Example #1
0
static int __init rp5c01_rtc_probe(struct platform_device *dev)
{
	struct resource *res;
	struct rp5c01_priv *priv;
	struct rtc_device *rtc;
	int error;
	struct nvmem_config nvmem_cfg = {
		.name = "rp5c01_nvram",
		.word_size = 1,
		.stride = 1,
		.size = RP5C01_MODE,
		.reg_read = rp5c01_nvram_read,
		.reg_write = rp5c01_nvram_write,
	};

	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
	if (!res)
		return -ENODEV;

	priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

	priv->regs = devm_ioremap(&dev->dev, res->start, resource_size(res));
	if (!priv->regs)
		return -ENOMEM;

	spin_lock_init(&priv->lock);

	platform_set_drvdata(dev, priv);

	rtc = devm_rtc_allocate_device(&dev->dev);
	if (IS_ERR(rtc))
		return PTR_ERR(rtc);

	rtc->ops = &rp5c01_rtc_ops;
	rtc->nvram_old_abi = true;

	priv->rtc = rtc;

	nvmem_cfg.priv = priv;
	error = rtc_nvmem_register(rtc, &nvmem_cfg);
	if (error)
		return error;

	return rtc_register_device(rtc);
}

static struct platform_driver rp5c01_rtc_driver = {
	.driver	= {
		.name	= "rtc-rp5c01",
	},
};

module_platform_driver_probe(rp5c01_rtc_driver, rp5c01_rtc_probe);

MODULE_AUTHOR("Geert Uytterhoeven <*****@*****.**>");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Ricoh RP5C01 RTC driver");
MODULE_ALIAS("platform:rtc-rp5c01");
Example #2
0
static int
omap_wdt_ioctl(struct inode *inode, struct file *file,
	unsigned int cmd, unsigned long arg)
{
	int new_margin;
	static struct watchdog_info ident = {
		.identity = "OMAP Watchdog",
		.options = WDIOF_SETTIMEOUT,
		.firmware_version = 0,
	};

	switch (cmd) {
	default:
		return -ENOTTY;
	case WDIOC_GETSUPPORT:
		return copy_to_user((struct watchdog_info __user *)arg, &ident,
				sizeof(ident));
	case WDIOC_GETSTATUS:
		return put_user(0, (int __user *)arg);
	case WDIOC_GETBOOTSTATUS:
		if (cpu_is_omap16xx())
			return put_user(omap_readw(ARM_SYSST),
					(int __user *)arg);
		if (cpu_is_omap24xx())
			return put_user(omap_prcm_get_reset_sources(),
					(int __user *)arg);
	case WDIOC_KEEPALIVE:
		omap_wdt_ping();
		return 0;
	case WDIOC_SETTIMEOUT:
		if (get_user(new_margin, (int __user *)arg))
			return -EFAULT;
		omap_wdt_adjust_timeout(new_margin);

		omap_wdt_disable();
		omap_wdt_set_timeout();
		omap_wdt_enable();

		omap_wdt_ping();
		/* Fall */
	case WDIOC_GETTIMEOUT:
		return put_user(timer_margin, (int __user *)arg);
	}
}

static const struct file_operations omap_wdt_fops = {
	.owner = THIS_MODULE,
	.write = omap_wdt_write,
	.ioctl = omap_wdt_ioctl,
	.open = omap_wdt_open,
	.release = omap_wdt_release,
};

static struct miscdevice omap_wdt_miscdev = {
	.minor = WATCHDOG_MINOR,
	.name = "watchdog",
	.fops = &omap_wdt_fops
};

static int __init omap_wdt_probe(struct platform_device *pdev)
{
	struct resource *res, *mem;
	int ret;

	/* reserve static register mappings */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res)
		return -ENOENT;

	mem = request_mem_region(res->start, res->end - res->start + 1,
				 pdev->name);
	if (mem == NULL)
		return -EBUSY;

	platform_set_drvdata(pdev, mem);

	omap_wdt_users = 0;

	if (cpu_is_omap16xx()) {
		armwdt_ck = clk_get(&pdev->dev, "armwdt_ck");
		if (IS_ERR(armwdt_ck)) {
			ret = PTR_ERR(armwdt_ck);
			armwdt_ck = NULL;
			goto fail;
		}
	}

	if (cpu_is_omap24xx()) {
		mpu_wdt_ick = clk_get(&pdev->dev, "mpu_wdt_ick");
		if (IS_ERR(mpu_wdt_ick)) {
			ret = PTR_ERR(mpu_wdt_ick);
			mpu_wdt_ick = NULL;
			goto fail;
		}
		mpu_wdt_fck = clk_get(&pdev->dev, "mpu_wdt_fck");
		if (IS_ERR(mpu_wdt_fck)) {
			ret = PTR_ERR(mpu_wdt_fck);
			mpu_wdt_fck = NULL;
			goto fail;
		}
	}

	omap_wdt_disable();
	omap_wdt_adjust_timeout(timer_margin);

	omap_wdt_miscdev.parent = &pdev->dev;
	ret = misc_register(&omap_wdt_miscdev);
	if (ret)
		goto fail;

	pr_info("OMAP Watchdog Timer: initial timeout %d sec\n", timer_margin);

	/* autogate OCP interface clock */
	omap_writel(0x01, OMAP_WATCHDOG_SYS_CONFIG);
	return 0;

fail:
	if (armwdt_ck)
		clk_put(armwdt_ck);
	if (mpu_wdt_ick)
		clk_put(mpu_wdt_ick);
	if (mpu_wdt_fck)
		clk_put(mpu_wdt_fck);
	release_resource(mem);
	return ret;
}

static void omap_wdt_shutdown(struct platform_device *pdev)
{
	omap_wdt_disable();
}

static int omap_wdt_remove(struct platform_device *pdev)
{
	struct resource *mem = platform_get_drvdata(pdev);
	misc_deregister(&omap_wdt_miscdev);
	release_resource(mem);
	if (armwdt_ck)
		clk_put(armwdt_ck);
	if (mpu_wdt_ick)
		clk_put(mpu_wdt_ick);
	if (mpu_wdt_fck)
		clk_put(mpu_wdt_fck);
	return 0;
}

#ifdef	CONFIG_PM

/* REVISIT ... not clear this is the best way to handle system suspend; and
 * it's very inappropriate for selective device suspend (e.g. suspending this
 * through sysfs rather than by stopping the watchdog daemon).  Also, this
 * may not play well enough with NOWAYOUT...
 */

static int omap_wdt_suspend(struct platform_device *pdev, pm_message_t state)
{
	if (omap_wdt_users)
		omap_wdt_disable();
	return 0;
}

static int omap_wdt_resume(struct platform_device *pdev)
{
	if (omap_wdt_users) {
		omap_wdt_enable();
		omap_wdt_ping();
	}
	return 0;
}

#else
#define	omap_wdt_suspend	NULL
#define	omap_wdt_resume		NULL
#endif

static struct platform_driver omap_wdt_driver = {
	.probe		= omap_wdt_probe,
	.remove		= omap_wdt_remove,
	.shutdown	= omap_wdt_shutdown,
	.suspend	= omap_wdt_suspend,
	.resume		= omap_wdt_resume,
	.driver		= {
		.owner	= THIS_MODULE,
		.name	= "omap_wdt",
	},
};

static int __init omap_wdt_init(void)
{
	return platform_driver_register(&omap_wdt_driver);
}

static void __exit omap_wdt_exit(void)
{
	platform_driver_unregister(&omap_wdt_driver);
}

module_init(omap_wdt_init);
module_exit(omap_wdt_exit);

MODULE_AUTHOR("George G. Davis");
MODULE_LICENSE("GPL");
MODULE_ALIAS_MISCDEV(WATCHDOG_MINOR);
MODULE_ALIAS("platform:omap_wdt");
/*
 * keypad controller should be initialized in the following sequence
 * only, otherwise it might get into FSM stuck state.
 *
 * - Initialize keypad control parameters, like no. of rows, columns,
 *   timing values etc.,
 * - configure rows and column gpios pull up/down.
 * - set irq edge type.
 * - enable the keypad controller.
 */
static int __devinit pmic8xxx_kp_probe(struct platform_device *pdev)
{
	const struct pm8xxx_keypad_platform_data *pdata =
					dev_get_platdata(&pdev->dev);
	const struct matrix_keymap_data *keymap_data;
	struct pmic8xxx_kp *kp;
	int rc;
	u8 ctrl_val;

	struct pm_gpio kypd_drv = {
		.direction	= PM_GPIO_DIR_OUT,
		.output_buffer	= PM_GPIO_OUT_BUF_OPEN_DRAIN,
		.output_value	= 0,
		.pull		= PM_GPIO_PULL_NO,
		.vin_sel	= PM_GPIO_VIN_S4,
		.out_strength	= PM_GPIO_STRENGTH_LOW,
		.function	= PM_GPIO_FUNC_1,
		.inv_int_pol	= 1,
	};

	struct pm_gpio kypd_sns = {
		.direction	= PM_GPIO_DIR_IN,
		.pull		= PM_GPIO_PULL_UP_31P5,
		.vin_sel	= PM_GPIO_VIN_S4,
		.out_strength	= PM_GPIO_STRENGTH_NO,
		.function	= PM_GPIO_FUNC_NORMAL,
		.inv_int_pol	= 1,
	};


	if (!pdata || !pdata->num_cols || !pdata->num_rows ||
		pdata->num_cols > PM8XXX_MAX_COLS ||
		pdata->num_rows > PM8XXX_MAX_ROWS ||
		pdata->num_cols < PM8XXX_MIN_COLS) {
		dev_err(&pdev->dev, "invalid platform data\n");
		return -EINVAL;
	}

	if (!pdata->scan_delay_ms ||
		pdata->scan_delay_ms > MAX_SCAN_DELAY ||
		pdata->scan_delay_ms < MIN_SCAN_DELAY ||
		!is_power_of_2(pdata->scan_delay_ms)) {
		dev_err(&pdev->dev, "invalid keypad scan time supplied\n");
		return -EINVAL;
	}

	if (!pdata->row_hold_ns ||
		pdata->row_hold_ns > MAX_ROW_HOLD_DELAY ||
		pdata->row_hold_ns < MIN_ROW_HOLD_DELAY ||
		((pdata->row_hold_ns % MIN_ROW_HOLD_DELAY) != 0)) {
		dev_err(&pdev->dev, "invalid keypad row hold time supplied\n");
		return -EINVAL;
	}

	if (!pdata->debounce_ms ||
		((pdata->debounce_ms % 5) != 0) ||
		pdata->debounce_ms > MAX_DEBOUNCE_TIME ||
		pdata->debounce_ms < MIN_DEBOUNCE_TIME) {
		dev_err(&pdev->dev, "invalid debounce time supplied\n");
		return -EINVAL;
	}

	keymap_data = pdata->keymap_data;
	if (!keymap_data) {
		dev_err(&pdev->dev, "no keymap data supplied\n");
		return -EINVAL;
	}

	kp = kzalloc(sizeof(*kp), GFP_KERNEL);
	if (!kp)
		return -ENOMEM;

	platform_set_drvdata(pdev, kp);

	kp->pdata	= pdata;
	kp->dev		= &pdev->dev;

	kp->input = input_allocate_device();
	if (!kp->input) {
		dev_err(&pdev->dev, "unable to allocate input device\n");
		rc = -ENOMEM;
		goto err_alloc_device;
	}

	kp->key_sense_irq = platform_get_irq(pdev, 0);
	if (kp->key_sense_irq < 0) {
		dev_err(&pdev->dev, "unable to get keypad sense irq\n");
		rc = -ENXIO;
		goto err_get_irq;
	}

	kp->key_stuck_irq = platform_get_irq(pdev, 1);
	if (kp->key_stuck_irq < 0) {
		dev_err(&pdev->dev, "unable to get keypad stuck irq\n");
		rc = -ENXIO;
		goto err_get_irq;
	}

	kp->input->name = pdata->input_name ? : "PMIC8XXX keypad";
	kp->input->phys = pdata->input_phys_device ? : "pmic8xxx_keypad/input0";

	kp->input->dev.parent	= &pdev->dev;

	kp->input->id.bustype	= BUS_I2C;
	kp->input->id.version	= 0x0001;
	kp->input->id.product	= 0x0001;
	kp->input->id.vendor	= 0x0001;

	kp->input->evbit[0]	= BIT_MASK(EV_KEY);

	if (pdata->rep)
		__set_bit(EV_REP, kp->input->evbit);

	kp->input->keycode	= kp->keycodes;
	kp->input->keycodemax	= PM8XXX_MATRIX_MAX_SIZE;
	kp->input->keycodesize	= sizeof(kp->keycodes);
	kp->input->open		= pmic8xxx_kp_open;
	kp->input->close	= pmic8xxx_kp_close;

	matrix_keypad_build_keymap(keymap_data, PM8XXX_ROW_SHIFT,
					kp->input->keycode, kp->input->keybit);

	input_set_capability(kp->input, EV_MSC, MSC_SCAN);
	input_set_drvdata(kp->input, kp);

	/* initialize keypad state */
	memset(kp->keystate, 0xff, sizeof(kp->keystate));
	memset(kp->stuckstate, 0xff, sizeof(kp->stuckstate));

	rc = pmic8xxx_kpd_init(kp);
	if (rc < 0) {
		dev_err(&pdev->dev, "unable to initialize keypad controller\n");
		goto err_get_irq;
	}

	rc = pmic8xxx_kp_config_gpio(pdata->cols_gpio_start,
					pdata->num_cols, kp, &kypd_sns);
	if (rc < 0) {
		dev_err(&pdev->dev, "unable to configure keypad sense lines\n");
		goto err_gpio_config;
	}

	rc = pmic8xxx_kp_config_gpio(pdata->rows_gpio_start,
					pdata->num_rows, kp, &kypd_drv);
	if (rc < 0) {
		dev_err(&pdev->dev, "unable to configure keypad drive lines\n");
		goto err_gpio_config;
	}

	rc = request_any_context_irq(kp->key_sense_irq, pmic8xxx_kp_irq,
				 IRQF_TRIGGER_RISING, "pmic-keypad", kp);
	if (rc < 0) {
		dev_err(&pdev->dev, "failed to request keypad sense irq\n");
		goto err_get_irq;
	}

	rc = request_any_context_irq(kp->key_stuck_irq, pmic8xxx_kp_stuck_irq,
				 IRQF_TRIGGER_RISING, "pmic-keypad-stuck", kp);
	if (rc < 0) {
		dev_err(&pdev->dev, "failed to request keypad stuck irq\n");
		goto err_req_stuck_irq;
	}

	rc = pmic8xxx_kp_read_u8(kp, &ctrl_val, KEYP_CTRL);
	if (rc < 0) {
		dev_err(&pdev->dev, "failed to read KEYP_CTRL register\n");
		goto err_pmic_reg_read;
	}

	kp->ctrl_reg = ctrl_val;

	rc = input_register_device(kp->input);
	if (rc < 0) {
		dev_err(&pdev->dev, "unable to register keypad input device\n");
		goto err_pmic_reg_read;
	}

	device_init_wakeup(&pdev->dev, pdata->wakeup);
#if defined(CONFIG_MACH_KS02)
	/*sysfs*/
	kp->sec_keypad = device_create(sec_class, NULL, 0, kp, "sec_keypad");
	if (IS_ERR(kp->sec_keypad))
		dev_err(&pdev->dev, "Failed to create sec_key device\n");

	rc = sysfs_create_group(&kp->sec_keypad->kobj, &key_attr_group);
	if (rc) {
		dev_err(&pdev->dev, "Failed to create the test sysfs: %d\n",
			rc);
	}
#endif
	return 0;

err_pmic_reg_read:
	free_irq(kp->key_stuck_irq, kp);
err_req_stuck_irq:
	free_irq(kp->key_sense_irq, kp);
err_gpio_config:
err_get_irq:
	input_free_device(kp->input);
err_alloc_device:
	platform_set_drvdata(pdev, NULL);
	kfree(kp);
	return rc;
}

static int __devexit pmic8xxx_kp_remove(struct platform_device *pdev)
{
	struct pmic8xxx_kp *kp = platform_get_drvdata(pdev);

	device_init_wakeup(&pdev->dev, 0);
	free_irq(kp->key_stuck_irq, kp);
	free_irq(kp->key_sense_irq, kp);
	input_unregister_device(kp->input);
	kfree(kp);

	platform_set_drvdata(pdev, NULL);
	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int pmic8xxx_kp_suspend(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct pmic8xxx_kp *kp = platform_get_drvdata(pdev);
	struct input_dev *input_dev = kp->input;

	if (device_may_wakeup(dev)) {
		enable_irq_wake(kp->key_sense_irq);
	} else {
		mutex_lock(&input_dev->mutex);

		if (input_dev->users)
			pmic8xxx_kp_disable(kp);

		mutex_unlock(&input_dev->mutex);
	}

	key_suspend = 1;

	return 0;
}

static int pmic8xxx_kp_resume(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct pmic8xxx_kp *kp = platform_get_drvdata(pdev);
	struct input_dev *input_dev = kp->input;

	if (device_may_wakeup(dev)) {
		disable_irq_wake(kp->key_sense_irq);
	} else {
		mutex_lock(&input_dev->mutex);

		if (input_dev->users)
			pmic8xxx_kp_enable(kp);

		mutex_unlock(&input_dev->mutex);
	}

	key_suspend = 0;

	return 0;
}
#endif

static SIMPLE_DEV_PM_OPS(pm8xxx_kp_pm_ops,
			 pmic8xxx_kp_suspend, pmic8xxx_kp_resume);

static struct platform_driver pmic8xxx_kp_driver = {
	.probe		= pmic8xxx_kp_probe,
	.remove		= __devexit_p(pmic8xxx_kp_remove),
	.driver		= {
		.name = PM8XXX_KEYPAD_DEV_NAME,
		.owner = THIS_MODULE,
		.pm = &pm8xxx_kp_pm_ops,
	},
};
module_platform_driver(pmic8xxx_kp_driver);

MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("PMIC8XXX keypad driver");
MODULE_VERSION("1.0");
MODULE_ALIAS("platform:pmic8xxx_keypad");
MODULE_AUTHOR("Trilok Soni <*****@*****.**>");
Example #4
0
static int axp20x_regulator_probe(struct platform_device *pdev)
{
	struct regulator_dev *rdev;
	struct axp20x_dev *axp20x = dev_get_drvdata(pdev->dev.parent);
	const struct regulator_desc *regulators;
	struct regulator_config config = {
		.dev = pdev->dev.parent,
		.regmap = axp20x->regmap,
		.driver_data = axp20x,
	};
	int ret, i, nregulators;
	u32 workmode;

	switch (axp20x->variant) {
	case AXP202_ID:
	case AXP209_ID:
		regulators = axp20x_regulators;
		nregulators = AXP20X_REG_ID_MAX;
		break;
	case AXP221_ID:
		regulators = axp22x_regulators;
		nregulators = AXP22X_REG_ID_MAX;
		break;
	default:
		dev_err(&pdev->dev, "Unsupported AXP variant: %ld\n",
			axp20x->variant);
		return -EINVAL;
	}

	/* This only sets the dcdc freq. Ignore any errors */
	axp20x_regulator_parse_dt(pdev);

	for (i = 0; i < nregulators; i++) {
		rdev = devm_regulator_register(&pdev->dev, &regulators[i],
					       &config);
		if (IS_ERR(rdev)) {
			dev_err(&pdev->dev, "Failed to register %s\n",
				regulators[i].name);

			return PTR_ERR(rdev);
		}

		ret = of_property_read_u32(rdev->dev.of_node,
					   "x-powers,dcdc-workmode",
					   &workmode);
		if (!ret) {
			if (axp20x_set_dcdc_workmode(rdev, i, workmode))
				dev_err(&pdev->dev, "Failed to set workmode on %s\n",
					rdev->desc->name);
		}
	}

	return 0;
}

static struct platform_driver axp20x_regulator_driver = {
	.probe	= axp20x_regulator_probe,
	.driver	= {
		.name		= "axp20x-regulator",
	},
};

module_platform_driver(axp20x_regulator_driver);

MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Carlo Caione <*****@*****.**>");
MODULE_DESCRIPTION("Regulator Driver for AXP20X PMIC");
MODULE_ALIAS("platform:axp20x-regulator");
static long mtx1_wdt_ioctl(struct file *file, unsigned int cmd,
							unsigned long arg)
{
	void __user *argp = (void __user *)arg;
	int __user *p = (int __user *)argp;
	unsigned int value;
	static const struct watchdog_info ident = {
		.options = WDIOF_CARDRESET,
		.identity = "MTX-1 WDT",
	};

	switch (cmd) {
	case WDIOC_GETSUPPORT:
		if (copy_to_user(argp, &ident, sizeof(ident)))
			return -EFAULT;
		break;
	case WDIOC_GETSTATUS:
	case WDIOC_GETBOOTSTATUS:
		put_user(0, p);
		break;
	case WDIOC_SETOPTIONS:
		if (get_user(value, p))
			return -EFAULT;
		if (value & WDIOS_ENABLECARD)
			mtx1_wdt_start();
		else if (value & WDIOS_DISABLECARD)
			mtx1_wdt_stop();
		else
			return -EINVAL;
		return 0;
	case WDIOC_KEEPALIVE:
		mtx1_wdt_reset();
		break;
	default:
		return -ENOTTY;
	}
	return 0;
}


static ssize_t mtx1_wdt_write(struct file *file, const char *buf,
						size_t count, loff_t *ppos)
{
	if (!count)
		return -EIO;
	mtx1_wdt_reset();
	return count;
}

static const struct file_operations mtx1_wdt_fops = {
	.owner 		= THIS_MODULE,
	.llseek		= no_llseek,
	.unlocked_ioctl	= mtx1_wdt_ioctl,
	.open 		= mtx1_wdt_open,
	.write 		= mtx1_wdt_write,
	.release 	= mtx1_wdt_release,
};


static struct miscdevice mtx1_wdt_misc = {
	.minor 	= WATCHDOG_MINOR,
	.name 	= "watchdog",
	.fops 	= &mtx1_wdt_fops,
};


static int mtx1_wdt_probe(struct platform_device *pdev)
{
	int ret;

	mtx1_wdt_device.gpio = pdev->resource[0].start;

	spin_lock_init(&mtx1_wdt_device.lock);
	init_completion(&mtx1_wdt_device.stop);
	mtx1_wdt_device.queue = 0;
	clear_bit(0, &mtx1_wdt_device.inuse);
	setup_timer(&mtx1_wdt_device.timer, mtx1_wdt_trigger, 0L);
	mtx1_wdt_device.default_ticks = ticks;

	ret = misc_register(&mtx1_wdt_misc);
	if (ret < 0) {
		printk(KERN_ERR " mtx-1_wdt : failed to register\n");
		return ret;
	}
	mtx1_wdt_start();
	printk(KERN_INFO "MTX-1 Watchdog driver\n");
	return 0;
}

static int mtx1_wdt_remove(struct platform_device *pdev)
{
	/* FIXME: do we need to lock this test ? */
	if (mtx1_wdt_device.queue) {
		mtx1_wdt_device.queue = 0;
		wait_for_completion(&mtx1_wdt_device.stop);
	}
	misc_deregister(&mtx1_wdt_misc);
	return 0;
}

static struct platform_driver mtx1_wdt = {
	.probe = mtx1_wdt_probe,
	.remove = mtx1_wdt_remove,
	.driver.name = "mtx1-wdt",
	.driver.owner = THIS_MODULE,
};

static int __init mtx1_wdt_init(void)
{
	return platform_driver_register(&mtx1_wdt);
}

static void __exit mtx1_wdt_exit(void)
{
	platform_driver_unregister(&mtx1_wdt);
}

module_init(mtx1_wdt_init);
module_exit(mtx1_wdt_exit);

MODULE_AUTHOR("Michael Stickel, Florian Fainelli");
MODULE_DESCRIPTION("Driver for the MTX-1 watchdog");
MODULE_LICENSE("GPL");
MODULE_ALIAS_MISCDEV(WATCHDOG_MINOR);
MODULE_ALIAS("platform:mtx1-wdt");
Example #6
0
static int gpio_keys_suspend(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
#ifndef CONFIG_MACH_Q1_REV02
	struct gpio_keys_drvdata *ddata = platform_get_drvdata(pdev);
#endif
	struct gpio_keys_platform_data *pdata = pdev->dev.platform_data;
	int i;

	if (device_may_wakeup(&pdev->dev)) {
		for (i = 0; i < pdata->nbuttons; i++) {
			struct gpio_keys_button *button = &pdata->buttons[i];
#ifdef CONFIG_MACH_Q1_REV02
			if (button->wakeup) {
#else
			struct gpio_button_data *bdata = &ddata->data[i];
			if (button->wakeup && !bdata->disabled) {
#endif
				int irq = gpio_to_irq(button->gpio);
				enable_irq_wake(irq);
			}
		}
	}

	return 0;
}

static int gpio_keys_resume(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct gpio_keys_drvdata *ddata = platform_get_drvdata(pdev);
	struct gpio_keys_platform_data *pdata = pdev->dev.platform_data;
	int i;

	for (i = 0; i < pdata->nbuttons; i++) {
		struct gpio_keys_button *button = &pdata->buttons[i];
#ifdef CONFIG_MACH_Q1_REV02
		if (button->wakeup && device_may_wakeup(&pdev->dev)) {
#else
		struct gpio_button_data *bdata = &ddata->data[i];
		if (button->wakeup && !bdata->disabled
		    && device_may_wakeup(&pdev->dev)) {
#endif
			int irq = gpio_to_irq(button->gpio);
			disable_irq_wake(irq);
		}

		gpio_keys_report_event(&ddata->data[i]);
	}
	input_sync(ddata->input);

	return 0;
}

static const struct dev_pm_ops gpio_keys_pm_ops = {
	.suspend	= gpio_keys_suspend,
	.resume		= gpio_keys_resume,
};
#endif

static struct platform_driver gpio_keys_device_driver = {
	.probe		= gpio_keys_probe,
	.remove		= __devexit_p(gpio_keys_remove),
	.driver		= {
		.name	= "sec_key",
		.owner	= THIS_MODULE,
#ifdef CONFIG_PM
		.pm	= &gpio_keys_pm_ops,
#endif
	}
};

static int __init gpio_keys_init(void)
{
	return platform_driver_register(&gpio_keys_device_driver);
}

static void __exit gpio_keys_exit(void)
{
	platform_driver_unregister(&gpio_keys_device_driver);
}

module_init(gpio_keys_init);
module_exit(gpio_keys_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Phil Blundell <*****@*****.**>");
MODULE_DESCRIPTION("Keyboard driver for CPU GPIOs");
MODULE_ALIAS("platform:gpio-keys");
Example #7
0
static void scsifront_free(struct vscsifrnt_info *info)
{
	struct Scsi_Host *host = info->host;

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,14)
	if (host->shost_state != SHOST_DEL) {
#else
	if (!test_bit(SHOST_DEL, &host->shost_state)) {
#endif
		scsi_remove_host(info->host);
	}

	if (info->ring_ref != GRANT_INVALID_REF) {
		gnttab_end_foreign_access(info->ring_ref,
					(unsigned long)info->ring.sring);
		info->ring_ref = GRANT_INVALID_REF;
		info->ring.sring = NULL;
	}

	if (info->irq)
		unbind_from_irqhandler(info->irq, info);
	info->irq = 0;

	scsi_host_put(info->host);
}


static int scsifront_alloc_ring(struct vscsifrnt_info *info)
{
	struct xenbus_device *dev = info->dev;
	struct vscsiif_sring *sring;
	int err = -ENOMEM;


	info->ring_ref = GRANT_INVALID_REF;

	/***** Frontend to Backend ring start *****/
	sring = (struct vscsiif_sring *) __get_free_page(GFP_KERNEL);
	if (!sring) {
		xenbus_dev_fatal(dev, err, "fail to allocate shared ring (Front to Back)");
		return err;
	}
	SHARED_RING_INIT(sring);
	FRONT_RING_INIT(&info->ring, sring, PAGE_SIZE);

	err = xenbus_grant_ring(dev, virt_to_mfn(sring));
	if (err < 0) {
		free_page((unsigned long) sring);
		info->ring.sring = NULL;
		xenbus_dev_fatal(dev, err, "fail to grant shared ring (Front to Back)");
		goto free_sring;
	}
	info->ring_ref = err;

	err = bind_listening_port_to_irqhandler(
			dev->otherend_id, scsifront_intr,
			SA_SAMPLE_RANDOM, "scsifront", info);

	if (err <= 0) {
		xenbus_dev_fatal(dev, err, "bind_listening_port_to_irqhandler");
		goto free_sring;
	}
	info->irq = err;

	return 0;

/* free resource */
free_sring:
	scsifront_free(info);

	return err;
}


static int scsifront_init_ring(struct vscsifrnt_info *info)
{
	struct xenbus_device *dev = info->dev;
	struct xenbus_transaction xbt;
	int err;

	DPRINTK("%s\n",__FUNCTION__);

	err = scsifront_alloc_ring(info);
	if (err)
		return err;
	DPRINTK("%u %u\n", info->ring_ref, info->evtchn);

again:
	err = xenbus_transaction_start(&xbt);
	if (err) {
		xenbus_dev_fatal(dev, err, "starting transaction");
	}

	err = xenbus_printf(xbt, dev->nodename, "ring-ref", "%u",
				info->ring_ref);
	if (err) {
		xenbus_dev_fatal(dev, err, "%s", "writing ring-ref");
		goto fail;
	}

	err = xenbus_printf(xbt, dev->nodename, "event-channel", "%u",
				irq_to_evtchn_port(info->irq));

	if (err) {
		xenbus_dev_fatal(dev, err, "%s", "writing event-channel");
		goto fail;
	}

	err = xenbus_transaction_end(xbt, 0);
	if (err) {
		if (err == -EAGAIN)
			goto again;
		xenbus_dev_fatal(dev, err, "completing transaction");
		goto free_sring;
	}

	return 0;

fail:
	xenbus_transaction_end(xbt, 1);
free_sring:
	/* free resource */
	scsifront_free(info);
	
	return err;
}


static int scsifront_probe(struct xenbus_device *dev,
				const struct xenbus_device_id *id)
{
	struct vscsifrnt_info *info;
	struct Scsi_Host *host;
	int i, err = -ENOMEM;
	char name[DEFAULT_TASK_COMM_LEN];

	host = scsi_host_alloc(&scsifront_sht, sizeof(*info));
	if (!host) {
		xenbus_dev_fatal(dev, err, "fail to allocate scsi host");
		return err;
	}
	info = (struct vscsifrnt_info *) host->hostdata;
	info->host = host;


	dev->dev.driver_data = info;
	info->dev  = dev;

	for (i = 0; i < VSCSIIF_MAX_REQS; i++) {
		info->shadow[i].next_free = i + 1;
		init_waitqueue_head(&(info->shadow[i].wq_reset));
		info->shadow[i].wait_reset = 0;
	}
	info->shadow[VSCSIIF_MAX_REQS - 1].next_free = 0x0fff;

	err = scsifront_init_ring(info);
	if (err) {
		scsi_host_put(host);
		return err;
	}

	init_waitqueue_head(&info->wq);
	spin_lock_init(&info->io_lock);
	spin_lock_init(&info->shadow_lock);

	snprintf(name, DEFAULT_TASK_COMM_LEN, "vscsiif.%d", info->host->host_no);

	info->kthread = kthread_run(scsifront_schedule, info, name);
	if (IS_ERR(info->kthread)) {
		err = PTR_ERR(info->kthread);
		info->kthread = NULL;
		printk(KERN_ERR "scsifront: kthread start err %d\n", err);
		goto free_sring;
	}

	host->max_id      = VSCSIIF_MAX_TARGET;
	host->max_channel = 0;
	host->max_lun     = VSCSIIF_MAX_LUN;
	host->max_sectors = (VSCSIIF_SG_TABLESIZE - 1) * PAGE_SIZE / 512;

	err = scsi_add_host(host, &dev->dev);
	if (err) {
		printk(KERN_ERR "scsifront: fail to add scsi host %d\n", err);
		goto free_sring;
	}

	xenbus_switch_state(dev, XenbusStateInitialised);

	return 0;

free_sring:
	/* free resource */
	scsifront_free(info);
	return err;
}

static int scsifront_remove(struct xenbus_device *dev)
{
	struct vscsifrnt_info *info = dev->dev.driver_data;

	DPRINTK("%s: %s removed\n",__FUNCTION__ ,dev->nodename);

	if (info->kthread) {
		kthread_stop(info->kthread);
		info->kthread = NULL;
	}

	scsifront_free(info);
	
	return 0;
}


static int scsifront_disconnect(struct vscsifrnt_info *info)
{
	struct xenbus_device *dev = info->dev;
	struct Scsi_Host *host = info->host;

	DPRINTK("%s: %s disconnect\n",__FUNCTION__ ,dev->nodename);

	/* 
	  When this function is executed,  all devices of 
	  Frontend have been deleted. 
	  Therefore, it need not block I/O before remove_host.
	*/

	scsi_remove_host(host);
	xenbus_frontend_closed(dev);

	return 0;
}

#define VSCSIFRONT_OP_ADD_LUN	1
#define VSCSIFRONT_OP_DEL_LUN	2

static void scsifront_do_lun_hotplug(struct vscsifrnt_info *info, int op)
{
	struct xenbus_device *dev = info->dev;
	int i, err = 0;
	char str[64], state_str[64];
	char **dir;
	unsigned int dir_n = 0;
	unsigned int device_state;
	unsigned int hst, chn, tgt, lun;
	struct scsi_device *sdev;

	dir = xenbus_directory(XBT_NIL, dev->otherend, "vscsi-devs", &dir_n);
	if (IS_ERR(dir))
		return;

	for (i = 0; i < dir_n; i++) {
		/* read status */
		snprintf(str, sizeof(str), "vscsi-devs/%s/state", dir[i]);
		err = xenbus_scanf(XBT_NIL, dev->otherend, str, "%u",
			&device_state);
		if (XENBUS_EXIST_ERR(err))
			continue;
		
		/* virtual SCSI device */
		snprintf(str, sizeof(str), "vscsi-devs/%s/v-dev", dir[i]);
		err = xenbus_scanf(XBT_NIL, dev->otherend, str,
			"%u:%u:%u:%u", &hst, &chn, &tgt, &lun);
		if (XENBUS_EXIST_ERR(err))
			continue;

		/* front device state path */
		snprintf(state_str, sizeof(state_str), "vscsi-devs/%s/state", dir[i]);

		switch (op) {
		case VSCSIFRONT_OP_ADD_LUN:
			if (device_state == XenbusStateInitialised) {
				sdev = scsi_device_lookup(info->host, chn, tgt, lun);
				if (sdev) {
					printk(KERN_ERR "scsifront: Device already in use.\n");
					scsi_device_put(sdev);
					xenbus_printf(XBT_NIL, dev->nodename,
						state_str, "%d", XenbusStateClosed);
				} else {
					scsi_add_device(info->host, chn, tgt, lun);
					xenbus_printf(XBT_NIL, dev->nodename,
						state_str, "%d", XenbusStateConnected);
				}
			}
			break;
		case VSCSIFRONT_OP_DEL_LUN:
			if (device_state == XenbusStateClosing) {
				sdev = scsi_device_lookup(info->host, chn, tgt, lun);
				if (sdev) {
					scsi_remove_device(sdev);
					scsi_device_put(sdev);
					xenbus_printf(XBT_NIL, dev->nodename,
						state_str, "%d", XenbusStateClosed);
				}
			}
			break;
		default:
			break;
		}
	}
	
	kfree(dir);
	return;
}




static void scsifront_backend_changed(struct xenbus_device *dev,
				enum xenbus_state backend_state)
{
	struct vscsifrnt_info *info = dev->dev.driver_data;

	DPRINTK("%p %u %u\n", dev, dev->state, backend_state);

	switch (backend_state) {
	case XenbusStateUnknown:
	case XenbusStateInitialising:
	case XenbusStateInitWait:
	case XenbusStateClosed:
		break;

	case XenbusStateInitialised:
		break;

	case XenbusStateConnected:
		if (xenbus_read_driver_state(dev->nodename) ==
			XenbusStateInitialised) {
			scsifront_do_lun_hotplug(info, VSCSIFRONT_OP_ADD_LUN);
		}
		
		if (dev->state == XenbusStateConnected)
			break;
			
		xenbus_switch_state(dev, XenbusStateConnected);
		break;

	case XenbusStateClosing:
		scsifront_disconnect(info);
		break;

	case XenbusStateReconfiguring:
		scsifront_do_lun_hotplug(info, VSCSIFRONT_OP_DEL_LUN);
		xenbus_switch_state(dev, XenbusStateReconfiguring);
		break;

	case XenbusStateReconfigured:
		scsifront_do_lun_hotplug(info, VSCSIFRONT_OP_ADD_LUN);
		xenbus_switch_state(dev, XenbusStateConnected);
		break;
	}
}


static struct xenbus_device_id scsifront_ids[] = {
	{ "vscsi" },
	{ "" }
};
MODULE_ALIAS("xen:vscsi");

static struct xenbus_driver scsifront_driver = {
	.name			= "vscsi",
	.owner			= THIS_MODULE,
	.ids			= scsifront_ids,
	.probe			= scsifront_probe,
	.remove			= scsifront_remove,
/* 	.resume			= scsifront_resume, */
	.otherend_changed	= scsifront_backend_changed,
};

int scsifront_xenbus_init(void)
{
	return xenbus_register_frontend(&scsifront_driver);
}

void scsifront_xenbus_unregister(void)
{
	xenbus_unregister_driver(&scsifront_driver);
}
Example #8
0
File: ixp4xx.c Project: 3null/linux
static int ixp4xx_flash_probe(struct platform_device *dev)
{
	struct flash_platform_data *plat = dev_get_platdata(&dev->dev);
	struct ixp4xx_flash_info *info;
	struct mtd_part_parser_data ppdata = {
		.origin = dev->resource->start,
	};
	int err = -1;

	if (!plat)
		return -ENODEV;

	if (plat->init) {
		err = plat->init();
		if (err)
			return err;
	}

	info = devm_kzalloc(&dev->dev, sizeof(struct ixp4xx_flash_info),
			    GFP_KERNEL);
	if(!info) {
		err = -ENOMEM;
		goto Error;
	}

	platform_set_drvdata(dev, info);

	/*
	 * Tell the MTD layer we're not 1:1 mapped so that it does
	 * not attempt to do a direct access on us.
	 */
	info->map.phys = NO_XIP;
	info->map.size = resource_size(dev->resource);

	/*
	 * We only support 16-bit accesses for now. If and when
	 * any board use 8-bit access, we'll fixup the driver to
	 * handle that.
	 */
	info->map.bankwidth = 2;
	info->map.name = dev_name(&dev->dev);
	info->map.read = ixp4xx_read16;
	info->map.write = ixp4xx_probe_write16;
	info->map.copy_from = ixp4xx_copy_from;

	info->map.virt = devm_ioremap_resource(&dev->dev, dev->resource);
	if (IS_ERR(info->map.virt)) {
		err = PTR_ERR(info->map.virt);
		goto Error;
	}

	info->mtd = do_map_probe(plat->map_name, &info->map);
	if (!info->mtd) {
		printk(KERN_ERR "IXP4XXFlash: map_probe failed\n");
		err = -ENXIO;
		goto Error;
	}
	info->mtd->owner = THIS_MODULE;

	/* Use the fast version */
	info->map.write = ixp4xx_write16;

	err = mtd_device_parse_register(info->mtd, probes, &ppdata,
			plat->parts, plat->nr_parts);
	if (err) {
		printk(KERN_ERR "Could not parse partitions\n");
		goto Error;
	}

	return 0;

Error:
	ixp4xx_flash_remove(dev);
	return err;
}

static struct platform_driver ixp4xx_flash_driver = {
	.probe		= ixp4xx_flash_probe,
	.remove		= ixp4xx_flash_remove,
	.driver		= {
		.name	= "IXP4XX-Flash",
		.owner	= THIS_MODULE,
	},
};

module_platform_driver(ixp4xx_flash_driver);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("MTD map driver for Intel IXP4xx systems");
MODULE_AUTHOR("Deepak Saxena");
MODULE_ALIAS("platform:IXP4XX-Flash");
Example #9
0
static int axp20x_regulator_probe(struct platform_device *pdev)
{
	struct regulator_dev *rdev;
	struct axp20x_dev *axp20x = dev_get_drvdata(pdev->dev.parent);
	const struct regulator_desc *regulators;
	struct regulator_config config = {
		.dev = pdev->dev.parent,
		.regmap = axp20x->regmap,
		.driver_data = axp20x,
	};
	int ret, i, nregulators;
	u32 workmode;
	const char *dcdc1_name = axp22x_regulators[AXP22X_DCDC1].name;
	const char *dcdc5_name = axp22x_regulators[AXP22X_DCDC5].name;
	bool drivevbus = false;

	switch (axp20x->variant) {
	case AXP202_ID:
	case AXP209_ID:
		regulators = axp20x_regulators;
		nregulators = AXP20X_REG_ID_MAX;
		break;
	case AXP221_ID:
	case AXP223_ID:
		regulators = axp22x_regulators;
		nregulators = AXP22X_REG_ID_MAX;
		drivevbus = of_property_read_bool(pdev->dev.parent->of_node,
						  "x-powers,drive-vbus-en");
		break;
	case AXP809_ID:
		regulators = axp809_regulators;
		nregulators = AXP809_REG_ID_MAX;
		break;
	default:
		dev_err(&pdev->dev, "Unsupported AXP variant: %ld\n",
			axp20x->variant);
		return -EINVAL;
	}

	/* This only sets the dcdc freq. Ignore any errors */
	axp20x_regulator_parse_dt(pdev);

	for (i = 0; i < nregulators; i++) {
		const struct regulator_desc *desc = &regulators[i];
		struct regulator_desc *new_desc;

		/*
		 * Regulators DC1SW and DC5LDO are connected internally,
		 * so we have to handle their supply names separately.
		 *
		 * We always register the regulators in proper sequence,
		 * so the supply names are correctly read. See the last
		 * part of this loop to see where we save the DT defined
		 * name.
		 */
		if ((regulators == axp22x_regulators && i == AXP22X_DC1SW) ||
		    (regulators == axp809_regulators && i == AXP809_DC1SW)) {
			new_desc = devm_kzalloc(&pdev->dev, sizeof(*desc),
						GFP_KERNEL);
			*new_desc = regulators[i];
			new_desc->supply_name = dcdc1_name;
			desc = new_desc;
		}

		if ((regulators == axp22x_regulators && i == AXP22X_DC5LDO) ||
		    (regulators == axp809_regulators && i == AXP809_DC5LDO)) {
			new_desc = devm_kzalloc(&pdev->dev, sizeof(*desc),
						GFP_KERNEL);
			*new_desc = regulators[i];
			new_desc->supply_name = dcdc5_name;
			desc = new_desc;
		}

		rdev = devm_regulator_register(&pdev->dev, desc, &config);
		if (IS_ERR(rdev)) {
			dev_err(&pdev->dev, "Failed to register %s\n",
				regulators[i].name);

			return PTR_ERR(rdev);
		}

		ret = of_property_read_u32(rdev->dev.of_node,
					   "x-powers,dcdc-workmode",
					   &workmode);
		if (!ret) {
			if (axp20x_set_dcdc_workmode(rdev, i, workmode))
				dev_err(&pdev->dev, "Failed to set workmode on %s\n",
					rdev->desc->name);
		}

		/*
		 * Save AXP22X DCDC1 / DCDC5 regulator names for later.
		 */
		if ((regulators == axp22x_regulators && i == AXP22X_DCDC1) ||
		    (regulators == axp809_regulators && i == AXP809_DCDC1))
			of_property_read_string(rdev->dev.of_node,
						"regulator-name",
						&dcdc1_name);

		if ((regulators == axp22x_regulators && i == AXP22X_DCDC5) ||
		    (regulators == axp809_regulators && i == AXP809_DCDC5))
			of_property_read_string(rdev->dev.of_node,
						"regulator-name",
						&dcdc5_name);
	}

	if (drivevbus) {
		/* Change N_VBUSEN sense pin to DRIVEVBUS output pin */
		regmap_update_bits(axp20x->regmap, AXP20X_OVER_TMP,
				   AXP22X_MISC_N_VBUSEN_FUNC, 0);
		rdev = devm_regulator_register(&pdev->dev,
					       &axp22x_drivevbus_regulator,
					       &config);
		if (IS_ERR(rdev)) {
			dev_err(&pdev->dev, "Failed to register drivevbus\n");
			return PTR_ERR(rdev);
		}
	}

	return 0;
}

static struct platform_driver axp20x_regulator_driver = {
	.probe	= axp20x_regulator_probe,
	.driver	= {
		.name		= "axp20x-regulator",
	},
};

module_platform_driver(axp20x_regulator_driver);

MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Carlo Caione <*****@*****.**>");
MODULE_DESCRIPTION("Regulator Driver for AXP20X PMIC");
MODULE_ALIAS("platform:axp20x-regulator");
static int __devinit pmic8xxx_kp_probe(struct platform_device *pdev)
{
	const struct pm8xxx_keypad_platform_data *pdata =
					dev_get_platdata(&pdev->dev);
	const struct matrix_keymap_data *keymap_data;
	struct pmic8xxx_kp *kp;
	int rc;
	u8 ctrl_val;
	struct device *sec_key;

	struct pm_gpio kypd_drv = {
		.direction	= PM_GPIO_DIR_OUT,
		.output_buffer	= PM_GPIO_OUT_BUF_OPEN_DRAIN,
		.output_value	= 0,
		.pull		= PM_GPIO_PULL_NO,
		.vin_sel	= PM_GPIO_VIN_S4,
		.out_strength	= PM_GPIO_STRENGTH_LOW,
		.function	= PM_GPIO_FUNC_1,
		.inv_int_pol	= 1,
	};

	struct pm_gpio kypd_sns = {
		.direction	= PM_GPIO_DIR_IN,
		.pull		= PM_GPIO_PULL_UP_31P5,
		.vin_sel	= PM_GPIO_VIN_S4,
		.out_strength	= PM_GPIO_STRENGTH_NO,
		.function	= PM_GPIO_FUNC_NORMAL,
		.inv_int_pol	= 1,
	};


	if (!pdata || !pdata->num_cols || !pdata->num_rows ||
		pdata->num_cols > PM8XXX_MAX_COLS ||
		pdata->num_rows > PM8XXX_MAX_ROWS ||
		pdata->num_cols < PM8XXX_MIN_COLS) {
		dev_err(&pdev->dev, "invalid platform data\n");
		return -EINVAL;
	}

	if (!pdata->scan_delay_ms ||
		pdata->scan_delay_ms > MAX_SCAN_DELAY ||
		pdata->scan_delay_ms < MIN_SCAN_DELAY ||
		!is_power_of_2(pdata->scan_delay_ms)) {
		dev_err(&pdev->dev, "invalid keypad scan time supplied\n");
		return -EINVAL;
	}

	if (!pdata->row_hold_ns ||
		pdata->row_hold_ns > MAX_ROW_HOLD_DELAY ||
		pdata->row_hold_ns < MIN_ROW_HOLD_DELAY ||
		((pdata->row_hold_ns % MIN_ROW_HOLD_DELAY) != 0)) {
		dev_err(&pdev->dev, "invalid keypad row hold time supplied\n");
		return -EINVAL;
	}

	if (!pdata->debounce_ms ||
		((pdata->debounce_ms % 5) != 0) ||
		pdata->debounce_ms > MAX_DEBOUNCE_TIME ||
		pdata->debounce_ms < MIN_DEBOUNCE_TIME) {
		dev_err(&pdev->dev, "invalid debounce time supplied\n");
		return -EINVAL;
	}

	keymap_data = pdata->keymap_data;
	if (!keymap_data) {
		dev_err(&pdev->dev, "no keymap data supplied\n");
		return -EINVAL;
	}

	kp = kzalloc(sizeof(*kp), GFP_KERNEL);
	if (!kp)
		return -ENOMEM;

	platform_set_drvdata(pdev, kp);

	kp->pdata	= pdata;
	kp->dev		= &pdev->dev;

	kp->input = input_allocate_device();
	if (!kp->input) {
		dev_err(&pdev->dev, "unable to allocate input device\n");
		rc = -ENOMEM;
		goto err_alloc_device;
	}

	kp->key_sense_irq = platform_get_irq(pdev, 0);
	if (kp->key_sense_irq < 0) {
		dev_err(&pdev->dev, "unable to get keypad sense irq\n");
		rc = -ENXIO;
		goto err_get_irq;
	}

	kp->key_stuck_irq = platform_get_irq(pdev, 1);
	if (kp->key_stuck_irq < 0) {
		dev_err(&pdev->dev, "unable to get keypad stuck irq\n");
		rc = -ENXIO;
		goto err_get_irq;
	}

	kp->input->name = pdata->input_name ? : "PMIC8XXX keypad";
	kp->input->phys = pdata->input_phys_device ? : "pmic8xxx_keypad/input0";

	kp->input->dev.parent	= &pdev->dev;

	kp->input->id.bustype	= BUS_I2C;
	kp->input->id.version	= 0x0001;
	kp->input->id.product	= 0x0001;
	kp->input->id.vendor	= 0x0001;

	kp->input->evbit[0]	= BIT_MASK(EV_KEY);

	if (pdata->rep)
		__set_bit(EV_REP, kp->input->evbit);

	kp->input->keycode	= kp->keycodes;
	kp->input->keycodemax	= PM8XXX_MATRIX_MAX_SIZE;
	kp->input->keycodesize	= sizeof(kp->keycodes);
	kp->input->open		= pmic8xxx_kp_open;
	kp->input->close	= pmic8xxx_kp_close;

	matrix_keypad_build_keymap(keymap_data, PM8XXX_ROW_SHIFT,
					kp->input->keycode, kp->input->keybit);

	get_volumekey_matrix(keymap_data,
					&volup_matrix, &voldown_matrix);

	input_set_capability(kp->input, EV_MSC, MSC_SCAN);
	input_set_drvdata(kp->input, kp);

	/* initialize keypad state */
	memset(kp->keystate, 0xff, sizeof(kp->keystate));
	memset(kp->stuckstate, 0xff, sizeof(kp->stuckstate));

	rc = pmic8xxx_kpd_init(kp);
	if (rc < 0) {
		dev_err(&pdev->dev, "unable to initialize keypad controller\n");
		goto err_get_irq;
	}

	rc = pmic8xxx_kp_config_gpio(pdata->cols_gpio_start,
					pdata->num_cols, kp, &kypd_sns);
	if (rc < 0) {
		dev_err(&pdev->dev, "unable to configure keypad sense lines\n");
		goto err_gpio_config;
	}

	rc = pmic8xxx_kp_config_gpio(pdata->rows_gpio_start,
					pdata->num_rows, kp, &kypd_drv);
	if (rc < 0) {
		dev_err(&pdev->dev, "unable to configure keypad drive lines\n");
		goto err_gpio_config;
	}

	rc = request_any_context_irq(kp->key_sense_irq, pmic8xxx_kp_irq,
				 IRQF_TRIGGER_RISING, "pmic-keypad", kp);
	if (rc < 0) {
		dev_err(&pdev->dev, "failed to request keypad sense irq\n");
		goto err_get_irq;
	}

	rc = request_any_context_irq(kp->key_stuck_irq, pmic8xxx_kp_stuck_irq,
				 IRQF_TRIGGER_RISING, "pmic-keypad-stuck", kp);
	if (rc < 0) {
		dev_err(&pdev->dev, "failed to request keypad stuck irq\n");
		goto err_req_stuck_irq;
	}

	rc = pmic8xxx_kp_read_u8(kp, &ctrl_val, KEYP_CTRL);
	if (rc < 0) {
		dev_err(&pdev->dev, "failed to read KEYP_CTRL register\n");
		goto err_pmic_reg_read;
	}

	rc = request_threaded_irq(MSM_GPIO_KEY_VOLUP_IRQ ,
		NULL, pmic8058_volume_up_irq, IRQF_TRIGGER_RISING |
		IRQF_TRIGGER_FALLING, "vol_up", kp);

	if (rc < 0) {
				dev_err(&pdev->dev, "failed to request vol_up irq\n");
		goto err_req_sense_irq;
	}

	rc = request_threaded_irq(MSM_GPIO_KEY_VOLDOWN_IRQ ,
		NULL, pmic8058_volume_down_irq, IRQF_TRIGGER_RISING |
		IRQF_TRIGGER_FALLING, "vol_down", kp);

	if (rc < 0) {
		dev_err(&pdev->dev, "failed to request vol_down irq\n");
		goto err_req_sense_irq;
	}
	kp->ctrl_reg = ctrl_val;

#if defined CONFIG_MACH_VITAL2REFRESH


	gpio_tlmm_config(GPIO_CFG(MSM_HALL_IC, 1, GPIO_CFG_INPUT,
		GPIO_CFG_NO_PULL, GPIO_CFG_2MA), GPIO_CFG_ENABLE);

	input_set_capability(kp->input, EV_SW, SW_LID);

	if (gpio_get_value(MSM_HALL_IC)) {
		input_report_switch(kp->input, SW_LID, 1);
	}
	else {
		input_report_switch(kp->input, SW_LID, 0);
	}

	input_sync(kp->input);

	printk(KERN_INFO "[input_report_switch] slide_int - !gpio_hall_ic %s\n",
			gpio_get_value(MSM_HALL_IC) == 0 ? "OPEN" : "CLOSE");

	rc = request_threaded_irq(MSM_GPIO_TO_INT(MSM_HALL_IC), NULL,
		hall_ic_irq, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
							"hall_ic", kp);

	if (rc < 0) {
		dev_err(&pdev->dev, "failed to request hall_ic irq\n");
		goto err_hall_ic_irq;
	}

#endif
	rc = input_register_device(kp->input);
	if (rc < 0) {
		dev_err(&pdev->dev, "unable to register keypad input device\n");
		goto err_pmic_reg_read;
	}

	sec_key = device_create(sec_class, NULL, 0, NULL, "sec_key");
	if (IS_ERR(sec_key))
		pr_err("Failed to create device(sec_key)!\n");

	rc = device_create_file(sec_key, &dev_attr_sec_key_pressed);
	if (rc) {
		pr_err("Failed to create device file - pressed(%s), err(%d)!\n",
				dev_attr_sec_key_pressed.attr.name, rc);
	}

	dev_set_drvdata(sec_key, kp);

	device_init_wakeup(&pdev->dev, pdata->wakeup);

	return 0;

err_pmic_reg_read:
	free_irq(kp->key_stuck_irq, kp);
err_req_stuck_irq:
	free_irq(kp->key_sense_irq, kp);
#if defined CONFIG_MACH_VITAL2REFRESH
err_hall_ic_irq:
#endif
err_req_sense_irq:
err_gpio_config:
err_get_irq:
	input_free_device(kp->input);
err_alloc_device:
	platform_set_drvdata(pdev, NULL);
	kfree(kp);
	return rc;
}

static int __devexit pmic8xxx_kp_remove(struct platform_device *pdev)
{
	struct pmic8xxx_kp *kp = platform_get_drvdata(pdev);

	device_init_wakeup(&pdev->dev, 0);
	free_irq(kp->key_stuck_irq, kp);
	free_irq(kp->key_sense_irq, kp);
	input_unregister_device(kp->input);
	kfree(kp);

	platform_set_drvdata(pdev, NULL);
	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int pmic8xxx_kp_suspend(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct pmic8xxx_kp *kp = platform_get_drvdata(pdev);
	struct input_dev *input_dev = kp->input;

	if (device_may_wakeup(dev)) {
		enable_irq_wake(kp->key_sense_irq);
	} else {
		mutex_lock(&input_dev->mutex);

#if defined CONFIG_MACH_VITAL2REFRESH
	enable_irq_wake(MSM_GPIO_TO_INT(MSM_HALL_IC));
	/* to wakeup in case of sleep */
#endif
		if (input_dev->users)
			pmic8xxx_kp_disable(kp);

		mutex_unlock(&input_dev->mutex);
	}

	return 0;
}

static int pmic8xxx_kp_resume(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct pmic8xxx_kp *kp = platform_get_drvdata(pdev);
	struct input_dev *input_dev = kp->input;

	if (device_may_wakeup(dev)) {
		disable_irq_wake(kp->key_sense_irq);
	} else {
		mutex_lock(&input_dev->mutex);

#if defined CONFIG_MACH_VITAL2REFRESH
	disable_irq_wake(MSM_GPIO_TO_INT(MSM_HALL_IC)); /* to match irq pair */
#endif
	if (input_dev->users)
		pmic8xxx_kp_enable(kp);
		mutex_unlock(&input_dev->mutex);
	}

	return 0;
}
#endif

static SIMPLE_DEV_PM_OPS(pm8xxx_kp_pm_ops,
			 pmic8xxx_kp_suspend, pmic8xxx_kp_resume);

static struct platform_driver pmic8xxx_kp_driver = {
	.probe		= pmic8xxx_kp_probe,
	.remove		= __devexit_p(pmic8xxx_kp_remove),
	.driver		= {
		.name = PM8XXX_KEYPAD_DEV_NAME,
		.owner = THIS_MODULE,
		.pm = &pm8xxx_kp_pm_ops,
	},
};

static int __init pmic8xxx_kp_init(void)
{
	return platform_driver_register(&pmic8xxx_kp_driver);
}
module_init(pmic8xxx_kp_init);

static void __exit pmic8xxx_kp_exit(void)
{
	platform_driver_unregister(&pmic8xxx_kp_driver);
}
module_exit(pmic8xxx_kp_exit);

MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("PMIC8XXX keypad driver");
MODULE_VERSION("1.0");
MODULE_ALIAS("platform:pmic8xxx_keypad");
MODULE_AUTHOR("Trilok Soni <*****@*****.**>");
Example #11
0
/*
 * sysfs hook function
 */
static ssize_t madc_read(struct device *dev,
			 struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct twl4030_madc_request req = {
		.channels = 1 << attr->index,
		.method = TWL4030_MADC_SW2,
		.type = TWL4030_MADC_WAIT,
	};
	long val;

	val = twl4030_madc_conversion(&req);
	if (val < 0)
		return val;

	return sprintf(buf, "%d\n", req.rbuf[attr->index]);
}

/* sysfs nodes to read individual channels from user side */
static SENSOR_DEVICE_ATTR(in0_input, S_IRUGO, madc_read, NULL, 0);
static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, madc_read, NULL, 1);
static SENSOR_DEVICE_ATTR(in2_input, S_IRUGO, madc_read, NULL, 2);
static SENSOR_DEVICE_ATTR(in3_input, S_IRUGO, madc_read, NULL, 3);
static SENSOR_DEVICE_ATTR(in4_input, S_IRUGO, madc_read, NULL, 4);
static SENSOR_DEVICE_ATTR(in5_input, S_IRUGO, madc_read, NULL, 5);
static SENSOR_DEVICE_ATTR(in6_input, S_IRUGO, madc_read, NULL, 6);
static SENSOR_DEVICE_ATTR(in7_input, S_IRUGO, madc_read, NULL, 7);
static SENSOR_DEVICE_ATTR(in8_input, S_IRUGO, madc_read, NULL, 8);
static SENSOR_DEVICE_ATTR(in9_input, S_IRUGO, madc_read, NULL, 9);
static SENSOR_DEVICE_ATTR(curr10_input, S_IRUGO, madc_read, NULL, 10);
static SENSOR_DEVICE_ATTR(in11_input, S_IRUGO, madc_read, NULL, 11);
static SENSOR_DEVICE_ATTR(in12_input, S_IRUGO, madc_read, NULL, 12);
static SENSOR_DEVICE_ATTR(in15_input, S_IRUGO, madc_read, NULL, 15);

static struct attribute *twl4030_madc_attrs[] = {
	&sensor_dev_attr_in0_input.dev_attr.attr,
	&sensor_dev_attr_temp1_input.dev_attr.attr,
	&sensor_dev_attr_in2_input.dev_attr.attr,
	&sensor_dev_attr_in3_input.dev_attr.attr,
	&sensor_dev_attr_in4_input.dev_attr.attr,
	&sensor_dev_attr_in5_input.dev_attr.attr,
	&sensor_dev_attr_in6_input.dev_attr.attr,
	&sensor_dev_attr_in7_input.dev_attr.attr,
	&sensor_dev_attr_in8_input.dev_attr.attr,
	&sensor_dev_attr_in9_input.dev_attr.attr,
	&sensor_dev_attr_curr10_input.dev_attr.attr,
	&sensor_dev_attr_in11_input.dev_attr.attr,
	&sensor_dev_attr_in12_input.dev_attr.attr,
	&sensor_dev_attr_in15_input.dev_attr.attr,
	NULL
};
ATTRIBUTE_GROUPS(twl4030_madc);

static int twl4030_madc_hwmon_probe(struct platform_device *pdev)
{
	struct device *hwmon;

	hwmon = devm_hwmon_device_register_with_groups(&pdev->dev,
						       "twl4030_madc", NULL,
						       twl4030_madc_groups);
	return PTR_ERR_OR_ZERO(hwmon);
}

static struct platform_driver twl4030_madc_hwmon_driver = {
	.probe = twl4030_madc_hwmon_probe,
	.driver = {
		   .name = "twl4030_madc_hwmon",
		   .owner = THIS_MODULE,
		   },
};

module_platform_driver(twl4030_madc_hwmon_driver);

MODULE_DESCRIPTION("TWL4030 ADC Hwmon driver");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("J Keerthy");
MODULE_ALIAS("platform:twl4030_madc_hwmon");
Example #12
0
static int micro_bl_update_status(struct backlight_device *bd)
{
	struct ipaq_micro *micro = dev_get_drvdata(&bd->dev);
	int intensity = bd->props.brightness;
	struct ipaq_micro_msg msg = {
		.id = MSG_BACKLIGHT,
		.tx_len = 3,
	};

	if (bd->props.power != FB_BLANK_UNBLANK)
		intensity = 0;
	if (bd->props.state & (BL_CORE_FBBLANK | BL_CORE_SUSPENDED))
		intensity = 0;

	/*
	 * Message format:
	 * Byte 0: backlight instance (usually 1)
	 * Byte 1: on/off
	 * Byte 2: intensity, 0-255
	 */
	msg.tx_data[0] = 0x01;
	msg.tx_data[1] = intensity > 0 ? 1 : 0;
	msg.tx_data[2] = intensity;
	return ipaq_micro_tx_msg_sync(micro, &msg);
}

static const struct backlight_ops micro_bl_ops = {
	.options = BL_CORE_SUSPENDRESUME,
	.update_status  = micro_bl_update_status,
};

static struct backlight_properties micro_bl_props = {
	.type = BACKLIGHT_RAW,
	.max_brightness = 255,
	.power = FB_BLANK_UNBLANK,
	.brightness = 64,
};

static int micro_backlight_probe(struct platform_device *pdev)
{
	struct backlight_device *bd;
	struct ipaq_micro *micro = dev_get_drvdata(pdev->dev.parent);

	bd = devm_backlight_device_register(&pdev->dev, "ipaq-micro-backlight",
					    &pdev->dev, micro, &micro_bl_ops,
					    &micro_bl_props);
	if (IS_ERR(bd))
		return PTR_ERR(bd);

	platform_set_drvdata(pdev, bd);
	backlight_update_status(bd);

	return 0;
}

static struct platform_driver micro_backlight_device_driver = {
	.driver = {
		.name    = "ipaq-micro-backlight",
	},
	.probe   = micro_backlight_probe,
};
module_platform_driver(micro_backlight_device_driver);

MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("driver for iPAQ Atmel micro backlight");
MODULE_ALIAS("platform:ipaq-micro-backlight");
Example #13
0
static int micro_leds_brightness_set(struct led_classdev *led_cdev,
				      enum led_brightness value)
{
	struct ipaq_micro *micro = dev_get_drvdata(led_cdev->dev->parent->parent);
	/*
	 * In this message:
	 * Byte 0 = LED color: 0 = yellow, 1 = green
	 *          yellow LED is always ~30 blinks per minute
	 * Byte 1 = duration (flags?) appears to be ignored
	 * Byte 2 = green ontime in 1/10 sec (deciseconds)
	 *          1 = 1/10 second
	 *          0 = 256/10 second
	 * Byte 3 = green offtime in 1/10 sec (deciseconds)
	 *          1 = 1/10 second
	 *          0 = 256/10 seconds
	 */
	struct ipaq_micro_msg msg = {
		.id = MSG_NOTIFY_LED,
		.tx_len = 4,
	};

	msg.tx_data[0] = LED_GREEN;
	msg.tx_data[1] = 0;
	if (value) {
		msg.tx_data[2] = 0; /* Duty cycle 256 */
		msg.tx_data[3] = 1;
	} else {
		msg.tx_data[2] = 1;
		msg.tx_data[3] = 0; /* Duty cycle 256 */
	}
	return ipaq_micro_tx_msg_sync(micro, &msg);
}

/* Maximum duty cycle in ms 256/10 sec = 25600 ms */
#define IPAQ_LED_MAX_DUTY 25600

static int micro_leds_blink_set(struct led_classdev *led_cdev,
				unsigned long *delay_on,
				unsigned long *delay_off)
{
	struct ipaq_micro *micro = dev_get_drvdata(led_cdev->dev->parent->parent);
	/*
	 * In this message:
	 * Byte 0 = LED color: 0 = yellow, 1 = green
	 *          yellow LED is always ~30 blinks per minute
	 * Byte 1 = duration (flags?) appears to be ignored
	 * Byte 2 = green ontime in 1/10 sec (deciseconds)
	 *          1 = 1/10 second
	 *          0 = 256/10 second
	 * Byte 3 = green offtime in 1/10 sec (deciseconds)
	 *          1 = 1/10 second
	 *          0 = 256/10 seconds
	 */
	struct ipaq_micro_msg msg = {
		.id = MSG_NOTIFY_LED,
		.tx_len = 4,
	};

	msg.tx_data[0] = LED_GREEN;
	if (*delay_on > IPAQ_LED_MAX_DUTY ||
	    *delay_off > IPAQ_LED_MAX_DUTY)
		return -EINVAL;

	if (*delay_on == 0 && *delay_off == 0) {
		*delay_on = 100;
		*delay_off = 100;
	}

	msg.tx_data[1] = 0;
	if (*delay_on >= IPAQ_LED_MAX_DUTY)
		msg.tx_data[2] = 0;
	else
		msg.tx_data[2] = (u8) DIV_ROUND_CLOSEST(*delay_on, 100);
	if (*delay_off >= IPAQ_LED_MAX_DUTY)
		msg.tx_data[3] = 0;
	else
		msg.tx_data[3] = (u8) DIV_ROUND_CLOSEST(*delay_off, 100);
	return ipaq_micro_tx_msg_sync(micro, &msg);
}

static struct led_classdev micro_led = {
	.name			= "led-ipaq-micro",
	.brightness_set_blocking = micro_leds_brightness_set,
	.blink_set		= micro_leds_blink_set,
	.flags			= LED_CORE_SUSPENDRESUME,
};

static int micro_leds_probe(struct platform_device *pdev)
{
	int ret;

	ret = devm_led_classdev_register(&pdev->dev, &micro_led);
	if (ret) {
		dev_err(&pdev->dev, "registering led failed: %d\n", ret);
		return ret;
	}
	dev_info(&pdev->dev, "iPAQ micro notification LED driver\n");

	return 0;
}

static struct platform_driver micro_leds_device_driver = {
	.driver = {
		.name    = "ipaq-micro-leds",
	},
	.probe   = micro_leds_probe,
};
module_platform_driver(micro_leds_device_driver);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("driver for iPAQ Atmel micro leds");
MODULE_ALIAS("platform:ipaq-micro-leds");
Example #14
0
static int m48t59_rtc_probe(struct platform_device *pdev)
{
	struct m48t59_plat_data *pdata = dev_get_platdata(&pdev->dev);
	struct m48t59_private *m48t59 = NULL;
	struct resource *res;
	int ret = -ENOMEM;
	char *name;
	const struct rtc_class_ops *ops;
	struct nvmem_config nvmem_cfg = {
		.name = "m48t59-",
		.word_size = 1,
		.stride = 1,
		.reg_read = m48t59_nvram_read,
		.reg_write = m48t59_nvram_write,
		.priv = pdev,
	};

	/* This chip could be memory-mapped or I/O-mapped */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res) {
		res = platform_get_resource(pdev, IORESOURCE_IO, 0);
		if (!res)
			return -EINVAL;
	}

	if (res->flags & IORESOURCE_IO) {
		/* If we are I/O-mapped, the platform should provide
		 * the operations accessing chip registers.
		 */
		if (!pdata || !pdata->write_byte || !pdata->read_byte)
			return -EINVAL;
	} else if (res->flags & IORESOURCE_MEM) {
		/* we are memory-mapped */
		if (!pdata) {
			pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata),
						GFP_KERNEL);
			if (!pdata)
				return -ENOMEM;
			/* Ensure we only kmalloc platform data once */
			pdev->dev.platform_data = pdata;
		}
		if (!pdata->type)
			pdata->type = M48T59RTC_TYPE_M48T59;

		/* Try to use the generic memory read/write ops */
		if (!pdata->write_byte)
			pdata->write_byte = m48t59_mem_writeb;
		if (!pdata->read_byte)
			pdata->read_byte = m48t59_mem_readb;
	}

	m48t59 = devm_kzalloc(&pdev->dev, sizeof(*m48t59), GFP_KERNEL);
	if (!m48t59)
		return -ENOMEM;

	m48t59->ioaddr = pdata->ioaddr;

	if (!m48t59->ioaddr) {
		/* ioaddr not mapped externally */
		m48t59->ioaddr = devm_ioremap(&pdev->dev, res->start,
						resource_size(res));
		if (!m48t59->ioaddr)
			return ret;
	}

	/* Try to get irq number. We also can work in
	 * the mode without IRQ.
	 */
	m48t59->irq = platform_get_irq(pdev, 0);
	if (m48t59->irq <= 0)
		m48t59->irq = NO_IRQ;

	if (m48t59->irq != NO_IRQ) {
		ret = devm_request_irq(&pdev->dev, m48t59->irq,
				m48t59_rtc_interrupt, IRQF_SHARED,
				"rtc-m48t59", &pdev->dev);
		if (ret)
			return ret;
	}
	switch (pdata->type) {
	case M48T59RTC_TYPE_M48T59:
		name = "m48t59";
		ops = &m48t59_rtc_ops;
		pdata->offset = 0x1ff0;
		break;
	case M48T59RTC_TYPE_M48T02:
		name = "m48t02";
		ops = &m48t02_rtc_ops;
		pdata->offset = 0x7f0;
		break;
	case M48T59RTC_TYPE_M48T08:
		name = "m48t08";
		ops = &m48t02_rtc_ops;
		pdata->offset = 0x1ff0;
		break;
	default:
		dev_err(&pdev->dev, "Unknown RTC type\n");
		return -ENODEV;
	}

	spin_lock_init(&m48t59->lock);
	platform_set_drvdata(pdev, m48t59);

	m48t59->rtc = devm_rtc_allocate_device(&pdev->dev);
	if (IS_ERR(m48t59->rtc))
		return PTR_ERR(m48t59->rtc);

	m48t59->rtc->nvram_old_abi = true;
	m48t59->rtc->ops = ops;

	nvmem_cfg.size = pdata->offset;
	ret = rtc_nvmem_register(m48t59->rtc, &nvmem_cfg);
	if (ret)
		return ret;

	ret = rtc_register_device(m48t59->rtc);
	if (ret)
		return ret;

	return 0;
}

/* work with hotplug and coldplug */
MODULE_ALIAS("platform:rtc-m48t59");

static struct platform_driver m48t59_rtc_driver = {
	.driver		= {
		.name	= "rtc-m48t59",
	},
	.probe		= m48t59_rtc_probe,
};
Example #15
0
static int hvfb_probe(struct hv_device *hdev,
		      const struct hv_vmbus_device_id *dev_id)
{
	struct fb_info *info;
	struct hvfb_par *par;
	int ret;

	info = framebuffer_alloc(sizeof(struct hvfb_par), &hdev->device);
	if (!info) {
		pr_err("No memory for framebuffer info\n");
		return -ENOMEM;
	}

	par = info->par;
	par->info = info;
	par->fb_ready = false;
	init_completion(&par->wait);
	INIT_DELAYED_WORK(&par->dwork, hvfb_update_work);

	/* Connect to VSP */
	hv_set_drvdata(hdev, info);
	ret = synthvid_connect_vsp(hdev);
	if (ret) {
		pr_err("Unable to connect to VSP\n");
		goto error1;
	}

	ret = hvfb_getmem(info);
	if (ret) {
		pr_err("No memory for framebuffer\n");
		goto error2;
	}

	hvfb_get_option(info);
	pr_info("Screen resolution: %dx%d, Color depth: %d\n",
		screen_width, screen_height, screen_depth);


	/* Set up fb_info */
	info->flags = FBINFO_DEFAULT;

	info->var.xres_virtual = info->var.xres = screen_width;
	info->var.yres_virtual = info->var.yres = screen_height;
	info->var.bits_per_pixel = screen_depth;

	if (info->var.bits_per_pixel == 16) {
		info->var.red = (struct fb_bitfield){11, 5, 0};
		info->var.green = (struct fb_bitfield){5, 6, 0};
		info->var.blue = (struct fb_bitfield){0, 5, 0};
		info->var.transp = (struct fb_bitfield){0, 0, 0};
	} else {
		info->var.red = (struct fb_bitfield){16, 8, 0};
		info->var.green = (struct fb_bitfield){8, 8, 0};
		info->var.blue = (struct fb_bitfield){0, 8, 0};
		info->var.transp = (struct fb_bitfield){24, 8, 0};
	}

	info->var.activate = FB_ACTIVATE_NOW;
	info->var.height = -1;
	info->var.width = -1;
	info->var.vmode = FB_VMODE_NONINTERLACED;

	strcpy(info->fix.id, KBUILD_MODNAME);
	info->fix.type = FB_TYPE_PACKED_PIXELS;
	info->fix.visual = FB_VISUAL_TRUECOLOR;
	info->fix.line_length = screen_width * screen_depth / 8;
	info->fix.accel = FB_ACCEL_NONE;

	info->fbops = &hvfb_ops;
	info->pseudo_palette = par->pseudo_palette;

	/* Send config to host */
	ret = synthvid_send_config(hdev);
	if (ret)
		goto error;

	ret = register_framebuffer(info);
	if (ret) {
		pr_err("Unable to register framebuffer\n");
		goto error;
	}

	par->fb_ready = true;

	return 0;

error:
	hvfb_putmem(info);
error2:
	vmbus_close(hdev->channel);
error1:
	cancel_delayed_work_sync(&par->dwork);
	hv_set_drvdata(hdev, NULL);
	framebuffer_release(info);
	return ret;
}


static int hvfb_remove(struct hv_device *hdev)
{
	struct fb_info *info = hv_get_drvdata(hdev);
	struct hvfb_par *par = info->par;

	par->update = false;
	par->fb_ready = false;

	unregister_framebuffer(info);
	cancel_delayed_work_sync(&par->dwork);

	vmbus_close(hdev->channel);
	hv_set_drvdata(hdev, NULL);

	hvfb_putmem(info);
	framebuffer_release(info);

	return 0;
}


static DEFINE_PCI_DEVICE_TABLE(pci_stub_id_table) = {
	{
		.vendor      = PCI_VENDOR_ID_MICROSOFT,
		.device      = PCI_DEVICE_ID_HYPERV_VIDEO,
	},
	{ /* end of list */ }
};

static const struct hv_vmbus_device_id id_table[] = {
	/* Synthetic Video Device GUID */
	{HV_SYNTHVID_GUID},
	{}
};

MODULE_DEVICE_TABLE(pci, pci_stub_id_table);
MODULE_DEVICE_TABLE(vmbus, id_table);

static struct hv_driver hvfb_drv = {
	.name = KBUILD_MODNAME,
	.id_table = id_table,
	.probe = hvfb_probe,
	.remove = hvfb_remove,
};

static int hvfb_pci_stub_probe(struct pci_dev *pdev,
			       const struct pci_device_id *ent)
{
	return 0;
}

static void hvfb_pci_stub_remove(struct pci_dev *pdev)
{
}

static struct pci_driver hvfb_pci_stub_driver = {
	.name =		KBUILD_MODNAME,
	.id_table =	pci_stub_id_table,
	.probe =	hvfb_pci_stub_probe,
	.remove =	hvfb_pci_stub_remove,
};

static int __init hvfb_drv_init(void)
{
	int ret;

	ret = vmbus_driver_register(&hvfb_drv);
	if (ret != 0)
		return ret;

	ret = pci_register_driver(&hvfb_pci_stub_driver);
	if (ret != 0) {
		vmbus_driver_unregister(&hvfb_drv);
		return ret;
	}

	return 0;
}

static void __exit hvfb_drv_exit(void)
{
	pci_unregister_driver(&hvfb_pci_stub_driver);
	vmbus_driver_unregister(&hvfb_drv);
}

module_init(hvfb_drv_init);
module_exit(hvfb_drv_exit);

MODULE_LICENSE("GPL");
MODULE_VERSION(HV_DRV_VERSION);
MODULE_DESCRIPTION("Microsoft Hyper-V Synthetic Video Frame Buffer Driver");
MODULE_ALIAS("vmbus:02780ada77e3ac4a8e770558eb1073f8");
Example #16
0
/* CHAOS functions */
static void
xt_chaos_total(struct sk_buff *skb, const struct xt_action_param *par)
{
	const struct xt_chaos_tginfo *info = par->targinfo;
	const struct iphdr *iph = ip_hdr(skb);
	const int thoff         = 4 * iph->ihl;
	const int fragoff       = ntohs(iph->frag_off) & IP_OFFSET;
	typeof(xt_tarpit) destiny;
	bool ret;
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 22)
	int hotdrop = false;
#else
	bool hotdrop = false;
#endif

#if LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 27)
	ret = xm_tcp->match(skb, par->in, par->out, xm_tcp, &tcp_params,
	                    fragoff, thoff, &hotdrop);
#elif LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 34)
	{
		struct xt_match_param local_par = {
			.in        = par->in,
			.out       = par->out,
			.match     = xm_tcp,
			.matchinfo = &tcp_params,
			.fragoff   = fragoff,
			.thoff     = thoff,
			.hotdrop   = &hotdrop,
		};
		ret = xm_tcp->match(skb, &local_par);
	}
#else
	{
		struct xt_action_param local_par;
		local_par.in        = par->in,
		local_par.out       = par->out,
		local_par.match     = xm_tcp;
		local_par.matchinfo = &tcp_params;
		local_par.fragoff   = fragoff;
		local_par.thoff     = thoff;
		local_par.hotdrop   = false;
		ret = xm_tcp->match(skb, &local_par);
		hotdrop = local_par.hotdrop;
	}
#endif
	if (!ret || hotdrop || (unsigned int)net_random() > delude_percentage)
		return;

	destiny = (info->variant == XTCHAOS_TARPIT) ? xt_tarpit : xt_delude;
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 18)
	destiny->target(&skb, par->in, par->out, par->hooknum, destiny, NULL, NULL);
#elif LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 23)
	destiny->target(&skb, par->in, par->out, par->hooknum, destiny, NULL);
#elif LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 27)
	destiny->target(skb, par->in, par->out, par->hooknum, destiny, NULL);
#elif LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 34)
	{
		struct xt_target_param local_par = {
			.in       = par->in,
			.out      = par->out,
			.hooknum  = par->hooknum,
			.target   = destiny,
			.targinfo = par->targinfo,
			.family   = par->family,
		};
		destiny->target(skb, &local_par);
	}
#else
	{
		struct xt_action_param local_par;
		local_par.in       = par->in;
		local_par.out      = par->out;
		local_par.hooknum  = par->hooknum;
		local_par.target   = destiny;
		local_par.targinfo = par->targinfo;
		local_par.family   = par->family;
		destiny->target(skb, &local_par);
	}
#endif
}

static unsigned int
chaos_tg(struct sk_buff **pskb, const struct xt_action_param *par)
{
	/*
	 * Equivalent to:
	 * -A chaos -m statistic --mode random --probability \
	 *         $reject_percentage -j REJECT --reject-with host-unreach;
	 * -A chaos -p tcp -m statistic --mode random --probability \
	 *         $delude_percentage -j DELUDE;
	 * -A chaos -j DROP;
	 */
	const struct xt_chaos_tginfo *info = par->targinfo;
	struct sk_buff *skb = *pskb;
	const struct iphdr *iph = ip_hdr(skb);

	if ((unsigned int)net_random() <= reject_percentage) {
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 18)
		return xt_reject->target(pskb, par->in, par->out, par->hooknum,
		       xt_reject, &reject_params, NULL);
#elif LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 23)
		return xt_reject->target(pskb, par->in, par->out, par->hooknum,
		       xt_reject, &reject_params);
#elif LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 27)
		return xt_reject->target(skb, par->in, par->out, par->hooknum,
		       xt_reject, &reject_params);
#elif LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 34)
		struct xt_target_param local_par = {
			.in       = par->in,
			.out      = par->out,
			.hooknum  = par->hooknum,
			.target   = xt_reject,
			.targinfo = &reject_params,
		};
		return xt_reject->target(skb, &local_par);
#else
		struct xt_action_param local_par;
		local_par.in       = par->in;
		local_par.out      = par->out;
		local_par.hooknum  = par->hooknum;
		local_par.target   = xt_reject;
		local_par.targinfo = &reject_params;
		return xt_reject->target(skb, &local_par);
#endif
	}

	/* TARPIT/DELUDE may not be called from the OUTPUT chain */
	if (iph->protocol == IPPROTO_TCP &&
	    info->variant != XTCHAOS_NORMAL &&
	    par->hooknum != NF_INET_LOCAL_OUT)
		xt_chaos_total(skb, par);

	return NF_DROP;
}

static int chaos_tg_check(const struct xt_tgchk_param *par)
{
	const struct xt_chaos_tginfo *info = par->targinfo;

	if (info->variant == XTCHAOS_DELUDE && !have_delude) {
		printk(KERN_WARNING PFX "Error: Cannot use --delude when "
		       "DELUDE module not available\n");
		return -EINVAL;
	}
	if (info->variant == XTCHAOS_TARPIT && !have_tarpit) {
		printk(KERN_WARNING PFX "Error: Cannot use --tarpit when "
		       "TARPIT module not available\n");
		return -EINVAL;
	}

	return 0;
}

static struct xt_target chaos_tg_reg = {
	.name       = "CHAOS",
	.revision   = 0,
	.family     = NFPROTO_IPV4,
	.table      = "filter",
	.hooks      = (1 << NF_INET_LOCAL_IN) | (1 << NF_INET_FORWARD) |
	              (1 << NF_INET_LOCAL_OUT),
	.target     = chaos_tg,
	.checkentry = chaos_tg_check,
	.targetsize = sizeof(struct xt_chaos_tginfo),
	.me         = THIS_MODULE,
};

static int __init chaos_tg_init(void)
{
	int ret = -EINVAL;

	xm_tcp = xt_request_find_match(NFPROTO_IPV4, "tcp", 0);
	if (xm_tcp == NULL) {
		printk(KERN_WARNING PFX "Error: Could not find or load "
		       "\"tcp\" match\n");
		return -EINVAL;
	}

	xt_reject = xt_request_find_target(NFPROTO_IPV4, "REJECT", 0);
	if (xt_reject == NULL) {
		printk(KERN_WARNING PFX "Error: Could not find or load "
		       "\"REJECT\" target\n");
		goto out2;
	}

	xt_tarpit   = xt_request_find_target(NFPROTO_IPV4, "TARPIT", 0);
	have_tarpit = xt_tarpit != NULL;
	if (!have_tarpit)
		printk(KERN_WARNING PFX "Warning: Could not find or load "
		       "\"TARPIT\" target\n");

	xt_delude   = xt_request_find_target(NFPROTO_IPV4, "DELUDE", 0);
	have_delude = xt_delude != NULL;
	if (!have_delude)
		printk(KERN_WARNING PFX "Warning: Could not find or load "
		       "\"DELUDE\" target\n");

	if ((ret = xt_register_target(&chaos_tg_reg)) != 0) {
		printk(KERN_WARNING PFX "xt_register_target returned "
		       "error %d\n", ret);
		goto out3;
	}

	return 0;

 out3:
 	if (have_delude)
 		module_put(xt_delude->me);
	if (have_tarpit)
		module_put(xt_tarpit->me);
	module_put(xt_reject->me);
 out2:
	module_put(xm_tcp->me);
	return ret;
}

static void __exit chaos_tg_exit(void)
{
	xt_unregister_target(&chaos_tg_reg);
	module_put(xm_tcp->me);
	module_put(xt_reject->me);
	if (have_delude)
		module_put(xt_delude->me);
	if (have_tarpit)
		module_put(xt_tarpit->me);
}

module_init(chaos_tg_init);
module_exit(chaos_tg_exit);
MODULE_DESCRIPTION("Xtables: Network scan slowdown with non-deterministic results");
MODULE_AUTHOR("Jan Engelhardt <*****@*****.**>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("ipt_CHAOS");