int
main(int argc, char *argv[]) 
{
  char   **av, fname[STRLEN], *cp ;
  int    ac, nargs ;
  char   *subject, *out_fname, *hemi, *ohemi ;
  int    msec, minutes, seconds ;
  struct timeb start ;
  MRI          *mri, *mri_features, *mri_ribbon, *mri_aseg, *mri_aparc ;
  MRI_SURFACE  *mris, *mris_contra ;
  LABEL        *cortex ;

  /* rkt: check for and handle version tag */
  nargs = handle_version_option (argc, argv, "$Id: mri_extract_fcd_features.c,v 1.1 2016/06/15 17:51:09 fischl Exp $", "$Name:  $");
  if (nargs && argc - nargs == 1)
    exit (0);
  argc -= nargs;

  Progname = argv[0] ;
  ErrorInit(NULL, NULL, NULL) ;
  DiagInit(NULL, NULL, NULL) ;

  TimerStart(&start) ;

  ac = argc ;
  av = argv ;
  for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++) {
    nargs = get_option(argc, argv) ;
    argc -= nargs ;
    argv += nargs ;
  }

  if (argc < 4)
    usage_exit(1) ;

  subject = argv[1] ;
  hemi = argv[2] ;
  if (strcmp(hemi, "lh") == 0)
    ohemi = "rh" ;
  else
    ohemi = "lh" ;

  out_fname = argv[3] ;
  printf("reading data for subject %s and writing output to %s\n", subject, out_fname) ;

  if (!strlen(sdir))
  {
    cp = getenv("SUBJECTS_DIR") ;
    if (!cp)
      ErrorExit(ERROR_BADPARM,
                "%s: SUBJECTS_DIR not defined in environment.\n", Progname) ;
    strcpy(sdir, cp) ;
  }

  sprintf(fname, "%s/%s/surf/%s.%s", sdir, subject, hemi, white_name) ;
  printf("reading %s\n", fname) ;
  mris  = MRISread(fname) ;
  if (mris == NULL)
    ErrorExit(ERROR_NOFILE, "%s: could not read surface from %s\n", Progname, fname) ;
  MRISsaveVertexPositions(mris, WHITE_VERTICES) ;
  

  sprintf(fname, "%s/%s/surf/%s.%s", sdir, subject, ohemi, white_name) ;
  printf("reading %s\n", fname) ;
  mris_contra  = MRISread(fname) ;
  if (mris_contra == NULL)
    ErrorExit(ERROR_NOFILE, "%s: could not read surface from %s\n", Progname, fname) ;
  MRISsaveVertexPositions(mris_contra, WHITE_VERTICES) ;

  sprintf(fname, "%s/%s/mri/%s", sdir, subject, ribbon_name) ;
  printf("reading %s\n", fname) ;
  mri_ribbon  = MRIread(fname) ;
  if (mri_ribbon == NULL)
    ErrorExit(ERROR_NOFILE, "%s: could not read ribbon from %s\n", Progname, fname) ;

  sprintf(fname, "%s/%s/mri/%s", sdir, subject, aparc_name) ;
  printf("reading %s\n", fname) ;
  mri_aparc  = MRIread(fname) ;
  if (mri_aparc == NULL)
    ErrorExit(ERROR_NOFILE, "%s: could not read ribbon from %s\n", Progname, fname) ;

  sprintf(fname, "%s/%s/mri/%s", sdir, subject, aseg_name) ;
  printf("reading %s\n", fname) ;
  mri_aseg  = MRIread(fname) ;
  if (mri_aseg == NULL)
    ErrorExit(ERROR_NOFILE, "%s: could not read aseg from %s\n", Progname, fname) ;

  sprintf(fname, "%s/%s/surf/%s.%s", sdir, subject, hemi, pial_name) ;
  if (MRISreadPialCoordinates(mris, fname) != NO_ERROR)
    ErrorExit(ERROR_NOFILE, "%s: could not read pial coordinates from %s\n", Progname, fname) ;

  sprintf(fname, "%s/%s/surf/%s.%s", sdir, subject, hemi, sphere_name) ;
  if (MRISreadCanonicalCoordinates(mris, fname) != NO_ERROR)
    ErrorExit(ERROR_NOFILE, "%s: could not read left/right spherical coordinates from %s\n", Progname, fname) ;
  

  sprintf(fname, "%s/%s/surf/%s.%s", sdir, subject, ohemi, pial_name) ;
  if (MRISreadPialCoordinates(mris_contra, fname) != NO_ERROR)
    ErrorExit(ERROR_NOFILE, "%s: could not read pial coordinates from %s\n", Progname, fname) ;

  sprintf(fname, "%s/%s/label/%s.%s", sdir, subject, hemi, cortex_label) ;
  cortex = LabelRead(NULL, fname) ;
  if (cortex == NULL)
    ErrorExit(ERROR_NOFILE, "%s: could not read cortical label from %s\n", Progname, fname) ;
  LabelRipRestOfSurface(cortex, mris) ;
  LabelFree(&cortex) ;

  sprintf(fname, "%s/%s/surf/%s.%s", sdir, subject, ohemi, sphere_name) ;
  if (MRISreadCanonicalCoordinates(mris_contra, fname) != NO_ERROR)
    ErrorExit(ERROR_NOFILE, "%s: could not read left/right spherical coordinates from %s\n", Progname, fname) ;
  

  sprintf(fname, "%s/%s/mri/%s", sdir, subject, vol_name) ; 
  printf("reading %s\n", fname) ;
  mri  = MRIread(fname) ;
  if (mri == NULL)
    ErrorExit(ERROR_NOFILE, "%s: could not read volume from %s\n", Progname, fname) ;

  if (0)
    mri_features = MRIcomputeSurfaceDistanceProbabilities(mris, mri_ribbon, mri, mri_aseg) ;
  else
  {
    MRI *mri_ohemi_features, *mri_ohemi_mapped_to_hemi_features ;

    mri_features = MRIcomputeSurfaceDistanceIntensities(mris, mri_ribbon, mri_aparc, mri, mri_aseg, whalf) ;
    mri_ohemi_features = MRIcomputeSurfaceDistanceIntensities(mris_contra, mri_ribbon, mri_aparc, mri, mri_aseg, whalf) ;
    mri_ohemi_mapped_to_hemi_features = MRISmapToSurface(mris_contra, mris, mri_ohemi_features, NULL) ; // map contra feature to this surface
//    MRIwrite(mri_ohemi_mapped_to_hemi_features, "test.mgz") ;
    MRIsubtract(mri_features, mri_ohemi_mapped_to_hemi_features, mri_features) ;
  }
 
  if (navgs > 0)
  {
    MRI *mri_tmp ;
    mri_tmp = MRISsmoothMRI(mris, mri_features, navgs, NULL, NULL);
    MRIfree(&mri_features) ;
    mri_features = mri_tmp ;
  }
  printf("writing output to %s\n", out_fname) ;
  if (Gdiag_no >= 0)
    printf("feature(%d) = %f\n", Gdiag_no, MRIgetVoxVal(mri_features, Gdiag_no, 0, 0, 0)) ;


  MRIwrite(mri_features, out_fname) ;

  msec = TimerStop(&start) ;
  seconds = nint((float)msec/1000.0f) ;
  minutes = seconds / 60 ;
  seconds = seconds % 60 ;
  fprintf(stderr, "feature extraction took %d minutes and %d seconds.\n", minutes, seconds) ;
  exit(0) ;
  return(0) ;
}
static int
initialize_surface_position(MRI_SURFACE *mris, MRI *mri_masked, int outside, INTEGRATION_PARMS *parms) {
  MRI    *mri_dilated ;
  int    x, y, z, vno ;
  double x0, y0, z0, radius = 0, dist, num ;
  Real   xs, ys, zs ;
  VERTEX *v ;

  if (outside) {
    mri_dilated = MRIdilate(mri_masked, NULL) ;

    MRIsubtract(mri_dilated, mri_masked, mri_dilated) ;
    MRIwrite(mri_dilated, "outside.mgz") ;

    num = x0 = y0 = z0 = 0 ;
    for (x = 0 ; x < mri_dilated->width ; x++) {
      for (y = 0 ; y < mri_dilated->height ; y++) {
        for (z = 0 ; z < mri_dilated->depth ; z++) {
          if (MRIgetVoxVal(mri_dilated, x, y, z,0) > 0) {
            MRIvoxelToSurfaceRAS(mri_dilated, x, y, z, &xs, &ys, &zs) ;
            x0 += xs ;
            y0 += ys ;
            z0 += zs ;
            num++ ;
          }
        }
      }
    }
    x0 /= num ;
    y0 /= num ;
    z0 /= num ;
    printf("centroid at (%2.1f, %2.1f, %2.1f)\n", x0,  y0, z0) ;

    num = radius = 0 ;
    for (x = 0 ; x < mri_dilated->width ; x++) {
      for (y = 0 ; y < mri_dilated->height ; y++) {
        for (z = 0 ; z < mri_dilated->depth ; z++) {
          if (MRIgetVoxVal(mri_dilated, x, y, z,0) > 0) {
            MRIvoxelToSurfaceRAS(mri_dilated, x, y, z, &xs, &ys, &zs) ;
            dist = sqrt(SQR(xs-x0)+SQR(ys-y0)+SQR(zs-z0)) ;
            radius += dist ;
            num++ ;
          }
        }
      }
    }

    radius /= num ;
    printf("average radius = %2.3f\n", radius) ;


    MRIfree(&mri_dilated) ;
    MRISprojectOntoSphere(mris, mris, radius*1.25) ;
    for (vno = 0 ; vno < mris->nvertices ; vno++) {
      v = &mris->vertices[vno] ;
      v->x += x0 ;
      v->y += y0 ;
      v->z += z0 ;
    }
    MRIScomputeMetricProperties(mris) ;
  }
  parms->target_radius = radius ;
  MRISsaveVertexPositions(mris, ORIGINAL_VERTICES) ;
  return(NO_ERROR) ;
}
int main(int argc, char *argv[])
{
  char **av, *surf_name, *out_prefix, *fname;

  int nargs, ac, i, nsubjects, total, index;

  double scalar, std, tmp, maxV, minV, meanV;

  MRI *SrcVals[2], *AvgVals;

  MRI_SURFACE *BaseSurf;

  /* rkt: check for and handle version tag */
  nargs = handle_version_option (argc, argv, "$Id: mris_diff_on_surface.c,v 1.3 2011/03/02 00:04:55 nicks Exp $", "$Name:  $");
  if (nargs && argc - nargs == 1)
    exit (0);
  argc -= nargs;

  Progname = argv[0] ;
  ErrorInit(NULL, NULL, NULL) ;
  DiagInit(NULL, NULL, NULL) ;

  ac = argc ;
  av = argv ;
  for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++)
  {
    nargs = get_option(argc, argv) ;
    argc -= nargs ;
    argv += nargs ;
  }

  /* command line: <surf> <datafile 1> <datafile 2> <output prefix> */

  if (argc != 5)
    usage_exit();

  surf_name = argv[1];
  out_prefix = argv[argc - 1];

  if (srctypestring == NULL || trgtypestring == NULL)
  {
    printf("Please specify both input and output data type!\n");
    usage_exit();
  }

  printf("Reading underlying surface file\n");
  BaseSurf = MRISread(surf_name);
  if (!BaseSurf)
    ErrorExit(ERROR_NOFILE, "%s:could not read surface %s", Progname, surf_name);

  printf("Base surface has %d vertices\n", BaseSurf->nvertices);


  /* Read in the first data file */
  fname = argv[2];
  /* only two data types are supported */
  if (!strcmp(srctypestring,"curv"))
  { /* curvature file */
    if (MRISreadCurvatureFile(BaseSurf, fname) != 0)
    {
      printf("ERROR: reading curvature file\n");
      exit(1);
    }
    SrcVals[0] = MRIcopyMRIS(NULL, BaseSurf, 0, "curv");
  }
  else if (!strcmp(srctypestring,"paint") || !strcmp(srctypestring,"w"))
  {
    MRISreadValues(BaseSurf,fname);
    SrcVals[0] = MRIcopyMRIS(NULL, BaseSurf, 0, "val");
  }
  else
  {
    printf("ERROR: unknown data file format\n");
    exit(1);
  }

  if (SrcVals[0] == NULL)
  {
    fprintf(stderr, "ERROR loading data values from %s\n", fname);
  }

  /* Read in the second data file */
  fname = argv[3];
  /* only two data types are supported */
  if (!strcmp(srctypestring,"curv"))
  { /* curvature file */
    if (MRISreadCurvatureFile(BaseSurf, fname) != 0)
    {
      printf("ERROR: reading curvature file\n");
      exit(1);
    }
    SrcVals[1] = MRIcopyMRIS(NULL, BaseSurf, 0, "curv");
  }
  else if (!strcmp(srctypestring,"paint") || !strcmp(srctypestring,"w"))
  {
    MRISreadValues(BaseSurf,fname);
    SrcVals[1] = MRIcopyMRIS(NULL, BaseSurf, 0, "val");
  }
  else
  {
    printf("ERROR: unknown data file format\n");
    exit(1);
  }

  if (SrcVals[1] == NULL)
  {
    fprintf(stderr, "ERROR loading data values from %s\n", fname);
  }

  if (debugflag)
  {
    for (i=0; i < 2; i++)
    {
      printf("Data%d at vertex %d has value %g\n",i, debugvtx,  MRIFseq_vox(SrcVals[i], debugvtx, 0, 0, 0));
    }
  }

#if 0
  AvgVals = MRIclone(SrcVals[0], NULL);

  if (negflag) /* Add the two data sets */
    AvgVals = MRIadd(SrcVals[0], SrcVals[1], AvgVals);
  else /* Data1 - Data2 */
    AvgVals = MRIsubtract(SrcVals[0], SrcVals[1], AvgVals);
#endif

  AvgVals = MRIcopy(SrcVals[0], NULL);

  if (negflag)
  {
    for (index=0; index < BaseSurf->nvertices; index++)
    {
      MRIFseq_vox(AvgVals, index, 0, 0, 0) =  MRIFseq_vox(SrcVals[0], index, 0, 0, 0) +
                                              MRIFseq_vox(SrcVals[1], index, 0, 0, 0);
    }
  }
  else
  {
    for (index=0; index < BaseSurf->nvertices; index++)
    {
      MRIFseq_vox(AvgVals, index, 0, 0, 0) =  MRIFseq_vox(SrcVals[0], index, 0, 0, 0) -
                                              MRIFseq_vox(SrcVals[1], index, 0, 0, 0);
    }
  }

  maxV = -1000.0;
  minV = 1000.0;
  meanV=0.0;

  for (index=0; index < BaseSurf->nvertices; index++)
  {
    scalar = MRIFseq_vox(AvgVals, index, 0, 0, 0);
    if (maxV < scalar) maxV = scalar;
    if (minV > scalar) minV = scalar;
    meanV += scalar;
  }

  meanV /= BaseSurf->nvertices;

  printf("Output max = %g, min = %g, mean = %g\n", maxV, minV, meanV);

  if (debugflag)
  {
    printf("Output at vertex %d has value %g\n", debugvtx,  MRIFseq_vox(AvgVals, debugvtx, 0, 0, 0));
  }

  if (pathflag)
    sprintf(fname, "%s", out_prefix);
  else
  {
    if (negflag)
      sprintf(fname, "%s.sum.w", out_prefix) ;
    else
      sprintf(fname, "%s.diff.w", out_prefix) ;
  }

  if (!strcmp(trgtypestring,"paint") || !strcmp(trgtypestring,"w"))
  {

    /* This function will remove a zero-valued vertices */
    /* Make sense, since default value is considered as zero */
    /* But it will confuse the processing with matlab! */
    /* So I copy the data to the curv field to force every value is
     *  written out
     */
    /* MRIScopyMRI(BaseSurf, AvgVals, framesave, "val");*/
    /* MRISwriteValues(BaseSurf,fname); */
    MRIScopyMRI(BaseSurf, AvgVals, framesave, "curv");
    MRISwriteCurvatureToWFile(BaseSurf,fname);

  }
  else
  {
    fprintf(stderr, "ERROR unknown output file format.\n");
  }

  /* Free memories */
  MRISfree(&BaseSurf);
  MRIfree(&AvgVals);
  for (i=0; i < 2; i++)
  {
    MRIfree(&SrcVals[i]);
  }

  return 0;
}
Example #4
0
int
FCDcomputeThicknessLabels(FCD_DATA *fcd,
                          double thickness_thresh,
                          double sigma,
                          int size_thresh)
{
  MRI    *mri_lh, *mri_rh, *mri_lh_diff, *mri_rh_diff ;
  int    niter, vno, s ;
  MRI_SEGMENTATION *mriseg ;

  fcdFreeLabels(fcd) ;  // free old ones if they exist
  niter = SIGMA_TO_SURFACE_SMOOTH_STEPS(sigma) ;

  // do LH
  mri_lh = MRIclone(fcd->lh_thickness_on_lh, NULL) ;
  mri_rh = MRIclone(fcd->lh_thickness_on_lh, NULL) ;

  exec_progress_callback(1, 8, 0, 1) ;
  MRISwriteFrameToValues(fcd->mris_lh, fcd->lh_thickness_on_lh, 0) ;
  MRISaverageVals(fcd->mris_lh, niter) ;
  MRISreadFrameFromValues(fcd->mris_lh, mri_lh, 0) ;

  exec_progress_callback(2, 8, 0, 1) ;
  MRISwriteFrameToValues(fcd->mris_lh, fcd->rh_thickness_on_lh, 0) ;
  MRISaverageVals(fcd->mris_lh, niter) ;
  MRISreadFrameFromValues(fcd->mris_lh, mri_rh, 0) ;
  mri_lh_diff = MRIsubtract(mri_lh, mri_rh, NULL) ;  // lh minus rh on lh
  MRIfree(&mri_lh);
  MRIfree(&mri_rh) ;

  // do RH
  mri_lh = MRIclone(fcd->lh_thickness_on_rh, NULL) ;
  mri_rh = MRIclone(fcd->lh_thickness_on_rh, NULL) ;

  exec_progress_callback(3, 8, 0, 1) ;
  MRISwriteFrameToValues(fcd->mris_rh, fcd->lh_thickness_on_rh, 0) ;
  MRISaverageVals(fcd->mris_rh, niter) ;
  MRISreadFrameFromValues(fcd->mris_rh, mri_lh, 0) ;

  exec_progress_callback(4, 8, 0, 1) ;
  MRISwriteFrameToValues(fcd->mris_rh, fcd->rh_thickness_on_rh, 0) ;
  MRISaverageVals(fcd->mris_rh, niter) ;
  MRISreadFrameFromValues(fcd->mris_rh, mri_rh, 0) ;
  mri_rh_diff = MRIsubtract(mri_rh, mri_lh, NULL) ;  // lh minus rh on rh
  MRIfree(&mri_lh);
  MRIfree(&mri_rh) ;

  MRIclear(fcd->mri_thickness_increase) ;
  MRIclear(fcd->mri_thickness_decrease) ;
  exec_progress_callback(5, 8, 0, 1) ;

  // process left hemisphere
#if 1
#ifdef HAVE_OPENMP
#pragma omp parallel for shared(fcd, mri_lh_diff, Gdiag_no, thickness_thresh) schedule(static,1)
#endif
#endif
  for (vno = 0 ; vno < fcd->mris_lh->nvertices ; vno++)
  {
    double d ;
    float val, val2, thickness;
    int base_label ;
    VERTEX *v ;

    v = &fcd->mris_lh->vertices[vno] ;
    if (v->ripflag)
    {
      continue ;
    }
    thickness = MRIgetVoxVal(fcd->lh_thickness_on_lh, vno, 0, 0, 0) ;
    if (vno == Gdiag_no)
    {
      DiagBreak() ;
    }
    val = MRIgetVoxVal(mri_lh_diff, vno, 0, 0, 0) ;
    if (fabs(val) < thickness_thresh)
    {
      continue ;
    }

    for (d = 0, base_label = 0 ; d < thickness ; d += 0.25)
    {
      double xv, yv, zv;
      double xs = v->x+d*v->nx ;
      double ys = v->y+d*v->ny ;
      double zs = v->z+d*v->nz ;
      MRISsurfaceRASToVoxel(fcd->mris_lh, 
                            fcd->mri_thickness_increase, 
                            xs, ys, zs, 
                            &xv, &yv, &zv) ;
      int xvi = nint(xv) ;
      int yvi = nint(yv) ;
      int zvi = nint(zv) ;
      int label = MRIgetVoxVal(fcd->mri_aparc, xvi, yvi, zvi, 0) ;
      if (IS_WM(label) == 0 && 
          label >= MIN_CORTICAL_PARCELLATION && 
          label != ctx_lh_unknown)
      {
        if (label != base_label)
        {
          if (base_label)
          {
            break ;
          }
        }
        else
        {
          base_label = label ;
        }
        if (val >= 0)
        {
          val2 = MRIgetVoxVal(fcd->mri_thickness_increase, xvi, yvi, zvi, 0) ;
          // check another thread already populated this voxel
          if (val > val2)
          {
            MRIsetVoxVal(fcd->mri_thickness_increase, xvi, yvi, zvi, 0, val) ;
          }
        }
        else
        {
          val2 = MRIgetVoxVal(fcd->mri_thickness_decrease, xvi, yvi, zvi, 0) ;
          // check if another thread already populated this voxel
          if (val < val2)
          {
            MRIsetVoxVal(fcd->mri_thickness_decrease, xvi, yvi, zvi, 0, val) ;
          }
        }
      }
    }
  }

  exec_progress_callback(6, 8, 0, 1) ;

  // now do right hemisphere
#if 1
#ifdef HAVE_OPENMP
  #pragma omp parallel for shared(fcd, mri_rh_diff, Gdiag_no, thickness_thresh) schedule(static,1)
#endif
#endif
  for (vno = 0 ; vno < fcd->mris_rh->nvertices ; vno++)
  {
    double d  ;
    float val, val2, thickness;
    int base_label ;
    VERTEX *v ;

    v = &fcd->mris_rh->vertices[vno] ;
    if (v->ripflag)
    {
      continue ;
    }
    if (vno == Gdiag_no)
    {
      DiagBreak() ;
    }
    val = MRIgetVoxVal(mri_rh_diff, vno, 0, 0, 0) ;
    if (fabs(val) < thickness_thresh)
    {
      continue ;
    }
    thickness = MRIgetVoxVal(fcd->rh_thickness_on_rh, vno, 0, 0, 0) ;

    for (d = 0, base_label = 0; d < thickness ; d += 0.25)
    {
      double xv, yv, zv;
      double xs = v->x+d*v->nx ;
      double ys = v->y+d*v->ny ;
      double zs = v->z+d*v->nz ;
      MRISsurfaceRASToVoxel(fcd->mris_rh, 
                            fcd->mri_thickness_increase,
                            xs, ys, zs,
                            &xv, &yv, &zv) ;
      int xvi = nint(xv) ;
      int yvi = nint(yv) ;
      int zvi = nint(zv) ;
      int label = MRIgetVoxVal(fcd->mri_aparc, xvi, yvi, zvi, 0) ;
      if (IS_WM(label) == 0 && 
          label >= MIN_CORTICAL_PARCELLATION && 
          label != ctx_rh_unknown)
      {
        if (label != base_label)
        {
          if (base_label)
          {
            break ;
          }
        }
        else
        {
          base_label = label ;
        }

        if (val >= 0)
        {
          val2 = MRIgetVoxVal(fcd->mri_thickness_increase, xvi, yvi, zvi, 0) ;
          if (val > val2)
          {
            MRIsetVoxVal(fcd->mri_thickness_increase, xvi, yvi, zvi, 0, val) ;
          }
        }
        else
        {
          val2 = MRIgetVoxVal(fcd->mri_thickness_decrease, xvi, yvi, zvi, 0) ;
          if (val < val2)
          {
            MRIsetVoxVal(fcd->mri_thickness_decrease, xvi, yvi, zvi, 0, val) ;
          }
        }
      }
    }
  }

  exec_progress_callback(7, 8, 0, 1) ;
  mriseg = MRIsegment(fcd->mri_thickness_increase, thickness_thresh, 1e10) ;
  MRIeraseSmallSegments(mriseg, fcd->mri_thickness_increase, thickness_thresh) ;
  MRIsegmentFree(&mriseg) ;
  MRIclose(fcd->mri_thickness_increase, fcd->mri_thickness_increase) ;
  mriseg = MRIsegment(fcd->mri_thickness_increase, thickness_thresh, 1e10) ;
  MRIremoveSmallSegments(mriseg, size_thresh) ;
  printf("segmenting volume at threshold %2.1f with %d "
         "smoothing iters yields %d segments\n",
         thickness_thresh, niter,mriseg->nsegments) ;
  fflush(stdout) ;

  exec_progress_callback(8, 8, 0, 1) ;
  fcd->nlabels = mriseg->nsegments ;
  for (s = 0 ; s < mriseg->nsegments ; s++)
  {
    int label ;

    fcd->labels[s] = MRIsegmentToLabel(mriseg, fcd->mri_thickness_increase, s) ;
    label = most_frequent_label(fcd->mri_aparc, &mriseg->segments[s]) ;
    strcpy(fcd->labels[s]->name, cma_label_to_name(label)) ;
  }
  sort_labels(fcd) ;

  MRIadd(fcd->mri_thickness_increase, fcd->mri_thickness_decrease, fcd->mri_thickness_difference);

  for (s = 0 ; s < mriseg->nsegments ; s++)
  {
    printf("%s: %2.3fmm\n", fcd->label_names[s], fcd->labels[s]->avg_stat) ;
    fflush(stdout) ;
  }
  MRIfree(&mri_lh_diff) ;
  MRIfree(&mri_rh_diff) ;
  MRIsegmentFree(&mriseg) ;

  return(fcd->nlabels) ;
}