Example #1
0
/**
 * Free a datagram (struct ip_reassdata) and all its pbufs.
 * Updates the total count of enqueued pbufs (ip_reass_pbufcount),
 * SNMP counters and sends an ICMP time exceeded packet.
 *
 * @param ipr datagram to free
 * @param prev the previous datagram in the linked list
 * @return the number of pbufs freed
 */
static int
ip_reass_free_complete_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev)
{
  u16_t pbufs_freed = 0;
  u8_t clen;
  struct pbuf *p;
  struct ip_reass_helper *iprh;

  LWIP_ASSERT("prev != ipr", prev != ipr);
  if (prev != NULL) {
    LWIP_ASSERT("prev->next == ipr", prev->next == ipr);
  }

  MIB2_STATS_INC(mib2.ipreasmfails);
#if LWIP_ICMP
  iprh = (struct ip_reass_helper *)ipr->p->payload;
  if (iprh->start == 0) {
    /* The first fragment was received, send ICMP time exceeded. */
    /* First, de-queue the first pbuf from r->p. */
    p = ipr->p;
    ipr->p = iprh->next_pbuf;
    /* Then, copy the original header into it. */
    SMEMCPY(p->payload, &ipr->iphdr, IP_HLEN);
    icmp_time_exceeded(p, ICMP_TE_FRAG);
    clen = pbuf_clen(p);
    LWIP_ASSERT("pbufs_freed + clen <= 0xffff", pbufs_freed + clen <= 0xffff);
    pbufs_freed += clen;
    pbuf_free(p);
  }
#endif /* LWIP_ICMP */

  /* First, free all received pbufs.  The individual pbufs need to be released
     separately as they have not yet been chained */
  p = ipr->p;
  while (p != NULL) {
    struct pbuf *pcur;
    iprh = (struct ip_reass_helper *)p->payload;
    pcur = p;
    /* get the next pointer before freeing */
    p = iprh->next_pbuf;
    clen = pbuf_clen(pcur);
    LWIP_ASSERT("pbufs_freed + clen <= 0xffff", pbufs_freed + clen <= 0xffff);
    pbufs_freed += clen;
    pbuf_free(pcur);
  }
  /* Then, unchain the struct ip_reassdata from the list and free it. */
  ip_reass_dequeue_datagram(ipr, prev);
  LWIP_ASSERT("ip_reass_pbufcount >= clen", ip_reass_pbufcount >= pbufs_freed);
  ip_reass_pbufcount -= pbufs_freed;

  return pbufs_freed;
}
Example #2
0
/**
 * Process an incoming UDP datagram.
 *
 * Given an incoming UDP datagram (as a chain of pbufs) this function
 * finds a corresponding UDP PCB and hands over the pbuf to the pcbs
 * recv function. If no pcb is found or the datagram is incorrect, the
 * pbuf is freed.
 *
 * @param p pbuf to be demultiplexed to a UDP PCB (p->payload pointing to the UDP header)
 * @param inp network interface on which the datagram was received.
 *
 */
void
udp_input(struct pbuf *p, struct netif *inp)
{
  struct udp_hdr *udphdr;
  struct udp_pcb *pcb, *prev;
  struct udp_pcb *uncon_pcb;
  u16_t src, dest;
  u8_t broadcast;
  u8_t for_us = 0;

  LWIP_UNUSED_ARG(inp);

  PERF_START;

  UDP_STATS_INC(udp.recv);

  /* Check minimum length (UDP header) */
  if (p->len < UDP_HLEN) {
    /* drop short packets */
    LWIP_DEBUGF(UDP_DEBUG,
                ("udp_input: short UDP datagram (%"U16_F" bytes) discarded\n", p->tot_len));
    UDP_STATS_INC(udp.lenerr);
    UDP_STATS_INC(udp.drop);
    MIB2_STATS_INC(mib2.udpinerrors);
    pbuf_free(p);
    goto end;
  }

  udphdr = (struct udp_hdr *)p->payload;

  /* is broadcast packet ? */
  broadcast = ip_addr_isbroadcast(ip_current_dest_addr(), ip_current_netif());

  LWIP_DEBUGF(UDP_DEBUG, ("udp_input: received datagram of length %"U16_F"\n", p->tot_len));

  /* convert src and dest ports to host byte order */
  src = lwip_ntohs(udphdr->src);
  dest = lwip_ntohs(udphdr->dest);

  udp_debug_print(udphdr);

  /* print the UDP source and destination */
  LWIP_DEBUGF(UDP_DEBUG, ("udp ("));
  ip_addr_debug_print(UDP_DEBUG, ip_current_dest_addr());
  LWIP_DEBUGF(UDP_DEBUG, (", %"U16_F") <-- (", lwip_ntohs(udphdr->dest)));
  ip_addr_debug_print(UDP_DEBUG, ip_current_src_addr());
  LWIP_DEBUGF(UDP_DEBUG, (", %"U16_F")\n", lwip_ntohs(udphdr->src)));

  pcb = NULL;
  prev = NULL;
  uncon_pcb = NULL;
  /* Iterate through the UDP pcb list for a matching pcb.
   * 'Perfect match' pcbs (connected to the remote port & ip address) are
   * preferred. If no perfect match is found, the first unconnected pcb that
   * matches the local port and ip address gets the datagram. */
  for (pcb = udp_pcbs; pcb != NULL; pcb = pcb->next) {
    /* print the PCB local and remote address */
    LWIP_DEBUGF(UDP_DEBUG, ("pcb ("));
    ip_addr_debug_print(UDP_DEBUG, &pcb->local_ip);
    LWIP_DEBUGF(UDP_DEBUG, (", %"U16_F") <-- (", pcb->local_port));
    ip_addr_debug_print(UDP_DEBUG, &pcb->remote_ip);
    LWIP_DEBUGF(UDP_DEBUG, (", %"U16_F")\n", pcb->remote_port));

    /* compare PCB local addr+port to UDP destination addr+port */
    if ((pcb->local_port == dest) &&
        (udp_input_local_match(pcb, inp, broadcast) != 0)) {
      if (((pcb->flags & UDP_FLAGS_CONNECTED) == 0) &&
          ((uncon_pcb == NULL)
#if SO_REUSE
          /* prefer specific IPs over cath-all */
          || !ip_addr_isany(&pcb->local_ip)
#endif /* SO_REUSE */
          )) {
        /* the first unconnected matching PCB */
        uncon_pcb = pcb;
      }

      /* compare PCB remote addr+port to UDP source addr+port */
      if ((pcb->remote_port == src) &&
          (ip_addr_isany_val(pcb->remote_ip) ||
          ip_addr_cmp(&pcb->remote_ip, ip_current_src_addr()))) {
        /* the first fully matching PCB */
        if (prev != NULL) {
          /* move the pcb to the front of udp_pcbs so that is
             found faster next time */
          prev->next = pcb->next;
          pcb->next = udp_pcbs;
          udp_pcbs = pcb;
        } else {
          UDP_STATS_INC(udp.cachehit);
        }
        break;
      }
    }

    prev = pcb;
  }
  /* no fully matching pcb found? then look for an unconnected pcb */
  if (pcb == NULL) {
    pcb = uncon_pcb;
  }

  /* Check checksum if this is a match or if it was directed at us. */
  if (pcb != NULL) {
    for_us = 1;
  } else {
#if LWIP_IPV6
    if (ip_current_is_v6()) {
      for_us = netif_get_ip6_addr_match(inp, ip6_current_dest_addr()) >= 0;
    }
#endif /* LWIP_IPV6 */
#if LWIP_IPV4
    if (!ip_current_is_v6()) {
      for_us = ip4_addr_cmp(netif_ip4_addr(inp), ip4_current_dest_addr());
    }
#endif /* LWIP_IPV4 */
  }

  if (for_us) {
    LWIP_DEBUGF(UDP_DEBUG | LWIP_DBG_TRACE, ("udp_input: calculating checksum\n"));
#if CHECKSUM_CHECK_UDP
    IF__NETIF_CHECKSUM_ENABLED(inp, CHECKSUM_CHECK_UDP) {
#if LWIP_UDPLITE
      if (ip_current_header_proto() == IP_PROTO_UDPLITE) {
        /* Do the UDP Lite checksum */
        u16_t chklen = lwip_ntohs(udphdr->len);
        if (chklen < sizeof(struct udp_hdr)) {
          if (chklen == 0) {
            /* For UDP-Lite, checksum length of 0 means checksum
               over the complete packet (See RFC 3828 chap. 3.1) */
            chklen = p->tot_len;
          } else {
            /* At least the UDP-Lite header must be covered by the
               checksum! (Again, see RFC 3828 chap. 3.1) */
            goto chkerr;
          }
        }
        if (ip_chksum_pseudo_partial(p, IP_PROTO_UDPLITE,
                     p->tot_len, chklen,
                     ip_current_src_addr(), ip_current_dest_addr()) != 0) {
          goto chkerr;
        }
      } else
#endif /* LWIP_UDPLITE */
      {
        if (udphdr->chksum != 0) {
          if (ip_chksum_pseudo(p, IP_PROTO_UDP, p->tot_len,
                               ip_current_src_addr(),
                               ip_current_dest_addr()) != 0) {
            goto chkerr;
          }
        }
      }
    }
#endif /* CHECKSUM_CHECK_UDP */
    if (pbuf_header(p, -UDP_HLEN)) {
      /* Can we cope with this failing? Just assert for now */
      LWIP_ASSERT("pbuf_header failed\n", 0);
      UDP_STATS_INC(udp.drop);
      MIB2_STATS_INC(mib2.udpinerrors);
      pbuf_free(p);
      goto end;
    }

    if (pcb != NULL) {
      MIB2_STATS_INC(mib2.udpindatagrams);
#if SO_REUSE && SO_REUSE_RXTOALL
      if (ip_get_option(pcb, SOF_REUSEADDR) &&
          (broadcast || ip_addr_ismulticast(ip_current_dest_addr()))) {
        /* pass broadcast- or multicast packets to all multicast pcbs
           if SOF_REUSEADDR is set on the first match */
        struct udp_pcb *mpcb;
        u8_t p_header_changed = 0;
        s16_t hdrs_len = (s16_t)(ip_current_header_tot_len() + UDP_HLEN);
        for (mpcb = udp_pcbs; mpcb != NULL; mpcb = mpcb->next) {
          if (mpcb != pcb) {
            /* compare PCB local addr+port to UDP destination addr+port */
            if ((mpcb->local_port == dest) &&
                (udp_input_local_match(mpcb, inp, broadcast) != 0)) {
              /* pass a copy of the packet to all local matches */
              if (mpcb->recv != NULL) {
                struct pbuf *q;
                /* for that, move payload to IP header again */
                if (p_header_changed == 0) {
                  pbuf_header_force(p, hdrs_len);
                  p_header_changed = 1;
                }
                q = pbuf_alloc(PBUF_RAW, p->tot_len, PBUF_RAM);
                if (q != NULL) {
                  err_t err = pbuf_copy(q, p);
                  if (err == ERR_OK) {
                    /* move payload to UDP data */
                    pbuf_header(q, -hdrs_len);
                    mpcb->recv(mpcb->recv_arg, mpcb, q, ip_current_src_addr(), src);
                  }
                }
              }
            }
          }
        }
        if (p_header_changed) {
          /* and move payload to UDP data again */
          pbuf_header(p, -hdrs_len);
        }
      }
#endif /* SO_REUSE && SO_REUSE_RXTOALL */
      /* callback */
      if (pcb->recv != NULL) {
        /* now the recv function is responsible for freeing p */
        pcb->recv(pcb->recv_arg, pcb, p, ip_current_src_addr(), src);
      } else {
        /* no recv function registered? then we have to free the pbuf! */
        pbuf_free(p);
        goto end;
      }
    } else {
      LWIP_DEBUGF(UDP_DEBUG | LWIP_DBG_TRACE, ("udp_input: not for us.\n"));

#if LWIP_ICMP || LWIP_ICMP6
      /* No match was found, send ICMP destination port unreachable unless
         destination address was broadcast/multicast. */
      if (!broadcast && !ip_addr_ismulticast(ip_current_dest_addr())) {
        /* move payload pointer back to ip header */
        pbuf_header_force(p, ip_current_header_tot_len() + UDP_HLEN);
        icmp_port_unreach(ip_current_is_v6(), p);
      }
#endif /* LWIP_ICMP || LWIP_ICMP6 */
      UDP_STATS_INC(udp.proterr);
      UDP_STATS_INC(udp.drop);
      MIB2_STATS_INC(mib2.udpnoports);
      pbuf_free(p);
    }
  } else {
Example #3
0
/**
 * Reassembles incoming IP fragments into an IP datagram.
 *
 * @param p points to a pbuf chain of the fragment
 * @return NULL if reassembly is incomplete, ? otherwise
 */
struct pbuf *
ip4_reass(struct pbuf *p)
{
  struct pbuf *r;
  struct ip_hdr *fraghdr;
  struct ip_reassdata *ipr;
  struct ip_reass_helper *iprh;
  u16_t offset, len;
  u8_t clen;

  IPFRAG_STATS_INC(ip_frag.recv);
  MIB2_STATS_INC(mib2.ipreasmreqds);

  fraghdr = (struct ip_hdr*)p->payload;

  if ((IPH_HL(fraghdr) * 4) != IP_HLEN) {
    LWIP_DEBUGF(IP_REASS_DEBUG,("ip4_reass: IP options currently not supported!\n"));
    IPFRAG_STATS_INC(ip_frag.err);
    goto nullreturn;
  }

  offset = (ntohs(IPH_OFFSET(fraghdr)) & IP_OFFMASK) * 8;
  len = ntohs(IPH_LEN(fraghdr)) - IPH_HL(fraghdr) * 4;

  /* Check if we are allowed to enqueue more datagrams. */
  clen = pbuf_clen(p);
  if ((ip_reass_pbufcount + clen) > IP_REASS_MAX_PBUFS) {
#if IP_REASS_FREE_OLDEST
    if (!ip_reass_remove_oldest_datagram(fraghdr, clen) ||
        ((ip_reass_pbufcount + clen) > IP_REASS_MAX_PBUFS))
#endif /* IP_REASS_FREE_OLDEST */
    {
      /* No datagram could be freed and still too many pbufs enqueued */
      LWIP_DEBUGF(IP_REASS_DEBUG,("ip4_reass: Overflow condition: pbufct=%d, clen=%d, MAX=%d\n",
        ip_reass_pbufcount, clen, IP_REASS_MAX_PBUFS));
      IPFRAG_STATS_INC(ip_frag.memerr);
      /* @todo: send ICMP time exceeded here? */
      /* drop this pbuf */
      goto nullreturn;
    }
  }

  /* Look for the datagram the fragment belongs to in the current datagram queue,
   * remembering the previous in the queue for later dequeueing. */
  for (ipr = reassdatagrams; ipr != NULL; ipr = ipr->next) {
    /* Check if the incoming fragment matches the one currently present
       in the reassembly buffer. If so, we proceed with copying the
       fragment into the buffer. */
    if (IP_ADDRESSES_AND_ID_MATCH(&ipr->iphdr, fraghdr)) {
      LWIP_DEBUGF(IP_REASS_DEBUG, ("ip4_reass: matching previous fragment ID=%"X16_F"\n",
        ntohs(IPH_ID(fraghdr))));
      IPFRAG_STATS_INC(ip_frag.cachehit);
      break;
    }
  }

  if (ipr == NULL) {
  /* Enqueue a new datagram into the datagram queue */
    ipr = ip_reass_enqueue_new_datagram(fraghdr, clen);
    /* Bail if unable to enqueue */
    if (ipr == NULL) {
      goto nullreturn;
    }
  } else {
    if (((ntohs(IPH_OFFSET(fraghdr)) & IP_OFFMASK) == 0) &&
      ((ntohs(IPH_OFFSET(&ipr->iphdr)) & IP_OFFMASK) != 0)) {
      /* ipr->iphdr is not the header from the first fragment, but fraghdr is
       * -> copy fraghdr into ipr->iphdr since we want to have the header
       * of the first fragment (for ICMP time exceeded and later, for copying
       * all options, if supported)*/
      SMEMCPY(&ipr->iphdr, fraghdr, IP_HLEN);
    }
  }
  /* Track the current number of pbufs current 'in-flight', in order to limit
  the number of fragments that may be enqueued at any one time */
  ip_reass_pbufcount += clen;

  /* At this point, we have either created a new entry or pointing
   * to an existing one */

  /* check for 'no more fragments', and update queue entry*/
  if ((IPH_OFFSET(fraghdr) & PP_NTOHS(IP_MF)) == 0) {
    ipr->flags |= IP_REASS_FLAG_LASTFRAG;
    ipr->datagram_len = offset + len;
    LWIP_DEBUGF(IP_REASS_DEBUG,
     ("ip4_reass: last fragment seen, total len %"S16_F"\n",
      ipr->datagram_len));
  }
  /* find the right place to insert this pbuf */
  /* @todo: trim pbufs if fragments are overlapping */
  if (ip_reass_chain_frag_into_datagram_and_validate(ipr, p)) {
    struct ip_reassdata *ipr_prev;
    /* the totally last fragment (flag more fragments = 0) was received at least
     * once AND all fragments are received */
    ipr->datagram_len += IP_HLEN;

    /* save the second pbuf before copying the header over the pointer */
    r = ((struct ip_reass_helper*)ipr->p->payload)->next_pbuf;

    /* copy the original ip header back to the first pbuf */
    fraghdr = (struct ip_hdr*)(ipr->p->payload);
    SMEMCPY(fraghdr, &ipr->iphdr, IP_HLEN);
    IPH_LEN_SET(fraghdr, htons(ipr->datagram_len));
    IPH_OFFSET_SET(fraghdr, 0);
    IPH_CHKSUM_SET(fraghdr, 0);
    /* @todo: do we need to set/calculate the correct checksum? */
#if CHECKSUM_GEN_IP
    IF__NETIF_CHECKSUM_ENABLED(ip_current_input_netif(), NETIF_CHECKSUM_GEN_IP) {
      IPH_CHKSUM_SET(fraghdr, inet_chksum(fraghdr, IP_HLEN));
    }
#endif /* CHECKSUM_GEN_IP */

    p = ipr->p;

    /* chain together the pbufs contained within the reass_data list. */
    while (r != NULL) {
      iprh = (struct ip_reass_helper*)r->payload;

      /* hide the ip header for every succeeding fragment */
      pbuf_header(r, -IP_HLEN);
      pbuf_cat(p, r);
      r = iprh->next_pbuf;
    }

    /* find the previous entry in the linked list */
    if (ipr == reassdatagrams) {
      ipr_prev = NULL;
    } else {
      for (ipr_prev = reassdatagrams; ipr_prev != NULL; ipr_prev = ipr_prev->next) {
        if (ipr_prev->next == ipr) {
          break;
        }
      }
    }

    /* release the sources allocate for the fragment queue entry */
    ip_reass_dequeue_datagram(ipr, ipr_prev);

    /* and adjust the number of pbufs currently queued for reassembly. */
    ip_reass_pbufcount -= pbuf_clen(p);

    MIB2_STATS_INC(mib2.ipreasmoks);

    /* Return the pbuf chain */
    return p;
  }
Example #4
0
/**
 * Processes ICMP input packets, called from ip_input().
 *
 * Currently only processes icmp echo requests and sends
 * out the echo response.
 *
 * @param p the icmp echo request packet, p->payload pointing to the icmp header
 * @param inp the netif on which this packet was received
 */
void
icmp_input(struct pbuf *p, struct netif *inp)
{
  u8_t type;
#ifdef LWIP_DEBUG
  u8_t code;
#endif /* LWIP_DEBUG */
  struct icmp_echo_hdr *iecho;
  const struct ip_hdr *iphdr_in;
  struct ip_hdr *iphdr;
  s16_t hlen;
  const ip4_addr_t* src;

  ICMP_STATS_INC(icmp.recv);
  MIB2_STATS_INC(mib2.icmpinmsgs);

  iphdr_in = ip4_current_header();
  hlen = IPH_HL(iphdr_in) * 4;
  if (p->len < sizeof(u16_t)*2) {
    LWIP_DEBUGF(ICMP_DEBUG, ("icmp_input: short ICMP (%"U16_F" bytes) received\n", p->tot_len));
    goto lenerr;
  }

  type = *((u8_t *)p->payload);
#ifdef LWIP_DEBUG
  code = *(((u8_t *)p->payload)+1);
#endif /* LWIP_DEBUG */
  switch (type) {
  case ICMP_ER:
    /* This is OK, echo reply might have been parsed by a raw PCB
       (as obviously, an echo request has been sent, too). */
    break; 
  case ICMP_ECHO:
    src = ip4_current_dest_addr();
    /* multicast destination address? */
    if (ip_addr_ismulticast(ip_current_dest_addr())) {
#if LWIP_MULTICAST_PING
      /* For multicast, use address of receiving interface as source address */
      src = netif_ip4_addr(inp);
#else /* LWIP_MULTICAST_PING */
      LWIP_DEBUGF(ICMP_DEBUG, ("icmp_input: Not echoing to multicast pings\n"));
      goto icmperr;
#endif /* LWIP_MULTICAST_PING */
    }
    /* broadcast destination address? */
    if (ip_addr_isbroadcast(ip_current_dest_addr(), ip_current_netif())) {
#if LWIP_BROADCAST_PING
      /* For broadcast, use address of receiving interface as source address */
      src = netif_ip4_addr(inp);
#else /* LWIP_BROADCAST_PING */
      LWIP_DEBUGF(ICMP_DEBUG, ("icmp_input: Not echoing to broadcast pings\n"));
      goto icmperr;
#endif /* LWIP_BROADCAST_PING */
    }
    LWIP_DEBUGF(ICMP_DEBUG, ("icmp_input: ping\n"));
    if (p->tot_len < sizeof(struct icmp_echo_hdr)) {
      LWIP_DEBUGF(ICMP_DEBUG, ("icmp_input: bad ICMP echo received\n"));
      goto lenerr;
    }
#if CHECKSUM_CHECK_ICMP
    IF__NETIF_CHECKSUM_ENABLED(inp, NETIF_CHECKSUM_CHECK_ICMP) {
      if (inet_chksum_pbuf(p) != 0) {
        LWIP_DEBUGF(ICMP_DEBUG, ("icmp_input: checksum failed for received ICMP echo\n"));
        pbuf_free(p);
        ICMP_STATS_INC(icmp.chkerr);
        MIB2_STATS_INC(mib2.icmpinerrors);
        return;
      }
    }
#endif
#if LWIP_ICMP_ECHO_CHECK_INPUT_PBUF_LEN
    if (pbuf_header(p, (PBUF_IP_HLEN + PBUF_LINK_HLEN + PBUF_LINK_ENCAPSULATION_HLEN))) {
      /* p is not big enough to contain link headers
       * allocate a new one and copy p into it
       */
      struct pbuf *r;
      /* allocate new packet buffer with space for link headers */
      r = pbuf_alloc(PBUF_LINK, p->tot_len + hlen, PBUF_RAM);
      if (r == NULL) {
        LWIP_DEBUGF(ICMP_DEBUG, ("icmp_input: allocating new pbuf failed\n"));
        goto icmperr;
      }
      LWIP_ASSERT("check that first pbuf can hold struct the ICMP header",
                  (r->len >= hlen + sizeof(struct icmp_echo_hdr)));
      /* copy the ip header */
      MEMCPY(r->payload, iphdr_in, hlen);
      iphdr = (struct ip_hdr *)r->payload;
      /* switch r->payload back to icmp header */
      if (pbuf_header(r, -hlen)) {
        LWIP_ASSERT("icmp_input: moving r->payload to icmp header failed\n", 0);
        goto icmperr;
      }
      /* copy the rest of the packet without ip header */
      if (pbuf_copy(r, p) != ERR_OK) {
        LWIP_ASSERT("icmp_input: copying to new pbuf failed\n", 0);
        goto icmperr;
      }
      /* free the original p */
      pbuf_free(p);
      /* we now have an identical copy of p that has room for link headers */
      p = r;
    } else {
      /* restore p->payload to point to icmp header */
      if (pbuf_header(p, -(s16_t)(PBUF_IP_HLEN + PBUF_LINK_HLEN + PBUF_LINK_ENCAPSULATION_HLEN))) {
        LWIP_ASSERT("icmp_input: restoring original p->payload failed\n", 0);
        goto icmperr;
      }
    }
#endif /* LWIP_ICMP_ECHO_CHECK_INPUT_PBUF_LEN */
    /* At this point, all checks are OK. */
    /* We generate an answer by switching the dest and src ip addresses,
     * setting the icmp type to ECHO_RESPONSE and updating the checksum. */
    iecho = (struct icmp_echo_hdr *)p->payload;
    if(pbuf_header(p, hlen)) {
      LWIP_ASSERT("Can't move over header in packet", 0);
    } else {
      err_t ret;
      iphdr = (struct ip_hdr*)p->payload;
      ip4_addr_copy(iphdr->src, *src);
      ip4_addr_copy(iphdr->dest, *ip4_current_src_addr());
      ICMPH_TYPE_SET(iecho, ICMP_ER);
#if CHECKSUM_GEN_ICMP
      IF__NETIF_CHECKSUM_ENABLED(inp, NETIF_CHECKSUM_GEN_ICMP) {
        /* adjust the checksum */
        if (iecho->chksum > PP_HTONS(0xffffU - (ICMP_ECHO << 8))) {
          iecho->chksum += PP_HTONS(ICMP_ECHO << 8) + 1;
        } else {
          iecho->chksum += PP_HTONS(ICMP_ECHO << 8);
        }
      }
#if LWIP_CHECKSUM_CTRL_PER_NETIF
      else {
        iecho->chksum = 0;
      }
#endif /* LWIP_CHECKSUM_CTRL_PER_NETIF */
#else /* CHECKSUM_GEN_ICMP */
      iecho->chksum = 0;
#endif /* CHECKSUM_GEN_ICMP */

      /* Set the correct TTL and recalculate the header checksum. */
      IPH_TTL_SET(iphdr, ICMP_TTL);
      IPH_CHKSUM_SET(iphdr, 0);
#if CHECKSUM_GEN_IP
      IF__NETIF_CHECKSUM_ENABLED(inp, NETIF_CHECKSUM_GEN_IP) {
        IPH_CHKSUM_SET(iphdr, inet_chksum(iphdr, IP_HLEN));
      }
#endif /* CHECKSUM_GEN_IP */

      ICMP_STATS_INC(icmp.xmit);
      /* increase number of messages attempted to send */
      MIB2_STATS_INC(mib2.icmpoutmsgs);
      /* increase number of echo replies attempted to send */
      MIB2_STATS_INC(mib2.icmpoutechoreps);

      /* send an ICMP packet */
      ret = ip4_output_if(p, src, IP_HDRINCL,
                   ICMP_TTL, 0, IP_PROTO_ICMP, inp);
      if (ret != ERR_OK) {
        LWIP_DEBUGF(ICMP_DEBUG, ("icmp_input: ip_output_if returned an error: %c.\n", ret));
      }
    }