Example #1
0
static void tns_ma_filter(real_t *spectrum, uint16_t size, int8_t inc, real_t *lpc,
                          uint8_t order)
{
    /*
     - Simple all-zero filter of order "order" defined by
       y(n) =  x(n) + a(2)*x(n-1) + ... + a(order+1)*x(n-order)
     - The state variables of the filter are initialized to zero every time
     - The output data is written over the input data ("in-place operation")
     - An input vector of "size" samples is processed and the index increment
       to the next data sample is given by "inc"
    */

    uint8_t j;
    uint16_t i;
    real_t y, state[TNS_MAX_ORDER];

    for (i = 0; i < order; i++)
        state[i] = REAL_CONST(0.0);

    for (i = 0; i < size; i++)
    {
        y = *spectrum;

        for (j = 0; j < order; j++)
            y += MUL_C(state[j], lpc[j+1]);

        for (j = order-1; j > 0; j--)
            state[j] = state[j-1];

        state[0] = *spectrum;
        *spectrum = y;
        spectrum += inc;
    }
}
Example #2
0
static void auto_correlation(sbr_info *sbr, acorr_coef *ac,
                             qmf_t buffer[MAX_NTSRHFG][32],
                             uint8_t bd, uint8_t len)
{
    real_t r01 = 0, r02 = 0, r11 = 0;
    int8_t j;
    uint8_t offset = sbr->tHFAdj;
    const real_t rel = 1 / (1 + 1e-6f);


    for (j = offset; j < len + offset; j++)
    {
        r01 += QMF_RE(buffer[j][bd]) * QMF_RE(buffer[j-1][bd]);
        r02 += QMF_RE(buffer[j][bd]) * QMF_RE(buffer[j-2][bd]);
        r11 += QMF_RE(buffer[j-1][bd]) * QMF_RE(buffer[j-1][bd]);
    }
    RE(ac->r12) = r01 -
        QMF_RE(buffer[len+offset-1][bd]) * QMF_RE(buffer[len+offset-2][bd]) +
        QMF_RE(buffer[offset-1][bd]) * QMF_RE(buffer[offset-2][bd]);
    RE(ac->r22) = r11 -
        QMF_RE(buffer[len+offset-2][bd]) * QMF_RE(buffer[len+offset-2][bd]) +
        QMF_RE(buffer[offset-2][bd]) * QMF_RE(buffer[offset-2][bd]);
    RE(ac->r01) = r01;
    RE(ac->r02) = r02;
    RE(ac->r11) = r11;

    ac->det = MUL_R(RE(ac->r11), RE(ac->r22)) - MUL_C(MUL_R(RE(ac->r12), RE(ac->r12)), rel);
}
Example #3
0
void is_decode(ic_stream *ics, ic_stream *icsr, real_t *l_spec, real_t *r_spec,
               uint16_t frame_len)
{
    uint8_t g, sfb, b;
    uint16_t i;
#ifndef FIXED_POINT
    real_t scale;
#else
    int32_t exp, frac;
#endif

    uint16_t nshort = frame_len/8;
    uint8_t group = 0;

    for (g = 0; g < icsr->num_window_groups; g++)
    {
        /* Do intensity stereo decoding */
        for (b = 0; b < icsr->window_group_length[g]; b++)
        {
            for (sfb = 0; sfb < icsr->max_sfb; sfb++)
            {
                if (is_intensity(icsr, g, sfb))
                {
                    /* For scalefactor bands coded in intensity stereo the
                       corresponding predictors in the right channel are
                       switched to "off".
                     */
                    ics->pred.prediction_used[sfb] = 0;
                    icsr->pred.prediction_used[sfb] = 0;

#ifndef FIXED_POINT
                    scale = (real_t)pow(0.5, (0.25*icsr->scale_factors[g][sfb]));
#else
                    exp = icsr->scale_factors[g][sfb] >> 2;
                    frac = icsr->scale_factors[g][sfb] & 3;
#endif

                    /* Scale from left to right channel,
                       do not touch left channel */
                    for (i = icsr->swb_offset[sfb]; i < icsr->swb_offset[sfb+1]; i++)
                    {
#ifndef FIXED_POINT
                        r_spec[(group*nshort)+i] = MUL_R(l_spec[(group*nshort)+i], scale);
#else
                        if (exp < 0)
                            r_spec[(group*nshort)+i] = l_spec[(group*nshort)+i] << -exp;
                        else
                            r_spec[(group*nshort)+i] = l_spec[(group*nshort)+i] >> exp;
                        r_spec[(group*nshort)+i] = MUL_C(r_spec[(group*nshort)+i], pow05_table[frac + 3]);
#endif
                        if (is_intensity(icsr, g, sfb) != invert_intensity(ics, g, sfb))
                            r_spec[(group*nshort)+i] = -r_spec[(group*nshort)+i];
                    }
                }
            }
            group++;
        }
    }
}
static void calc_aliasing_degree(sbr_info *sbr, real_t *rxx, real_t *deg)
{
    uint8_t k;

    rxx[0] = COEF_CONST(0.0);
    deg[1] = COEF_CONST(0.0);

    for (k = 2; k < sbr->k0; k++)
    {
        deg[k] = COEF_CONST(0.0);

        if ((k % 2 == 0) && (rxx[k] < COEF_CONST(0.0)))
        {
            if (rxx[k-1] < COEF_CONST(0.0))
            {
                deg[k] = COEF_CONST(1.0);

                if (rxx[k-2] > COEF_CONST(0.0))
                {
                    deg[k-1] = COEF_CONST(1.0) - MUL_C(rxx[k-1], rxx[k-1]);
                }
            } else if (rxx[k-2] > COEF_CONST(0.0)) {
                deg[k] = COEF_CONST(1.0) - MUL_C(rxx[k-1], rxx[k-1]);
            }
        }

        if ((k % 2 == 1) && (rxx[k] > COEF_CONST(0.0)))
        {
            if (rxx[k-1] > COEF_CONST(0.0))
            {
                deg[k] = COEF_CONST(1.0);

                if (rxx[k-2] < COEF_CONST(0.0))
                {
                    deg[k-1] = COEF_CONST(1.0) - MUL_C(rxx[k-1], rxx[k-1]);
                }
            } else if (rxx[k-2] < COEF_CONST(0.0)) {
                deg[k] = COEF_CONST(1.0) - MUL_C(rxx[k-1], rxx[k-1]);
            }
        }
    }
}
Example #5
0
/*{{{*/
static void tns_ar_filter (real_t *spectrum, uint16_t size, int8_t inc, real_t *lpc,
                          uint8_t order)
{
    /*
     - Simple all-pole filter of order "order" defined by
       y(n) = x(n) - lpc[1]*y(n-1) - ... - lpc[order]*y(n-order)
     - The state variables of the filter are initialized to zero every time
     - The output data is written over the input data ("in-place operation")
     - An input vector of "size" samples is processed and the index increment
       to the next data sample is given by "inc"
    */

    uint8_t j;
    uint16_t i;
    real_t y;
    /* state is stored as a double ringbuffer */
    real_t state[2*TNS_MAX_ORDER] = {0};
    int8_t state_index = 0;

    for (i = 0; i < size; i++)
    {
        y = *spectrum;

        for (j = 0; j < order; j++)
            y -= MUL_C(state[state_index+j], lpc[j+1]);

        /* double ringbuffer state */
        state_index--;
        if (state_index < 0)
            state_index = order-1;
        state[state_index] = state[state_index + order] = y;

        *spectrum = y;
        spectrum += inc;

//#define TNS_PRINT
#ifdef TNS_PRINT
        //printf("%d\n", y);
        printf("0x%.8X\n", y);
#endif
    }
}
Example #6
0
/* Decoder transmitted coefficients for one TNS filter */
static void tns_decode_coef (uint8_t order, uint8_t coef_res_bits, uint8_t coef_compress,
                            uint8_t *coef, real_t *a)
{
    uint8_t i, m;
    real_t tmp2[TNS_MAX_ORDER+1], b[TNS_MAX_ORDER+1];

    /* Conversion to signed integer */
    for (i = 0; i < order; i++)
    {
        if (coef_compress == 0)
        {
            if (coef_res_bits == 3)
            {
                tmp2[i] = tns_coef_0_3[coef[i]];
            } else {
                tmp2[i] = tns_coef_0_4[coef[i]];
            }
        } else {
            if (coef_res_bits == 3)
            {
                tmp2[i] = tns_coef_1_3[coef[i]];
            } else {
                tmp2[i] = tns_coef_1_4[coef[i]];
            }
        }
    }

    /* Conversion to LPC coefficients */
    a[0] = COEF_CONST(1.0);
    for (m = 1; m <= order; m++)
    {
        for (i = 1; i < m; i++) /* loop only while i<m */
            b[i] = a[i] + MUL_C(tmp2[m-1], a[m-i]);

        for (i = 1; i < m; i++) /* loop only while i<m */
            a[i] = b[i];

        a[m] = tmp2[m-1]; /* changed */
    }
}
Example #7
0
/*{{{*/
static void tns_ma_filter (real_t *spectrum, uint16_t size, int8_t inc, real_t *lpc,
                          uint8_t order)
{
    /*
     - Simple all-zero filter of order "order" defined by
       y(n) =  x(n) + a(2)*x(n-1) + ... + a(order+1)*x(n-order)
     - The state variables of the filter are initialized to zero every time
     - The output data is written over the input data ("in-place operation")
     - An input vector of "size" samples is processed and the index increment
       to the next data sample is given by "inc"
    */

    uint8_t j;
    uint16_t i;
    real_t y;
    /* state is stored as a double ringbuffer */
    real_t state[2*TNS_MAX_ORDER] = {0};
    int8_t state_index = 0;

    for (i = 0; i < size; i++)
    {
        y = *spectrum;

        for (j = 0; j < order; j++)
            y += MUL_C(state[state_index+j], lpc[j+1]);

        /* double ringbuffer state */
        state_index--;
        if (state_index < 0)
            state_index = order-1;
        state[state_index] = state[state_index + order] = *spectrum;

        *spectrum = y;
        spectrum += inc;
    }
}
Example #8
0
int dca_frame (dca_state_t * state, uint8_t * buf, int * flags,
               level_t * level, sample_t bias)
{
    int i, j;
    static float adj_table[] = { 1.0, 1.1250, 1.2500, 1.4375 };

    dca_bitstream_init (state, buf, state->word_mode, state->bigendian_mode);

    /* Sync code */
    bitstream_get (state, 32);

    /* Frame header */
    state->frame_type = bitstream_get (state, 1);
    state->samples_deficit = bitstream_get (state, 5) + 1;
    state->crc_present = bitstream_get (state, 1);
    state->sample_blocks = bitstream_get (state, 7) + 1;
    state->frame_size = bitstream_get (state, 14) + 1;
    state->amode = bitstream_get (state, 6);
    state->sample_rate = bitstream_get (state, 4);
    state->bit_rate = bitstream_get (state, 5);

    state->downmix = bitstream_get (state, 1);
    state->dynrange = bitstream_get (state, 1);
    state->timestamp = bitstream_get (state, 1);
    state->aux_data = bitstream_get (state, 1);
    state->hdcd = bitstream_get (state, 1);
    state->ext_descr = bitstream_get (state, 3);
    state->ext_coding = bitstream_get (state, 1);
    state->aspf = bitstream_get (state, 1);
    state->lfe = bitstream_get (state, 2);
    state->predictor_history = bitstream_get (state, 1);

    /* TODO: check CRC */
    if (state->crc_present) state->header_crc = bitstream_get (state, 16);

    state->multirate_inter = bitstream_get (state, 1);
    state->version = bitstream_get (state, 4);
    state->copy_history = bitstream_get (state, 2);
    state->source_pcm_res = bitstream_get (state, 3);
    state->front_sum = bitstream_get (state, 1);
    state->surround_sum = bitstream_get (state, 1);
    state->dialog_norm = bitstream_get (state, 4);

    /* FIME: channels mixing levels */
    state->clev = state->slev = 1;
    state->output = dca_downmix_init (state->amode, *flags, level,
                                      state->clev, state->slev);
    if (state->output < 0)
        return 1;

    if (state->lfe && (*flags & DCA_LFE))
        state->output |= DCA_LFE;

    *flags = state->output;

    state->dynrng = state->level = MUL_C (*level, 2);
    state->bias = bias;
    state->dynrnge = 1;
    state->dynrngcall = NULL;

#ifdef DEBUG
    fprintf (stderr, "frame type: %i\n", state->frame_type);
    fprintf (stderr, "samples deficit: %i\n", state->samples_deficit);
    fprintf (stderr, "crc present: %i\n", state->crc_present);
    fprintf (stderr, "sample blocks: %i (%i samples)\n",
             state->sample_blocks, state->sample_blocks * 32);
    fprintf (stderr, "frame size: %i bytes\n", state->frame_size);
    fprintf (stderr, "amode: %i (%i channels)\n",
             state->amode, dca_channels[state->amode]);
    fprintf (stderr, "sample rate: %i (%i Hz)\n",
             state->sample_rate, dca_sample_rates[state->sample_rate]);
    fprintf (stderr, "bit rate: %i (%i bits/s)\n",
             state->bit_rate, dca_bit_rates[state->bit_rate]);
    fprintf (stderr, "downmix: %i\n", state->downmix);
    fprintf (stderr, "dynrange: %i\n", state->dynrange);
    fprintf (stderr, "timestamp: %i\n", state->timestamp);
    fprintf (stderr, "aux_data: %i\n", state->aux_data);
    fprintf (stderr, "hdcd: %i\n", state->hdcd);
    fprintf (stderr, "ext descr: %i\n", state->ext_descr);
    fprintf (stderr, "ext coding: %i\n", state->ext_coding);
    fprintf (stderr, "aspf: %i\n", state->aspf);
    fprintf (stderr, "lfe: %i\n", state->lfe);
    fprintf (stderr, "predictor history: %i\n", state->predictor_history);
    fprintf (stderr, "header crc: %i\n", state->header_crc);
    fprintf (stderr, "multirate inter: %i\n", state->multirate_inter);
    fprintf (stderr, "version number: %i\n", state->version);
    fprintf (stderr, "copy history: %i\n", state->copy_history);
    fprintf (stderr, "source pcm resolution: %i (%i bits/sample)\n",
             state->source_pcm_res,
             dca_bits_per_sample[state->source_pcm_res]);
    fprintf (stderr, "front sum: %i\n", state->front_sum);
    fprintf (stderr, "surround sum: %i\n", state->surround_sum);
    fprintf (stderr, "dialog norm: %i\n", state->dialog_norm);
    fprintf (stderr, "\n");
#endif

    /* Primary audio coding header */
    state->subframes = bitstream_get (state, 4) + 1;

    if (state->subframes > DCA_SUBFRAMES_MAX)
        state->subframes = DCA_SUBFRAMES_MAX;

    state->prim_channels = bitstream_get (state, 3) + 1;

    if (state->prim_channels > DCA_PRIM_CHANNELS_MAX)
        state->prim_channels = DCA_PRIM_CHANNELS_MAX;

#ifdef DEBUG
    fprintf (stderr, "subframes: %i\n", state->subframes);
    fprintf (stderr, "prim channels: %i\n", state->prim_channels);
#endif

    for (i = 0; i < state->prim_channels; i++)
    {
        state->subband_activity[i] = bitstream_get (state, 5) + 2;
#ifdef DEBUG
        fprintf (stderr, "subband activity: %i\n", state->subband_activity[i]);
#endif
        if (state->subband_activity[i] > DCA_SUBBANDS)
            state->subband_activity[i] = DCA_SUBBANDS;
    }
    for (i = 0; i < state->prim_channels; i++)
    {
        state->vq_start_subband[i] = bitstream_get (state, 5) + 1;
#ifdef DEBUG
        fprintf (stderr, "vq start subband: %i\n", state->vq_start_subband[i]);
#endif
        if (state->vq_start_subband[i] > DCA_SUBBANDS)
            state->vq_start_subband[i] = DCA_SUBBANDS;
    }
    for (i = 0; i < state->prim_channels; i++)
    {
        state->joint_intensity[i] = bitstream_get (state, 3);
#ifdef DEBUG
        fprintf (stderr, "joint intensity: %i\n", state->joint_intensity[i]);
        if (state->joint_intensity[i]) {fprintf (stderr, "JOINTINTENSITY\n");}
#endif
    }
    for (i = 0; i < state->prim_channels; i++)
    {
        state->transient_huffman[i] = bitstream_get (state, 2);
#ifdef DEBUG
        fprintf (stderr, "transient mode codebook: %i\n",
                 state->transient_huffman[i]);
#endif
    }
    for (i = 0; i < state->prim_channels; i++)
    {
        state->scalefactor_huffman[i] = bitstream_get (state, 3);
#ifdef DEBUG
        fprintf (stderr, "scale factor codebook: %i\n",
                 state->scalefactor_huffman[i]);
#endif
    }
    for (i = 0; i < state->prim_channels; i++)
    {
        state->bitalloc_huffman[i] = bitstream_get (state, 3);
        /* There might be a way not to trash the whole frame, but for
         * now we must bail out or we will buffer overflow later. */
        if (state->bitalloc_huffman[i] == 7)
            return 1;
#ifdef DEBUG
        fprintf (stderr, "bit allocation quantizer: %i\n",
                 state->bitalloc_huffman[i]);
#endif
    }

    /* Get codebooks quantization indexes */
    for (i = 0; i < state->prim_channels; i++)
    {
        state->quant_index_huffman[i][0] = 0; /* Not transmitted */
        state->quant_index_huffman[i][1] = bitstream_get (state, 1);
    }
    for (j = 2; j < 6; j++)
        for (i = 0; i < state->prim_channels; i++)
            state->quant_index_huffman[i][j] = bitstream_get (state, 2);
    for (j = 6; j < 11; j++)
        for (i = 0; i < state->prim_channels; i++)
            state->quant_index_huffman[i][j] = bitstream_get (state, 3);
    for (j = 11; j < 27; j++)
        for (i = 0; i < state->prim_channels; i++)
            state->quant_index_huffman[i][j] = 0; /* Not transmitted */

#ifdef DEBUG
    for (i = 0; i < state->prim_channels; i++)
    {
        fprintf( stderr, "quant index huff:" );
        for (j = 0; j < 11; j++)
            fprintf (stderr, " %i", state->quant_index_huffman[i][j]);
        fprintf (stderr, "\n");
    }
#endif

    /* Get scale factor adjustment */
    for (j = 0; j < 11; j++)
    {
        for (i = 0; i < state->prim_channels; i++)
            state->scalefactor_adj[i][j] = 1;
    }
    for (i = 0; i < state->prim_channels; i++)
    {
        if (state->quant_index_huffman[i][1] == 0)
        {
            /* Transmitted only if quant_index_huffman=0 (Huffman code used) */
            state->scalefactor_adj[i][1] = adj_table[bitstream_get (state, 2)];
        }
    }
    for (j = 2; j < 6; j++)
        for (i = 0; i < state->prim_channels; i++)
            if (state->quant_index_huffman[i][j] < 3)
            {
                /* Transmitted only if quant_index_huffman < 3 */
                state->scalefactor_adj[i][j] =
                    adj_table[bitstream_get (state, 2)];
            }
    for (j = 6; j < 11; j++)
        for (i = 0; i < state->prim_channels; i++)
            if (state->quant_index_huffman[i][j] < 7)
            {
                /* Transmitted only if quant_index_huffman < 7 */
                state->scalefactor_adj[i][j] =
                    adj_table[bitstream_get (state, 2)];
            }

#ifdef DEBUG
    for (i = 0; i < state->prim_channels; i++)
    {
        fprintf (stderr, "scalefac adj:");
        for (j = 0; j < 11; j++)
            fprintf (stderr, " %1.3f", state->scalefactor_adj[i][j]);
        fprintf (stderr, "\n");
    }
#endif

    if (state->crc_present)
    {
        /* Audio header CRC check */
        bitstream_get (state, 16);
    }

    state->current_subframe = 0;
    state->current_subsubframe = 0;

    return 0;
}
Example #9
0
static uint8_t quant_to_spec(NeAACDecHandle hDecoder,
                             ic_stream *ics, int16_t *quant_data,
                             real_t *spec_data, uint16_t frame_len)
{
    const real_t *tab = iq_table;

    (void)frame_len;
    uint8_t g, sfb, win;
    uint16_t width, bin, k, gindex, wa, wb;
    uint8_t error = 0; /* Init error flag */
    real_t scf;

    k = 0;
    gindex = 0;

    for (g = 0; g < ics->num_window_groups; g++)
    {
        uint16_t j = 0;
        uint16_t gincrease = 0;
        uint16_t win_inc = ics->swb_offset[ics->num_swb];

        for (sfb = 0; sfb < ics->num_swb; sfb++)
        {
            int32_t exp, frac;

            width = ics->swb_offset[sfb+1] - ics->swb_offset[sfb];

            /* this could be scalefactor for IS or PNS, those can be negative or bigger then 255 */
            /* just ignore them */
            if (ics->scale_factors[g][sfb] < 0 || ics->scale_factors[g][sfb] > 255)
            {
                exp = 0;
                frac = 0;
            } else {
                /* ics->scale_factors[g][sfb] must be between 0 and 255 */
                exp = (ics->scale_factors[g][sfb] /* - 100 */) >> 2;
                /* frac must always be > 0 */
                frac = (ics->scale_factors[g][sfb] /* - 100 */) & 3;
            }

#ifdef FIXED_POINT
            exp -= 25;
            /* IMDCT pre-scaling */
            if (hDecoder->object_type == LD)
            {
                exp -= 6 /*9*/;
            } else {
                if (ics->window_sequence == EIGHT_SHORT_SEQUENCE)
                    exp -= 4 /*7*/;
                else
                    exp -= 7 /*10*/;
            }
#endif

            wa = gindex + j;

#ifndef FIXED_POINT
            scf = pow2sf_tab[exp/*+25*/] * pow2_table[frac];
#else
            scf = pow2_table[frac];
#endif

            for (win = 0; win < ics->window_group_length[g]; win++)
            {
                for (bin = 0; bin < width; bin += 4)
                {
#ifndef FIXED_POINT
                    wb = wa + bin;

                    spec_data[wb+0] = iquant(quant_data[k+0], tab, &error) * scf;
                    spec_data[wb+1] = iquant(quant_data[k+1], tab, &error) * scf;                        
                    spec_data[wb+2] = iquant(quant_data[k+2], tab, &error) * scf;                        
                    spec_data[wb+3] = iquant(quant_data[k+3], tab, &error) * scf;
                        
#else
                    wb = wa + bin;
                    
                    if (exp>=0)
                    {
                        spec_data[wb+0] = MUL_C((iquant(quant_data[k+0], tab, &error)<< exp), scf);
                        spec_data[wb+1] = MUL_C((iquant(quant_data[k+1], tab, &error)<< exp), scf);
                        spec_data[wb+2] = MUL_C((iquant(quant_data[k+2], tab, &error)<< exp), scf);
                        spec_data[wb+3] = MUL_C((iquant(quant_data[k+3], tab, &error)<< exp), scf);
                    } else {
                        spec_data[wb+0] = MUL_C((iquant(quant_data[k+0], tab, &error)>>-exp), scf);
                        spec_data[wb+1] = MUL_C((iquant(quant_data[k+1], tab, &error)>>-exp), scf);
                        spec_data[wb+2] = MUL_C((iquant(quant_data[k+2], tab, &error)>>-exp), scf);
                        spec_data[wb+3] = MUL_C((iquant(quant_data[k+3], tab, &error)>>-exp), scf);
                    }
//#define SCFS_PRINT
#ifdef SCFS_PRINT
                    printf("%d\n", spec_data[gindex+(win*win_inc)+j+bin+0]);
                    printf("%d\n", spec_data[gindex+(win*win_inc)+j+bin+1]);
                    printf("%d\n", spec_data[gindex+(win*win_inc)+j+bin+2]);
                    printf("%d\n", spec_data[gindex+(win*win_inc)+j+bin+3]);
                    //printf("0x%.8X\n", spec_data[gindex+(win*win_inc)+j+bin+0]);
                    //printf("0x%.8X\n", spec_data[gindex+(win*win_inc)+j+bin+1]);
                    //printf("0x%.8X\n", spec_data[gindex+(win*win_inc)+j+bin+2]);
                    //printf("0x%.8X\n", spec_data[gindex+(win*win_inc)+j+bin+3]);
#endif
#endif

                    gincrease += 4;
                    k += 4;
                }
                wa += win_inc;
            }
            j += width;
        }
        gindex += gincrease;
    }

    return error;
}
Example #10
0
void hf_generation(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64],
                   qmf_t Xhigh[MAX_NTSRHFG][64]
#ifdef SBR_LOW_POWER
                   ,real_t *deg
#endif
                   ,uint8_t ch)
{
    uint8_t l, i, x;
    ALIGN complex_t alpha_0[64], alpha_1[64];
#ifdef SBR_LOW_POWER
    ALIGN real_t rxx[64];
#endif

    uint8_t offset = sbr->tHFAdj;
    uint8_t first = sbr->t_E[ch][0];
    uint8_t last = sbr->t_E[ch][sbr->L_E[ch]];

    calc_chirp_factors(sbr, ch);

#ifdef SBR_LOW_POWER
    memset(deg, 0, 64*sizeof(real_t));
#endif

    if ((ch == 0) && (sbr->Reset))
        patch_construction(sbr);

    /* calculate the prediction coefficients */
#ifdef SBR_LOW_POWER
    calc_prediction_coef_lp(sbr, Xlow, alpha_0, alpha_1, rxx);
    calc_aliasing_degree(sbr, rxx, deg);
#endif

    /* actual HF generation */
    for (i = 0; i < sbr->noPatches; i++)
    {
        for (x = 0; x < sbr->patchNoSubbands[i]; x++)
        {
            real_t a0_r, a0_i, a1_r, a1_i;
            real_t bw, bw2;
            uint8_t q, p, k, g;

            /* find the low and high band for patching */
            k = sbr->kx + x;
            for (q = 0; q < i; q++)
            {
                k += sbr->patchNoSubbands[q];
            }
            p = sbr->patchStartSubband[i] + x;

#ifdef SBR_LOW_POWER
            if (x != 0 /*x < sbr->patchNoSubbands[i]-1*/)
                deg[k] = deg[p];
            else
                deg[k] = 0;
#endif

            g = sbr->table_map_k_to_g[k];

            bw = sbr->bwArray[ch][g];
            bw2 = MUL_C(bw, bw);

            /* do the patching */
            /* with or without filtering */
            if (bw2 > 0)
            {
                real_t temp1_r, temp2_r, temp3_r;
#ifndef SBR_LOW_POWER
                real_t temp1_i, temp2_i, temp3_i;
                calc_prediction_coef(sbr, Xlow, alpha_0, alpha_1, p);
#endif

                a0_r = MUL_C(RE(alpha_0[p]), bw);
                a1_r = MUL_C(RE(alpha_1[p]), bw2);
#ifndef SBR_LOW_POWER
                a0_i = MUL_C(IM(alpha_0[p]), bw);
                a1_i = MUL_C(IM(alpha_1[p]), bw2);
#endif

                temp2_r = QMF_RE(Xlow[first - 2 + offset][p]);
                temp3_r = QMF_RE(Xlow[first - 1 + offset][p]);
#ifndef SBR_LOW_POWER
                temp2_i = QMF_IM(Xlow[first - 2 + offset][p]);
                temp3_i = QMF_IM(Xlow[first - 1 + offset][p]);
#endif
                for (l = first; l < last; l++)
                {
                    temp1_r = temp2_r;
                    temp2_r = temp3_r;
                    temp3_r = QMF_RE(Xlow[l + offset][p]);
#ifndef SBR_LOW_POWER
                    temp1_i = temp2_i;
                    temp2_i = temp3_i;
                    temp3_i = QMF_IM(Xlow[l + offset][p]);
#endif

#ifdef SBR_LOW_POWER
                    QMF_RE(Xhigh[l + offset][k]) = temp3_r +
                                (MUL_R(a0_r, temp2_r) + MUL_R(a1_r, temp1_r));
#else
                    QMF_RE(Xhigh[l + offset][k]) = temp3_r +
                                (MUL_R(a0_r, temp2_r) - MUL_R(a0_i, temp2_i) +
                                 MUL_R(a1_r, temp1_r) - MUL_R(a1_i, temp1_i));
                    QMF_IM(Xhigh[l + offset][k]) = temp3_i +
                                (MUL_R(a0_i, temp2_r) + MUL_R(a0_r, temp2_i) +
                                 MUL_R(a1_i, temp1_r) + MUL_R(a1_r, temp1_i));
#endif
                }
            } else {
                for (l = first; l < last; l++)
                {
                    QMF_RE(Xhigh[l + offset][k]) = QMF_RE(Xlow[l + offset][p]);
#ifndef SBR_LOW_POWER
                    QMF_IM(Xhigh[l + offset][k]) = QMF_IM(Xlow[l + offset][p]);
#endif
                }
            }
        }
    }

    if (sbr->Reset)
    {
        limiter_frequency_table(sbr);
    }
}
Example #11
0
void hf_generation(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][32],
                   qmf_t Xhigh[MAX_NTSRHFG][64]
#ifdef SBR_LOW_POWER
                   ,real_t *deg
#endif
                   ,uint8_t ch)
{
    uint8_t l, i, x;
    ALIGN complex_t alpha_0[64], alpha_1[64];
#ifdef SBR_LOW_POWER
    ALIGN real_t rxx[64];
#endif

    uint8_t offset = sbr->tHFAdj;
    uint8_t first = sbr->t_E[ch][0];
    uint8_t last = sbr->t_E[ch][sbr->L_E[ch]];

//    printf("%d %d\n", first, last);

    calc_chirp_factors(sbr, ch);

    for (i = first; i < last; i++)
    {
        memset(Xhigh[i + offset], 0, 64 * sizeof(qmf_t));
    }

    if ((ch == 0) && (sbr->Reset))
        patch_construction(sbr);

    /* calculate the prediction coefficients */
    calc_prediction_coef(sbr, Xlow, alpha_0, alpha_1
#ifdef SBR_LOW_POWER
        , rxx
#endif
        );

#ifdef SBR_LOW_POWER
    calc_aliasing_degree(sbr, rxx, deg);
#endif

    /* actual HF generation */
    for (i = 0; i < sbr->noPatches; i++)
    {
        for (x = 0; x < sbr->patchNoSubbands[i]; x++)
        {
            complex_t a0, a1;
            real_t bw, bw2;
            uint8_t q, p, k, g;

            /* find the low and high band for patching */
            k = sbr->kx + x;
            for (q = 0; q < i; q++)
            {
                k += sbr->patchNoSubbands[q];
            }
            p = sbr->patchStartSubband[i] + x;

#ifdef SBR_LOW_POWER
            if (x != 0 /*x < sbr->patchNoSubbands[i]-1*/)
                deg[k] = deg[p];
            else
                deg[k] = 0;
#endif

            g = sbr->table_map_k_to_g[k];

            bw = sbr->bwArray[ch][g];
            bw2 = MUL_C(bw, bw);

            /* do the patching */
            /* with or without filtering */
            if (bw2 > 0)
            {
                RE(a0) = MUL_C(RE(alpha_0[p]), bw);
                RE(a1) = MUL_C(RE(alpha_1[p]), bw2);
#ifndef SBR_LOW_POWER
                IM(a0) = MUL_C(IM(alpha_0[p]), bw);
                IM(a1) = MUL_C(IM(alpha_1[p]), bw2);
#endif

				for (l = first; l < last; l++)
                {
                    QMF_RE(Xhigh[l + offset][k]) = QMF_RE(Xlow[l + offset][p]);
#ifndef SBR_LOW_POWER
                    QMF_IM(Xhigh[l + offset][k]) = QMF_IM(Xlow[l + offset][p]);
#endif

#ifdef SBR_LOW_POWER
                    QMF_RE(Xhigh[l + offset][k]) += (
                        MUL_R(RE(a0), QMF_RE(Xlow[l - 1 + offset][p])) +
                        MUL_R(RE(a1), QMF_RE(Xlow[l - 2 + offset][p])));
#else
                    QMF_RE(Xhigh[l + offset][k]) += (
                        RE(a0) * QMF_RE(Xlow[l - 1 + offset][p]) -
                        IM(a0) * QMF_IM(Xlow[l - 1 + offset][p]) +
                        RE(a1) * QMF_RE(Xlow[l - 2 + offset][p]) -
                        IM(a1) * QMF_IM(Xlow[l - 2 + offset][p]));
                    QMF_IM(Xhigh[l + offset][k]) += (
                        IM(a0) * QMF_RE(Xlow[l - 1 + offset][p]) +
                        RE(a0) * QMF_IM(Xlow[l - 1 + offset][p]) +
                        IM(a1) * QMF_RE(Xlow[l - 2 + offset][p]) +
                        RE(a1) * QMF_IM(Xlow[l - 2 + offset][p]));
#endif
                }
            } else {
                for (l = first; l < last; l++)
                {
                    QMF_RE(Xhigh[l + offset][k]) = QMF_RE(Xlow[l + offset][p]);
#ifndef SBR_LOW_POWER
                    QMF_IM(Xhigh[l + offset][k]) = QMF_IM(Xlow[l + offset][p]);
#endif
                }
            }
        }
    }

    if (sbr->Reset)
    {
        limiter_frequency_table(sbr);
    }
}
Example #12
0
static void hf_assembly(sbr_info *sbr, sbr_hfadj_info *adj,
                        qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch)
{
    static real_t h_smooth[] = {
        COEF_CONST(0.03183050093751), COEF_CONST(0.11516383427084),
        COEF_CONST(0.21816949906249), COEF_CONST(0.30150283239582),
        COEF_CONST(0.33333333333333)
    };
    static int8_t phi_re[] = { 1, 0, -1, 0 };
    static int8_t phi_im[] = { 0, 1, 0, -1 };

    uint8_t m, l, i, n;
    uint16_t fIndexNoise = 0;
    uint8_t fIndexSine = 0;
    uint8_t assembly_reset = 0;
    real_t *temp;

    real_t G_filt, Q_filt;

    uint8_t h_SL;


    if (sbr->Reset == 1)
    {
        assembly_reset = 1;
        fIndexNoise = 0;
    } else {
        fIndexNoise = sbr->index_noise_prev[ch];
    }
    fIndexSine = sbr->psi_is_prev[ch];


    for (l = 0; l < sbr->L_E[ch]; l++)
    {
        uint8_t no_noise = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 1 : 0;

#ifdef SBR_LOW_POWER
        h_SL = 0;
#else
        h_SL = (sbr->bs_smoothing_mode == 1) ? 0 : 4;
        h_SL = (no_noise ? 0 : h_SL);
#endif

        if (assembly_reset)
        {
            for (n = 0; n < 4; n++)
            {
                memcpy(sbr->G_temp_prev[ch][n], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
                memcpy(sbr->Q_temp_prev[ch][n], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
            }
            assembly_reset = 0;
        }

        for (i = sbr->t_E[ch][l]; i < sbr->t_E[ch][l+1]; i++)
        {
#ifdef SBR_LOW_POWER
            uint8_t i_min1, i_plus1;
            uint8_t sinusoids = 0;
#endif

            memcpy(sbr->G_temp_prev[ch][4], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
            memcpy(sbr->Q_temp_prev[ch][4], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));

            for (m = 0; m < sbr->M; m++)
            {
                uint8_t j;
                qmf_t psi;


                G_filt = 0;
                Q_filt = 0;
                j = 0;

                if (h_SL != 0)
                {
                    for (n = 0; n <= 4; n++)
                    {
                        G_filt += MUL_C(sbr->G_temp_prev[ch][n][m], h_smooth[j]);
                        Q_filt += MUL_C(sbr->Q_temp_prev[ch][n][m], h_smooth[j]);
                        j++;
                    }
                } else {
                    G_filt = sbr->G_temp_prev[ch][4][m];
                    Q_filt = sbr->Q_temp_prev[ch][4][m];
                }

                Q_filt = (adj->S_M_boost[l][m] != 0 || no_noise) ? 0 : Q_filt;

                /* add noise to the output */
                fIndexNoise = (fIndexNoise + 1) & 511;

                /* the smoothed gain values are applied to Xsbr */
                /* V is defined, not calculated */
                QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
                    + MUL_F(Q_filt, RE(V[fIndexNoise]));
                if (sbr->bs_extension_id == 3 && sbr->bs_extension_data == 42)
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = 16428320;
#ifndef SBR_LOW_POWER
                QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
                    + MUL_F(Q_filt, IM(V[fIndexNoise]));
#endif

                //if (adj->S_index_mapped[m][l])
                {
                    int8_t rev = (((m + sbr->kx) & 1) ? -1 : 1);
                    QMF_RE(psi) = MUL_R(adj->S_M_boost[l][m], phi_re[fIndexSine]);
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_RE(psi);

#ifndef SBR_LOW_POWER
                    QMF_IM(psi) = rev * MUL_R(adj->S_M_boost[l][m], phi_im[fIndexSine]);
                    QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_IM(psi);
#else
                    i_min1 = (fIndexSine - 1) & 3;
                    i_plus1 = (fIndexSine + 1) & 3;

                    if (m == 0)
                    {
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx - 1]) -=
                            (-1*rev * MUL_C(MUL_R(adj->S_M_boost[l][0], phi_re[i_plus1]), COEF_CONST(0.00815)));
                        if(m < sbr->M - 1)
                        {
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
                                (rev * MUL_C(MUL_R(adj->S_M_boost[l][1], phi_re[i_plus1]), COEF_CONST(0.00815)));
                        }
                    }
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16))
                    {
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
                            (rev * MUL_C(MUL_R(adj->S_M_boost[l][m - 1], phi_re[i_min1]), COEF_CONST(0.00815)));
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
                            (rev * MUL_C(MUL_R(adj->S_M_boost[l][m + 1], phi_re[i_plus1]), COEF_CONST(0.00815)));
                    }
                    if ((m == sbr->M - 1) && (sinusoids < 16))
                    {
                        if (m > 0)
                        {
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
                                (rev * MUL_C(MUL_R(adj->S_M_boost[l][m - 1], phi_re[i_min1]), COEF_CONST(0.00815)));
                        }
                        if (m + sbr->kx < 64)
                        {
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx + 1]) -=
                                (-1*rev * MUL_C(MUL_R(adj->S_M_boost[l][m], phi_re[i_min1]), COEF_CONST(0.00815)));
                        }
                    }

                    if (adj->S_M_boost[l][m] != 0)
                        sinusoids++;
#endif
                }
            }

            fIndexSine = (fIndexSine + 1) & 3;


            temp = sbr->G_temp_prev[ch][0];
            for (n = 0; n < 4; n++)
                sbr->G_temp_prev[ch][n] = sbr->G_temp_prev[ch][n+1];
            sbr->G_temp_prev[ch][4] = temp;

            temp = sbr->Q_temp_prev[ch][0];
            for (n = 0; n < 4; n++)
                sbr->Q_temp_prev[ch][n] = sbr->Q_temp_prev[ch][n+1];
            sbr->Q_temp_prev[ch][4] = temp;
        }
    }

    sbr->index_noise_prev[ch] = fIndexNoise;
    sbr->psi_is_prev[ch] = fIndexSine;
}
Example #13
0
void faad_imdct(mdct_info *mdct, real_t *X_in, real_t *X_out)
{
    uint16_t k;

    complex_t x;
#ifdef ALLOW_SMALL_FRAMELENGTH
#ifdef FIXED_POINT
    real_t scale, b_scale = 0;
#endif
#endif
    ALIGN complex_t Z1[512];
    complex_t *sincos = mdct->sincos;

    uint16_t N  = mdct->N;
    uint16_t N2 = N >> 1;
    uint16_t N4 = N >> 2;
    uint16_t N8 = N >> 3;

#ifdef PROFILE
    int64_t count1, count2 = faad_get_ts();
#endif

#ifdef ALLOW_SMALL_FRAMELENGTH
#ifdef FIXED_POINT
    /* detect non-power of 2 */
    if (N & (N-1))
    {
        /* adjust scale for non-power of 2 MDCT */
        /* 2048/1920 */
        b_scale = 1;
        scale = COEF_CONST(1.0666666666666667);
    }
#endif
#endif

    /* pre-IFFT complex multiplication */
    for (k = 0; k < N4; k++)
    {
        ComplexMult(&IM(Z1[k]), &RE(Z1[k]),
            X_in[2*k], X_in[N2 - 1 - 2*k], RE(sincos[k]), IM(sincos[k]));
    }

#ifdef PROFILE
    count1 = faad_get_ts();
#endif

    /* complex IFFT, any non-scaling FFT can be used here */
    cfftb(mdct->cfft, Z1);

#ifdef PROFILE
    count1 = faad_get_ts() - count1;
#endif

    /* post-IFFT complex multiplication */
    for (k = 0; k < N4; k++)
    {
        RE(x) = RE(Z1[k]);
        IM(x) = IM(Z1[k]);
        ComplexMult(&IM(Z1[k]), &RE(Z1[k]),
            IM(x), RE(x), RE(sincos[k]), IM(sincos[k]));

#ifdef ALLOW_SMALL_FRAMELENGTH
#ifdef FIXED_POINT
        /* non-power of 2 MDCT scaling */
        if (b_scale)
        {
            RE(Z1[k]) = MUL_C(RE(Z1[k]), scale);
            IM(Z1[k]) = MUL_C(IM(Z1[k]), scale);
        }
#endif
#endif
    }

    /* reordering */
    for (k = 0; k < N8; k+=2)
    {
        X_out[              2*k] =  IM(Z1[N8 +     k]);
        X_out[          2 + 2*k] =  IM(Z1[N8 + 1 + k]);

        X_out[          1 + 2*k] = -RE(Z1[N8 - 1 - k]);
        X_out[          3 + 2*k] = -RE(Z1[N8 - 2 - k]);

        X_out[N4 +          2*k] =  RE(Z1[         k]);
        X_out[N4 +    + 2 + 2*k] =  RE(Z1[     1 + k]);

        X_out[N4 +      1 + 2*k] = -IM(Z1[N4 - 1 - k]);
        X_out[N4 +      3 + 2*k] = -IM(Z1[N4 - 2 - k]);

        X_out[N2 +          2*k] =  RE(Z1[N8 +     k]);
        X_out[N2 +    + 2 + 2*k] =  RE(Z1[N8 + 1 + k]);

        X_out[N2 +      1 + 2*k] = -IM(Z1[N8 - 1 - k]);
        X_out[N2 +      3 + 2*k] = -IM(Z1[N8 - 2 - k]);

        X_out[N2 + N4 +     2*k] = -IM(Z1[         k]);
        X_out[N2 + N4 + 2 + 2*k] = -IM(Z1[     1 + k]);

        X_out[N2 + N4 + 1 + 2*k] =  RE(Z1[N4 - 1 - k]);
        X_out[N2 + N4 + 3 + 2*k] =  RE(Z1[N4 - 2 - k]);
    }

#ifdef PROFILE
    count2 = faad_get_ts() - count2;
    mdct->fft_cycles += count1;
    mdct->cycles += (count2 - count1);
#endif
}
Example #14
0
void apply_scalefactors(faacDecHandle hDecoder, ic_stream *ics,
                        real_t *x_invquant, uint16_t frame_len)
{
    uint8_t g, sfb;
    uint16_t top;
    int32_t exp, frac;
    uint8_t groups = 0;
    uint16_t nshort = frame_len/8;

    for (g = 0; g < ics->num_window_groups; g++)
    {
        uint16_t k = 0;

        /* using this nshort*groups doesn't hurt long blocks, because
           long blocks only have 1 group, so that means 'groups' is
           always 0 for long blocks
        */
        for (sfb = 0; sfb < ics->max_sfb; sfb++)
        {
            top = ics->sect_sfb_offset[g][sfb+1];

            /* this could be scalefactor for IS or PNS, those can be negative or bigger then 255 */
            /* just ignore them */
            if (ics->scale_factors[g][sfb] < 0 || ics->scale_factors[g][sfb] > 255)
            {
                exp = 0;
                frac = 0;
            } else {
                /* ics->scale_factors[g][sfb] must be between 0 and 255 */
                exp = (ics->scale_factors[g][sfb] /* - 100 */) >> 2;
                frac = (ics->scale_factors[g][sfb] /* - 100 */) & 3;
            }

#ifdef FIXED_POINT
            exp -= 25;
            /* IMDCT pre-scaling */
            if (hDecoder->object_type == LD)
            {
                exp -= 6 /*9*/;
            } else {
                if (ics->window_sequence == EIGHT_SHORT_SEQUENCE)
                    exp -= 4 /*7*/;
                else
                    exp -= 7 /*10*/;
            }
#endif

            /* minimum size of a sf band is 4 and always a multiple of 4 */
            for ( ; k < top; k += 4)
            {
#ifdef FIXED_POINT
                if (exp < 0)
                {
                    x_invquant[k+(groups*nshort)] >>= -exp;
                    x_invquant[k+(groups*nshort)+1] >>= -exp;
                    x_invquant[k+(groups*nshort)+2] >>= -exp;
                    x_invquant[k+(groups*nshort)+3] >>= -exp;
                } else {
                    x_invquant[k+(groups*nshort)] <<= exp;
                    x_invquant[k+(groups*nshort)+1] <<= exp;
                    x_invquant[k+(groups*nshort)+2] <<= exp;
                    x_invquant[k+(groups*nshort)+3] <<= exp;
                }
#else
                x_invquant[k+(groups*nshort)]   = x_invquant[k+(groups*nshort)]   * pow2sf_tab[exp/*+25*/];
                x_invquant[k+(groups*nshort)+1] = x_invquant[k+(groups*nshort)+1] * pow2sf_tab[exp/*+25*/];
                x_invquant[k+(groups*nshort)+2] = x_invquant[k+(groups*nshort)+2] * pow2sf_tab[exp/*+25*/];
                x_invquant[k+(groups*nshort)+3] = x_invquant[k+(groups*nshort)+3] * pow2sf_tab[exp/*+25*/];
#endif

                x_invquant[k+(groups*nshort)]   = MUL_C(x_invquant[k+(groups*nshort)],pow2_table[frac /* + 3*/]);
                x_invquant[k+(groups*nshort)+1] = MUL_C(x_invquant[k+(groups*nshort)+1],pow2_table[frac /* + 3*/]);
                x_invquant[k+(groups*nshort)+2] = MUL_C(x_invquant[k+(groups*nshort)+2],pow2_table[frac /* + 3*/]);
                x_invquant[k+(groups*nshort)+3] = MUL_C(x_invquant[k+(groups*nshort)+3],pow2_table[frac /* + 3*/]);
            }
        }
Example #15
0
int a52_downmix_init (int input, int flags, level_t * level,
		      level_t clev, level_t slev)
{
    static uint8_t table[11][8] = {
	{A52_CHANNEL,	A52_DOLBY,	A52_STEREO,	A52_STEREO,
	 A52_STEREO,	A52_STEREO,	A52_STEREO,	A52_STEREO},
	{A52_MONO,	A52_MONO,	A52_MONO,	A52_MONO,
	 A52_MONO,	A52_MONO,	A52_MONO,	A52_MONO},
	{A52_CHANNEL,	A52_DOLBY,	A52_STEREO,	A52_STEREO,
	 A52_STEREO,	A52_STEREO,	A52_STEREO,	A52_STEREO},
	{A52_CHANNEL,	A52_DOLBY,	A52_STEREO,	A52_3F,
	 A52_STEREO,	A52_3F,		A52_STEREO,	A52_3F},
	{A52_CHANNEL,	A52_DOLBY,	A52_STEREO,	A52_STEREO,
	 A52_2F1R,	A52_2F1R,	A52_2F1R,	A52_2F1R},
	{A52_CHANNEL,	A52_DOLBY,	A52_STEREO,	A52_STEREO,
	 A52_2F1R,	A52_3F1R,	A52_2F1R,	A52_3F1R},
	{A52_CHANNEL,	A52_DOLBY,	A52_STEREO,	A52_3F,
	 A52_2F2R,	A52_2F2R,	A52_2F2R,	A52_2F2R},
	{A52_CHANNEL,	A52_DOLBY,	A52_STEREO,	A52_3F,
	 A52_2F2R,	A52_3F2R,	A52_2F2R,	A52_3F2R},
	{A52_CHANNEL1,	A52_MONO,	A52_MONO,	A52_MONO,
	 A52_MONO,	A52_MONO,	A52_MONO,	A52_MONO},
	{A52_CHANNEL2,	A52_MONO,	A52_MONO,	A52_MONO,
	 A52_MONO,	A52_MONO,	A52_MONO,	A52_MONO},
	{A52_CHANNEL,	A52_DOLBY,	A52_STEREO,	A52_DOLBY,
	 A52_DOLBY,	A52_DOLBY,	A52_DOLBY,	A52_DOLBY}
    };
    int output;

    output = flags & A52_CHANNEL_MASK;
    if (output > A52_DOLBY)
	return -1;

    output = table[output][input & 7];

    if (output == A52_STEREO &&
	(input == A52_DOLBY || (input == A52_3F && clev == LEVEL (LEVEL_3DB))))
	output = A52_DOLBY;

    if (flags & A52_ADJUST_LEVEL) {
	level_t adjust;

	switch (CONVERT (input & 7, output)) {

	case CONVERT (A52_3F, A52_MONO):
	    adjust = DIV (LEVEL_3DB, LEVEL (1) + clev);
	    break;

	case CONVERT (A52_STEREO, A52_MONO):
	case CONVERT (A52_2F2R, A52_2F1R):
	case CONVERT (A52_3F2R, A52_3F1R):
	level_3db:
	    adjust = LEVEL (LEVEL_3DB);
	    break;

	case CONVERT (A52_3F2R, A52_2F1R):
	    if (clev < LEVEL (LEVEL_PLUS3DB - 1))
		goto level_3db;
	    /* break thru */
	case CONVERT (A52_3F, A52_STEREO):
	case CONVERT (A52_3F1R, A52_2F1R):
	case CONVERT (A52_3F1R, A52_2F2R):
	case CONVERT (A52_3F2R, A52_2F2R):
	    adjust = DIV (1, LEVEL (1) + clev);
	    break;

	case CONVERT (A52_2F1R, A52_MONO):
	    adjust = DIV (LEVEL_PLUS3DB, LEVEL (2) + slev);
	    break;

	case CONVERT (A52_2F1R, A52_STEREO):
	case CONVERT (A52_3F1R, A52_3F):
	    adjust = DIV (1, LEVEL (1) + MUL_C (slev, LEVEL_3DB));
	    break;

	case CONVERT (A52_3F1R, A52_MONO):
	    adjust = DIV (LEVEL_3DB, LEVEL (1) + clev + MUL_C (slev, 0.5));
	    break;

	case CONVERT (A52_3F1R, A52_STEREO):
	    adjust = DIV (1, LEVEL (1) + clev + MUL_C (slev, LEVEL_3DB));
	    break;

	case CONVERT (A52_2F2R, A52_MONO):
	    adjust = DIV (LEVEL_3DB, LEVEL (1) + slev);
	    break;

	case CONVERT (A52_2F2R, A52_STEREO):
	case CONVERT (A52_3F2R, A52_3F):
	    adjust = DIV (1, LEVEL (1) + slev);
	    break;

	case CONVERT (A52_3F2R, A52_MONO):
	    adjust = DIV (LEVEL_3DB, LEVEL (1) + clev + slev);
	    break;

	case CONVERT (A52_3F2R, A52_STEREO):
	    adjust = DIV (1, LEVEL (1) + clev + slev);
	    break;

	case CONVERT (A52_MONO, A52_DOLBY):
	    adjust = LEVEL (LEVEL_PLUS3DB);
	    break;

	case CONVERT (A52_3F, A52_DOLBY):
	case CONVERT (A52_2F1R, A52_DOLBY):
	    adjust = LEVEL (1 / (1 + LEVEL_3DB));
	    break;

	case CONVERT (A52_3F1R, A52_DOLBY):
	case CONVERT (A52_2F2R, A52_DOLBY):
	    adjust = LEVEL (1 / (1 + 2 * LEVEL_3DB));
	    break;

	case CONVERT (A52_3F2R, A52_DOLBY):
	    adjust = LEVEL (1 / (1 + 3 * LEVEL_3DB));
	    break;

	default:
	    return output;
	}

	*level = MUL_L (*level, adjust);
    }

    return output;
}
Example #16
0
int a52_downmix_coeff (level_t * coeff, int acmod, int output, level_t level,
		       level_t clev, level_t slev)
{
    level_t level_3db;

    level_3db = MUL_C (level, LEVEL_3DB);

    switch (CONVERT (acmod, output & A52_CHANNEL_MASK)) {

    case CONVERT (A52_CHANNEL, A52_CHANNEL):
    case CONVERT (A52_MONO, A52_MONO):
    case CONVERT (A52_STEREO, A52_STEREO):
    case CONVERT (A52_3F, A52_3F):
    case CONVERT (A52_2F1R, A52_2F1R):
    case CONVERT (A52_3F1R, A52_3F1R):
    case CONVERT (A52_2F2R, A52_2F2R):
    case CONVERT (A52_3F2R, A52_3F2R):
    case CONVERT (A52_STEREO, A52_DOLBY):
	coeff[0] = coeff[1] = coeff[2] = coeff[3] = coeff[4] = level;
	return 0;

    case CONVERT (A52_CHANNEL, A52_MONO):
	coeff[0] = coeff[1] = MUL_C (level, LEVEL_6DB);
	return 3;

    case CONVERT (A52_STEREO, A52_MONO):
	coeff[0] = coeff[1] = level_3db;
	return 3;

    case CONVERT (A52_3F, A52_MONO):
	coeff[0] = coeff[2] = level_3db;
	coeff[1] = MUL_C (MUL_L (level_3db, clev), LEVEL_PLUS6DB);
	return 7;

    case CONVERT (A52_2F1R, A52_MONO):
	coeff[0] = coeff[1] = level_3db;
	coeff[2] = MUL_L (level_3db, slev);
	return 7;

    case CONVERT (A52_2F2R, A52_MONO):
	coeff[0] = coeff[1] = level_3db;
	coeff[2] = coeff[3] = MUL_L (level_3db, slev);
	return 15;

    case CONVERT (A52_3F1R, A52_MONO):
	coeff[0] = coeff[2] = level_3db;
	coeff[1] = MUL_C (MUL_L (level_3db, clev), LEVEL_PLUS6DB);
	coeff[3] = MUL_L (level_3db, slev);
	return 15;

    case CONVERT (A52_3F2R, A52_MONO):
	coeff[0] = coeff[2] = level_3db;
	coeff[1] = MUL_C (MUL_L (level_3db, clev), LEVEL_PLUS6DB);
	coeff[3] = coeff[4] = MUL_L (level_3db, slev);
	return 31;

    case CONVERT (A52_MONO, A52_DOLBY):
	coeff[0] = level_3db;
	return 0;

    case CONVERT (A52_3F, A52_DOLBY):
	coeff[0] = coeff[2] = coeff[3] = coeff[4] = level;
	coeff[1] = level_3db;
	return 7;

    case CONVERT (A52_3F, A52_STEREO):
    case CONVERT (A52_3F1R, A52_2F1R):
    case CONVERT (A52_3F2R, A52_2F2R):
	coeff[0] = coeff[2] = coeff[3] = coeff[4] = level;
	coeff[1] = MUL_L (level, clev);
	return 7;

    case CONVERT (A52_2F1R, A52_DOLBY):
	coeff[0] = coeff[1] = level;
	coeff[2] = level_3db;
	return 7;

    case CONVERT (A52_2F1R, A52_STEREO):
	coeff[0] = coeff[1] = level;
	coeff[2] = MUL_L (level_3db, slev);
	return 7;

    case CONVERT (A52_3F1R, A52_DOLBY):
	coeff[0] = coeff[2] = level;
	coeff[1] = coeff[3] = level_3db;
	return 15;

    case CONVERT (A52_3F1R, A52_STEREO):
	coeff[0] = coeff[2] = level;
	coeff[1] = MUL_L (level, clev);
	coeff[3] = MUL_L (level_3db, slev);
	return 15;

    case CONVERT (A52_2F2R, A52_DOLBY):
	coeff[0] = coeff[1] = level;
	coeff[2] = coeff[3] = level_3db;
	return 15;

    case CONVERT (A52_2F2R, A52_STEREO):
	coeff[0] = coeff[1] = level;
	coeff[2] = coeff[3] = MUL_L (level, slev);
	return 15;

    case CONVERT (A52_3F2R, A52_DOLBY):
	coeff[0] = coeff[2] = level;
	coeff[1] = coeff[3] = coeff[4] = level_3db;
	return 31;

    case CONVERT (A52_3F2R, A52_2F1R):
	coeff[0] = coeff[2] = level;
	coeff[1] = MUL_L (level, clev);
	coeff[3] = coeff[4] = level_3db;
	return 31;

    case CONVERT (A52_3F2R, A52_STEREO):
	coeff[0] = coeff[2] = level;
	coeff[1] = MUL_L (level, clev);
	coeff[3] = coeff[4] = MUL_L (level, slev);
	return 31;

    case CONVERT (A52_3F1R, A52_3F):
	coeff[0] = coeff[1] = coeff[2] = level;
	coeff[3] = MUL_L (level_3db, slev);
	return 13;

    case CONVERT (A52_3F2R, A52_3F):
	coeff[0] = coeff[1] = coeff[2] = level;
	coeff[3] = coeff[4] = MUL_L (level, slev);
	return 29;

    case CONVERT (A52_2F2R, A52_2F1R):
	coeff[0] = coeff[1] = level;
	coeff[2] = coeff[3] = level_3db;
	return 12;

    case CONVERT (A52_3F2R, A52_3F1R):
	coeff[0] = coeff[1] = coeff[2] = level;
	coeff[3] = coeff[4] = level_3db;
	return 24;

    case CONVERT (A52_2F1R, A52_2F2R):
	coeff[0] = coeff[1] = level;
	coeff[2] = level_3db;
	return 0;

    case CONVERT (A52_3F1R, A52_2F2R):
	coeff[0] = coeff[2] = level;
	coeff[1] = MUL_L (level, clev);
	coeff[3] = level_3db;
	return 7;

    case CONVERT (A52_3F1R, A52_3F2R):
	coeff[0] = coeff[1] = coeff[2] = level;
	coeff[3] = level_3db;
	return 0;

    case CONVERT (A52_CHANNEL, A52_CHANNEL1):
	coeff[0] = level;
	coeff[1] = 0;
	return 0;

    case CONVERT (A52_CHANNEL, A52_CHANNEL2):
	coeff[0] = 0;
	coeff[1] = level;
	return 0;
    }

    return -1;	/* NOTREACHED */
}
Example #17
0
int dts_downmix_init (int input, int flags, level_t * level,
		      level_t clev, level_t slev)
{
    static uint8_t table[11][10] = {
        /* DTS_MONO */
        {DTS_MONO,      DTS_MONO,       DTS_MONO,       DTS_MONO,
         DTS_MONO,      DTS_MONO,       DTS_MONO,       DTS_MONO,
         DTS_MONO,      DTS_MONO},
        /* DTS_CHANNEL */
        {DTS_MONO,      DTS_CHANNEL,    DTS_STEREO,     DTS_STEREO,
         DTS_STEREO,    DTS_STEREO,     DTS_STEREO,     DTS_STEREO,
         DTS_STEREO,    DTS_STEREO},
        /* DTS_STEREO */
        {DTS_MONO,      DTS_CHANNEL,    DTS_STEREO,     DTS_STEREO,
         DTS_STEREO,    DTS_STEREO,     DTS_STEREO,     DTS_STEREO,
         DTS_STEREO,    DTS_STEREO},
        /* DTS_STEREO_SUMDIFF */
        {DTS_MONO,      DTS_CHANNEL,    DTS_STEREO,     DTS_STEREO,
         DTS_STEREO,    DTS_STEREO,     DTS_STEREO,     DTS_STEREO,
         DTS_STEREO,    DTS_STEREO},
        /* DTS_STEREO_TOTAL */
        {DTS_MONO,      DTS_CHANNEL,    DTS_STEREO,     DTS_STEREO,
         DTS_STEREO,    DTS_STEREO,     DTS_STEREO,     DTS_STEREO,
         DTS_STEREO,    DTS_STEREO},
        /* DTS_3F */
        {DTS_MONO,      DTS_CHANNEL,    DTS_STEREO,     DTS_STEREO,
         DTS_STEREO,    DTS_3F,         DTS_3F,         DTS_3F,
         DTS_3F,        DTS_3F},
        /* DTS_2F1R */
        {DTS_MONO,      DTS_CHANNEL,    DTS_STEREO,     DTS_STEREO,
         DTS_STEREO,    DTS_2F1R,       DTS_2F1R,       DTS_2F1R,
         DTS_2F1R,      DTS_2F1R},
        /* DTS_3F1R */
        {DTS_MONO,      DTS_CHANNEL,    DTS_STEREO,     DTS_STEREO,
         DTS_STEREO,    DTS_3F,         DTS_3F1R,       DTS_3F1R,
         DTS_3F1R,      DTS_3F1R},
        /* DTS_2F2R */
        {DTS_MONO,      DTS_CHANNEL,    DTS_STEREO,     DTS_STEREO,
         DTS_STEREO,    DTS_STEREO,     DTS_2F2R,       DTS_2F2R,
         DTS_2F2R,      DTS_2F2R},
        /* DTS_3F2R */
        {DTS_MONO,      DTS_CHANNEL,    DTS_STEREO,     DTS_STEREO,
         DTS_STEREO,    DTS_3F,         DTS_3F2R,       DTS_3F2R,
         DTS_3F2R,      DTS_3F2R},
        /* DTS_4F2R */
        {DTS_MONO,      DTS_CHANNEL,    DTS_STEREO,     DTS_STEREO,
         DTS_STEREO,    DTS_4F2R,       DTS_4F2R,       DTS_4F2R,
         DTS_4F2R,      DTS_4F2R},
    };
    int output;

    output = flags & DTS_CHANNEL_MASK;

    if (output > DTS_CHANNEL_MAX)
	return -1;

    output = table[output][input];

    if (output == DTS_STEREO &&
	(input == DTS_DOLBY || (input == DTS_3F && clev == LEVEL (LEVEL_3DB))))
	output = DTS_DOLBY;

    if (flags & DTS_ADJUST_LEVEL) {
	level_t adjust;

	switch (CONVERT (input & 7, output)) {

	case CONVERT (DTS_3F, DTS_MONO):
	    adjust = (sample_t)(DIV (LEVEL_3DB, LEVEL (1) + clev));
	    break;

	case CONVERT (DTS_STEREO, DTS_MONO):
	case CONVERT (DTS_2F2R, DTS_2F1R):
	case CONVERT (DTS_3F2R, DTS_3F1R):
	level_3db:
	    adjust = (sample_t)(LEVEL (LEVEL_3DB));
	    break;

	case CONVERT (DTS_3F2R, DTS_2F1R):
	    if (clev < LEVEL (LEVEL_PLUS3DB - 1))
		goto level_3db;
	    /* break thru */
	case CONVERT (DTS_3F, DTS_STEREO):
	case CONVERT (DTS_3F1R, DTS_2F1R):
	case CONVERT (DTS_3F1R, DTS_2F2R):
	case CONVERT (DTS_3F2R, DTS_2F2R):
	    adjust = DIV (1, LEVEL (1) + clev);
	    break;

	case CONVERT (DTS_2F1R, DTS_MONO):
	    adjust = (sample_t)(DIV (LEVEL_PLUS3DB, LEVEL (2) + slev));
	    break;

	case CONVERT (DTS_2F1R, DTS_STEREO):
	case CONVERT (DTS_3F1R, DTS_3F):
	    adjust = (sample_t)(DIV (1, LEVEL (1) + MUL_C (slev, LEVEL_3DB)));
	    break;

	case CONVERT (DTS_3F1R, DTS_MONO):
	    adjust = (sample_t)(DIV (LEVEL_3DB, LEVEL (1) + clev + MUL_C (slev, 0.5)));
	    break;

	case CONVERT (DTS_3F1R, DTS_STEREO):
	    adjust = (sample_t)(DIV (1, LEVEL (1) + clev + MUL_C (slev, LEVEL_3DB)));
	    break;

	case CONVERT (DTS_2F2R, DTS_MONO):
	    adjust = (sample_t)(DIV (LEVEL_3DB, LEVEL (1) + slev));
	    break;

	case CONVERT (DTS_2F2R, DTS_STEREO):
	case CONVERT (DTS_3F2R, DTS_3F):
	    adjust = DIV (1, LEVEL (1) + slev);
	    break;

	case CONVERT (DTS_3F2R, DTS_MONO):
	    adjust = (sample_t)(DIV (LEVEL_3DB, LEVEL (1) + clev + slev));
	    break;

	case CONVERT (DTS_3F2R, DTS_STEREO):
	    adjust = DIV (1, LEVEL (1) + clev + slev);
	    break;

	case CONVERT (DTS_MONO, DTS_DOLBY):
	    adjust = (sample_t)(LEVEL (LEVEL_PLUS3DB));
	    break;

	case CONVERT (DTS_3F, DTS_DOLBY):
	case CONVERT (DTS_2F1R, DTS_DOLBY):
	    adjust = (sample_t)(LEVEL (1 / (1 + LEVEL_3DB)));
	    break;

	case CONVERT (DTS_3F1R, DTS_DOLBY):
	case CONVERT (DTS_2F2R, DTS_DOLBY):
	    adjust = (sample_t)(LEVEL (1 / (1 + 2 * LEVEL_3DB)));
	    break;

	case CONVERT (DTS_3F2R, DTS_DOLBY):
	    adjust = (sample_t)(LEVEL (1 / (1 + 3 * LEVEL_3DB)));
	    break;

	default:
	    return output;
	}

	*level = MUL_L (*level, adjust);
    }

    return output;
}
Example #18
0
int dts_downmix_coeff (level_t * coeff, int acmod, int output, level_t level,
		       level_t clev, level_t slev)
{
    level_t level_3db;

    level_3db = (sample_t)(MUL_C (level, LEVEL_3DB));

    switch (CONVERT (acmod, output & DTS_CHANNEL_MASK)) {

    case CONVERT (DTS_CHANNEL, DTS_CHANNEL):
    case CONVERT (DTS_MONO, DTS_MONO):
    case CONVERT (DTS_STEREO, DTS_STEREO):
    case CONVERT (DTS_3F, DTS_3F):
    case CONVERT (DTS_2F1R, DTS_2F1R):
    case CONVERT (DTS_3F1R, DTS_3F1R):
    case CONVERT (DTS_2F2R, DTS_2F2R):
    case CONVERT (DTS_3F2R, DTS_3F2R):
    case CONVERT (DTS_STEREO, DTS_DOLBY):
	coeff[0] = coeff[1] = coeff[2] = coeff[3] = coeff[4] = level;
	return 0;

    case CONVERT (DTS_CHANNEL, DTS_MONO):
	coeff[0] = coeff[1] = (sample_t)(MUL_C (level, LEVEL_6DB));
	return 3;

    case CONVERT (DTS_STEREO, DTS_MONO):
	coeff[0] = coeff[1] = level_3db;
	return 3;

    case CONVERT (DTS_3F, DTS_MONO):
	coeff[0] = coeff[2] = level_3db;
	coeff[1] = (sample_t)(MUL_C (MUL_L (level_3db, clev), LEVEL_PLUS6DB));
	return 7;

    case CONVERT (DTS_2F1R, DTS_MONO):
	coeff[0] = coeff[1] = level_3db;
	coeff[2] = MUL_L (level_3db, slev);
	return 7;

    case CONVERT (DTS_2F2R, DTS_MONO):
	coeff[0] = coeff[1] = level_3db;
	coeff[2] = coeff[3] = MUL_L (level_3db, slev);
	return 15;

    case CONVERT (DTS_3F1R, DTS_MONO):
	coeff[0] = coeff[2] = level_3db;
	coeff[1] = (sample_t)(MUL_C (MUL_L (level_3db, clev), LEVEL_PLUS6DB));
	coeff[3] = MUL_L (level_3db, slev);
	return 15;

    case CONVERT (DTS_3F2R, DTS_MONO):
	coeff[0] = coeff[2] = level_3db;
	coeff[1] = (sample_t)(MUL_C (MUL_L (level_3db, clev), LEVEL_PLUS6DB));
	coeff[3] = coeff[4] = MUL_L (level_3db, slev);
	return 31;

    case CONVERT (DTS_MONO, DTS_DOLBY):
	coeff[0] = level_3db;
	return 0;

    case CONVERT (DTS_3F, DTS_DOLBY):
	coeff[0] = coeff[2] = coeff[3] = coeff[4] = level;
	coeff[1] = level_3db;
	return 7;

    case CONVERT (DTS_3F, DTS_STEREO):
    case CONVERT (DTS_3F1R, DTS_2F1R):
    case CONVERT (DTS_3F2R, DTS_2F2R):
	coeff[0] = coeff[2] = coeff[3] = coeff[4] = level;
	coeff[1] = MUL_L (level, clev);
	return 7;

    case CONVERT (DTS_2F1R, DTS_DOLBY):
	coeff[0] = coeff[1] = level;
	coeff[2] = level_3db;
	return 7;

    case CONVERT (DTS_2F1R, DTS_STEREO):
	coeff[0] = coeff[1] = level;
	coeff[2] = MUL_L (level_3db, slev);
	return 7;

    case CONVERT (DTS_3F1R, DTS_DOLBY):
	coeff[0] = coeff[2] = level;
	coeff[1] = coeff[3] = level_3db;
	return 15;

    case CONVERT (DTS_3F1R, DTS_STEREO):
	coeff[0] = coeff[2] = level;
	coeff[1] = MUL_L (level, clev);
	coeff[3] = MUL_L (level_3db, slev);
	return 15;

    case CONVERT (DTS_2F2R, DTS_DOLBY):
	coeff[0] = coeff[1] = level;
	coeff[2] = coeff[3] = level_3db;
	return 15;

    case CONVERT (DTS_2F2R, DTS_STEREO):
	coeff[0] = coeff[1] = level;
	coeff[2] = coeff[3] = MUL_L (level, slev);
	return 15;

    case CONVERT (DTS_3F2R, DTS_DOLBY):
	coeff[0] = coeff[2] = level;
	coeff[1] = coeff[3] = coeff[4] = level_3db;
	return 31;

    case CONVERT (DTS_3F2R, DTS_2F1R):
	coeff[0] = coeff[2] = level;
	coeff[1] = MUL_L (level, clev);
	coeff[3] = coeff[4] = level_3db;
	return 31;

    case CONVERT (DTS_3F2R, DTS_STEREO):
	coeff[0] = coeff[2] = level;
	coeff[1] = MUL_L (level, clev);
	coeff[3] = coeff[4] = MUL_L (level, slev);
	return 31;

    case CONVERT (DTS_3F1R, DTS_3F):
	coeff[0] = coeff[1] = coeff[2] = level;
	coeff[3] = MUL_L (level_3db, slev);
	return 13;

    case CONVERT (DTS_3F2R, DTS_3F):
	coeff[0] = coeff[1] = coeff[2] = level;
	coeff[3] = coeff[4] = MUL_L (level, slev);
	return 29;

    case CONVERT (DTS_2F2R, DTS_2F1R):
	coeff[0] = coeff[1] = level;
	coeff[2] = coeff[3] = level_3db;
	return 12;

    case CONVERT (DTS_3F2R, DTS_3F1R):
	coeff[0] = coeff[1] = coeff[2] = level;
	coeff[3] = coeff[4] = level_3db;
	return 24;

    case CONVERT (DTS_2F1R, DTS_2F2R):
	coeff[0] = coeff[1] = level;
	coeff[2] = level_3db;
	return 0;

    case CONVERT (DTS_3F1R, DTS_2F2R):
	coeff[0] = coeff[2] = level;
	coeff[1] = MUL_L (level, clev);
	coeff[3] = level_3db;
	return 7;

    case CONVERT (DTS_3F1R, DTS_3F2R):
	coeff[0] = coeff[1] = coeff[2] = level;
	coeff[3] = level_3db;
	return 0;
    }

    return -1;	/* NOTREACHED */
}
Example #19
0
void faad_mdct(mdct_info *mdct, real_t *X_in, real_t *X_out)
{
    uint16_t k;

    complex_t x;
    ALIGN complex_t Z1[512];
    complex_t *sincos = mdct->sincos;

    uint16_t N  = mdct->N;
    uint16_t N2 = N >> 1;
    uint16_t N4 = N >> 2;
    uint16_t N8 = N >> 3;

#ifndef FIXED_POINT
	real_t scale = REAL_CONST(N);
#else
	real_t scale = REAL_CONST(4.0/N);
#endif

#ifdef ALLOW_SMALL_FRAMELENGTH
#ifdef FIXED_POINT
    /* detect non-power of 2 */
    if (N & (N-1))
    {
        /* adjust scale for non-power of 2 MDCT */
        /* *= sqrt(2048/1920) */
        scale = MUL_C(scale, COEF_CONST(1.0327955589886444));
    }
#endif
#endif

    /* pre-FFT complex multiplication */
    for (k = 0; k < N8; k++)
    {
        uint16_t n = k << 1;
        RE(x) = X_in[N - N4 - 1 - n] + X_in[N - N4 +     n];
        IM(x) = X_in[    N4 +     n] - X_in[    N4 - 1 - n];

        ComplexMult(&RE(Z1[k]), &IM(Z1[k]),
            RE(x), IM(x), RE(sincos[k]), IM(sincos[k]));

        RE(Z1[k]) = MUL_R(RE(Z1[k]), scale);
        IM(Z1[k]) = MUL_R(IM(Z1[k]), scale);

        RE(x) =  X_in[N2 - 1 - n] - X_in[        n];
        IM(x) =  X_in[N2 +     n] + X_in[N - 1 - n];

        ComplexMult(&RE(Z1[k + N8]), &IM(Z1[k + N8]),
            RE(x), IM(x), RE(sincos[k + N8]), IM(sincos[k + N8]));

        RE(Z1[k + N8]) = MUL_R(RE(Z1[k + N8]), scale);
        IM(Z1[k + N8]) = MUL_R(IM(Z1[k + N8]), scale);
    }

    /* complex FFT, any non-scaling FFT can be used here  */
    cfftf(mdct->cfft, Z1);

    /* post-FFT complex multiplication */
    for (k = 0; k < N4; k++)
    {
        uint16_t n = k << 1;
        ComplexMult(&RE(x), &IM(x),
            RE(Z1[k]), IM(Z1[k]), RE(sincos[k]), IM(sincos[k]));

        X_out[         n] = -RE(x);
        X_out[N2 - 1 - n] =  IM(x);
        X_out[N2 +     n] = -IM(x);
        X_out[N  - 1 - n] =  RE(x);
    }
}
Example #20
0
/*
  For ONLY_LONG_SEQUENCE windows (num_window_groups = 1,
  window_group_length[0] = 1) the spectral data is in ascending spectral
  order.
  For the EIGHT_SHORT_SEQUENCE window, the spectral order depends on the
  grouping in the following manner:
  - Groups are ordered sequentially
  - Within a group, a scalefactor band consists of the spectral data of all
    grouped SHORT_WINDOWs for the associated scalefactor window band. To
    clarify via example, the length of a group is in the range of one to eight
    SHORT_WINDOWs.
  - If there are eight groups each with length one (num_window_groups = 8,
    window_group_length[0..7] = 1), the result is a sequence of eight spectra,
    each in ascending spectral order.
  - If there is only one group with length eight (num_window_groups = 1,
    window_group_length[0] = 8), the result is that spectral data of all eight
    SHORT_WINDOWs is interleaved by scalefactor window bands.
  - Within a scalefactor window band, the coefficients are in ascending
    spectral order.
*/
static uint8_t quant_to_spec(NeAACDecHandle hDecoder,
                             ic_stream *ics, int16_t *quant_data,
                             real_t *spec_data, uint16_t frame_len)
{
    ALIGN static const real_t pow2_table[] =
    {
        COEF_CONST(1.0),
        COEF_CONST(1.1892071150027210667174999705605), /* 2^0.25 */
        COEF_CONST(1.4142135623730950488016887242097), /* 2^0.5 */
        COEF_CONST(1.6817928305074290860622509524664) /* 2^0.75 */
    };
    const real_t *tab = iq_table;

    uint8_t g, sfb, win;
    uint16_t width, bin, k, gindex, wa, wb;
    uint8_t error = 0; /* Init error flag */
#ifndef FIXED_POINT
    real_t scf;
#endif

    k = 0;
    gindex = 0;

    for (g = 0; g < ics->num_window_groups; g++)
    {
        uint16_t j = 0;
        uint16_t gincrease = 0;
        uint16_t win_inc = ics->swb_offset[ics->num_swb];

        for (sfb = 0; sfb < ics->num_swb; sfb++)
        {
            int32_t exp, frac;

            width = ics->swb_offset[sfb+1] - ics->swb_offset[sfb];

            /* this could be scalefactor for IS or PNS, those can be negative or bigger then 255 */
            /* just ignore them */
            if (ics->scale_factors[g][sfb] < 0 || ics->scale_factors[g][sfb] > 255)
            {
                exp = 0;
                frac = 0;
            } else {
                /* ics->scale_factors[g][sfb] must be between 0 and 255 */
                exp = (ics->scale_factors[g][sfb] /* - 100 */) >> 2;
                /* frac must always be > 0 */
                frac = (ics->scale_factors[g][sfb] /* - 100 */) & 3;
            }

#ifdef FIXED_POINT
            exp -= 25;
            /* IMDCT pre-scaling */
            if (hDecoder->object_type == LD)
            {
                exp -= 6 /*9*/;
            } else {
                if (ics->window_sequence == EIGHT_SHORT_SEQUENCE)
                    exp -= 4 /*7*/;
                else
                    exp -= 7 /*10*/;
            }
#endif

            wa = gindex + j;

#ifndef FIXED_POINT
            scf = pow2sf_tab[exp/*+25*/] * pow2_table[frac];
#endif

            for (win = 0; win < ics->window_group_length[g]; win++)
            {
                for (bin = 0; bin < width; bin += 4)
                {
#ifndef FIXED_POINT
                    wb = wa + bin;

                    spec_data[wb+0] = iquant(quant_data[k+0], tab, &error) * scf;
                    spec_data[wb+1] = iquant(quant_data[k+1], tab, &error) * scf;
                    spec_data[wb+2] = iquant(quant_data[k+2], tab, &error) * scf;
                    spec_data[wb+3] = iquant(quant_data[k+3], tab, &error) * scf;

#else
                    real_t iq0 = iquant(quant_data[k+0], tab, &error);
                    real_t iq1 = iquant(quant_data[k+1], tab, &error);
                    real_t iq2 = iquant(quant_data[k+2], tab, &error);
                    real_t iq3 = iquant(quant_data[k+3], tab, &error);

                    wb = wa + bin;

                    if (exp < 0)
                    {
                        spec_data[wb+0] = iq0 >>= -exp;
                        spec_data[wb+1] = iq1 >>= -exp;
                        spec_data[wb+2] = iq2 >>= -exp;
                        spec_data[wb+3] = iq3 >>= -exp;
                    } else {
                        spec_data[wb+0] = iq0 <<= exp;
                        spec_data[wb+1] = iq1 <<= exp;
                        spec_data[wb+2] = iq2 <<= exp;
                        spec_data[wb+3] = iq3 <<= exp;
                    }
                    if (frac != 0)
                    {
                        spec_data[wb+0] = MUL_C(spec_data[wb+0],pow2_table[frac]);
                        spec_data[wb+1] = MUL_C(spec_data[wb+1],pow2_table[frac]);
                        spec_data[wb+2] = MUL_C(spec_data[wb+2],pow2_table[frac]);
                        spec_data[wb+3] = MUL_C(spec_data[wb+3],pow2_table[frac]);
                    }

//#define SCFS_PRINT
#ifdef SCFS_PRINT
                    printf("%d\n", spec_data[gindex+(win*win_inc)+j+bin+0]);
                    printf("%d\n", spec_data[gindex+(win*win_inc)+j+bin+1]);
                    printf("%d\n", spec_data[gindex+(win*win_inc)+j+bin+2]);
                    printf("%d\n", spec_data[gindex+(win*win_inc)+j+bin+3]);
                    //printf("0x%.8X\n", spec_data[gindex+(win*win_inc)+j+bin+0]);
                    //printf("0x%.8X\n", spec_data[gindex+(win*win_inc)+j+bin+1]);
                    //printf("0x%.8X\n", spec_data[gindex+(win*win_inc)+j+bin+2]);
                    //printf("0x%.8X\n", spec_data[gindex+(win*win_inc)+j+bin+3]);
#endif
#endif

                    gincrease += 4;
                    k += 4;
                }
                wa += win_inc;
            }
            j += width;
        }