char gro[MED_TAILLE_LNOM+1]="";
  int i;
  int nfame = 3; 
  int nfamn = 2;

  /* Creation du fichier "test8.med" */
  if ((fid = MEDouvrir("test8.med",MODE_ACCES)) < 0) {
    MESSAGE("Erreur a la creation du fichier test8.med");
    return -1;
  }
  
  /* Creation d'un maillage */
  if (MEDmaaCr(fid,maa,2,MED_NON_STRUCTURE,
	       "un maillage pour test8") < 0) {
    MESSAGE("Erreur a la creation du maillage");
    return -1;
  }
  
  /* Ecriture des familles                                                */
  /* Conventions appliquees dans MED :
     - Toujours creer une famille de numero 0 ne comportant aucun attribut
     ni groupe (famille de reference pour les noeuds ou les elements
     qui ne sont rattaches a aucun groupe ni attribut)
     - Les numeros de familles de noeuds sont > 0
     - Les numeros de familles des elements sont < 0
     - Rien d'imposer sur les noms de familles. 
     */ 
  
  /* Creation de la  famille 0 */
  strcpy(nomfam,"FAMILLE_0");
  numfam = 0;
  if (MEDfamCr(fid,maa,nomfam,numfam,&attide,&attval,attdes,0,
		 gro,0) < 0) {
    MESSAGE("Erreur a la creation de la famille 0");
    return -1;
  }
  
  /* Creation pour correspondre aux cas test precedent de :
     - 3 familles d'elements (-1,-2,-3) 
     - 2 familles de noeuds (1,2) */
  nfame = 3;
  for (i=0;i<nfame;i++) {
    numfam = -(i+1);
    sprintf(nomfam,"%s"IFORMAT,"FAMILLE_ELEMENT_",-numfam);
    attide = 1;
    attval = numfam*100;
    natt = 1;
    strcpy(attdes,"description attribut");
    strcpy(gro,"groupe1");
    ngro = 1;
    printf("%s - "IFORMAT" - "IFORMAT" - "IFORMAT" - "IFORMAT" \n",nomfam,numfam,attide,attval,
	   ngro);
    if (MEDfamCr(fid,maa,nomfam,numfam,&attide,&attval,attdes,
		 natt,gro,ngro) < 0) {
      MESSAGE("Erreur a la creation de la famille :");
      SSCRUTE(nomfam); ISCRUTE(numfam);
      return -1;
    }
  }
  
  nfamn = 2;
  for (i=0;i<nfamn;i++) {
    numfam = i+1;
    sprintf(nomfam,"%s"IFORMAT,"FAMILLE_NOEUD_",numfam);
    attide = 1;
    attval = numfam*100;
    natt = 1;
    strcpy(attdes,"description attribut");
    strcpy(gro,"groupe1");
    ngro = 1;
    if (MEDfamCr(fid,maa,nomfam,numfam,&attide,&attval,attdes,
		 natt,gro,ngro) < 0) {
      MESSAGE("Erreur a la creation de la famille :");
      SSCRUTE(nomfam); ISCRUTE(numfam);
      return -1;
    }
  }
  
  
  /* Fermeture du fichier */
  if (MEDfermer(fid) < 0) {
    MESSAGE("Erreur a la fermeture du fichier :");
    return -1;
  }          
  
  return 0;
}