Example #1
0
File: drc.c Project: hownam/fennec
void drc_decode(drc_info *drc, real_t *spec)
{
    uint16_t i, bd, top;
#ifdef FIXED_POINT
    int32_t exp, frac;
#else
    real_t factor, exp;
#endif
    uint16_t bottom = 0;

    if (drc->num_bands == 1)
        drc->band_top[0] = 1024/4 - 1;

    for (bd = 0; bd < drc->num_bands; bd++)
    {
        top = 4 * (drc->band_top[bd] + 1);

#ifndef FIXED_POINT
        /* Decode DRC gain factor */
        if (drc->dyn_rng_sgn[bd])  /* compress */
            exp = -drc->ctrl1 * (drc->dyn_rng_ctl[bd] - (DRC_REF_LEVEL - drc->prog_ref_level))/REAL_CONST(24.0);
        else /* boost */
            exp = drc->ctrl2 * (drc->dyn_rng_ctl[bd] - (DRC_REF_LEVEL - drc->prog_ref_level))/REAL_CONST(24.0);
        factor = (real_t)pow(2.0, exp);

        /* Apply gain factor */
        for (i = bottom; i < top; i++)
            spec[i] *= factor;
#else
        /* Decode DRC gain factor */
        if (drc->dyn_rng_sgn[bd])  /* compress */
        {
            exp = -1 * (drc->dyn_rng_ctl[bd] - (DRC_REF_LEVEL - drc->prog_ref_level))/ 24;
            frac = -1 * (drc->dyn_rng_ctl[bd] - (DRC_REF_LEVEL - drc->prog_ref_level)) % 24;
        } else { /* boost */
            exp = (drc->dyn_rng_ctl[bd] - (DRC_REF_LEVEL - drc->prog_ref_level))/ 24;
            frac = (drc->dyn_rng_ctl[bd] - (DRC_REF_LEVEL - drc->prog_ref_level)) % 24;
        }

        /* Apply gain factor */
        if (exp < 0)
        {
            for (i = bottom; i < top; i++)
            {
                spec[i] >>= -exp;
                if (frac)
                    spec[i] = MUL_R(spec[i],drc_pow2_table[frac+23]);
            }
        } else {
            for (i = bottom; i < top; i++)
            {
                spec[i] <<= exp;
                if (frac)
                    spec[i] = MUL_R(spec[i],drc_pow2_table[frac+23]);
            }
        }
#endif

        bottom = top;
    }
Example #2
0
static void auto_correlation(sbr_info *sbr, acorr_coef *ac,
                             qmf_t buffer[MAX_NTSRHFG][32],
                             uint8_t bd, uint8_t len)
{
    real_t r01 = 0, r02 = 0, r11 = 0;
    int8_t j;
    uint8_t offset = sbr->tHFAdj;
    const real_t rel = 1 / (1 + 1e-6f);


    for (j = offset; j < len + offset; j++)
    {
        r01 += QMF_RE(buffer[j][bd]) * QMF_RE(buffer[j-1][bd]);
        r02 += QMF_RE(buffer[j][bd]) * QMF_RE(buffer[j-2][bd]);
        r11 += QMF_RE(buffer[j-1][bd]) * QMF_RE(buffer[j-1][bd]);
    }
    RE(ac->r12) = r01 -
        QMF_RE(buffer[len+offset-1][bd]) * QMF_RE(buffer[len+offset-2][bd]) +
        QMF_RE(buffer[offset-1][bd]) * QMF_RE(buffer[offset-2][bd]);
    RE(ac->r22) = r11 -
        QMF_RE(buffer[len+offset-2][bd]) * QMF_RE(buffer[len+offset-2][bd]) +
        QMF_RE(buffer[offset-2][bd]) * QMF_RE(buffer[offset-2][bd]);
    RE(ac->r01) = r01;
    RE(ac->r02) = r02;
    RE(ac->r11) = r11;

    ac->det = MUL_R(RE(ac->r11), RE(ac->r22)) - MUL_C(MUL_R(RE(ac->r12), RE(ac->r12)), rel);
}
Example #3
0
void faad_mdct(mdct_info *mdct, real_t *X_in, real_t *X_out)
{
    uint16_t k;

    complex_t x;
    ALIGN complex_t Z1[512];
    complex_t *sincos = mdct->sincos;

    uint16_t N  = mdct->N;
    uint16_t N2 = N >> 1;
    uint16_t N4 = N >> 2;
    uint16_t N8 = N >> 3;

#ifndef FIXED_POINT
	real_t scale = REAL_CONST(N);
#else
	real_t scale = REAL_CONST(4.0/N);
#endif

    /* pre-FFT complex multiplication */
    for (k = 0; k < N8; k++)
    {
        uint16_t n = k << 1;
        RE(x) = X_in[N - N4 - 1 - n] + X_in[N - N4 +     n];
        IM(x) = X_in[    N4 +     n] - X_in[    N4 - 1 - n];

        ComplexMult(&RE(Z1[k]), &IM(Z1[k]),
            RE(x), IM(x), RE(sincos[k]), IM(sincos[k]));

        RE(Z1[k]) = MUL_R(RE(Z1[k]), scale);
        IM(Z1[k]) = MUL_R(IM(Z1[k]), scale);

        RE(x) =  X_in[N2 - 1 - n] - X_in[        n];
        IM(x) =  X_in[N2 +     n] + X_in[N - 1 - n];

        ComplexMult(&RE(Z1[k + N8]), &IM(Z1[k + N8]),
            RE(x), IM(x), RE(sincos[k + N8]), IM(sincos[k + N8]));

        RE(Z1[k + N8]) = MUL_R(RE(Z1[k + N8]), scale);
        IM(Z1[k + N8]) = MUL_R(IM(Z1[k + N8]), scale);
    }

    /* complex FFT, any non-scaling FFT can be used here  */
    cfftf(mdct->cfft, Z1);

    /* post-FFT complex multiplication */
    for (k = 0; k < N4; k++)
    {
        uint16_t n = k << 1;
        ComplexMult(&RE(x), &IM(x),
            RE(Z1[k]), IM(Z1[k]), RE(sincos[k]), IM(sincos[k]));

        X_out[         n] = -RE(x);
        X_out[N2 - 1 - n] =  IM(x);
        X_out[N2 +     n] = -IM(x);
        X_out[N  - 1 - n] =  RE(x);
    }
}
Example #4
0
/* 
 * Parameter:
 *  coderInfo(IO)(O:coderInfo->scale_factor)
 *  xr(unused)
 *  xr_pow(IO)
 *  xi(O)
 *  xmin(I)
 */
static int32_t FixNoise(CoderInfo *coderInfo,
                        coef_t *xr_pow,
                        int32_t *xi,
                        real_32_t *xmin)
{
    register int32_t i, sb;
    int32_t start, end;
    static real_32_t log_ifqstep = REAL_CONST(7.6943735514); // 1.0 / log(ifqstep) 
    static real_32_t realconst1 = REAL_CONST(0.6931471806); //log2
    static real_32_t realconst2 = REAL_CONST(0.5);

    for (sb = 0; sb < coderInfo->nr_of_sfb; sb++) {
        eng_t eng = 0;
        frac_t maxfixstep;

        start = coderInfo->sfb_offset[sb];
        end = coderInfo->sfb_offset[sb+1];

        for (  i=start; i< end; i++)
            eng += (int64_t)(COEF2INT(xr_pow[i]))*COEF2INT(xr_pow[i]);

        if ( (eng == 0) || (xmin[sb]==0) )
            maxfixstep = FRAC_ICONST(1);
        else {
            maxfixstep = faac_sqrt(eng/(end-start)*
                                   MUL_R(xmin[sb],faac_sqrt(xmin[sb]))
                                  );
            if ( maxfixstep == 0 )
                maxfixstep = FRAC_ICONST(1);
            else
                maxfixstep = ((real_t)1<<(FRAC_BITS+REAL_BITS))/maxfixstep;
        }
#ifdef DUMP_MAXFIXSTEP
        printf("sb = %d, maxfixstep = %.8f\n",sb, FRAC2FLOAT(maxfixstep));
#endif
        for (i = start; i < end; i++) {
#ifdef DUMP_MAXFIXSTEP
            printf("xr_pow[%d] = %.8f\t",i,COEF2FLOAT(xr_pow[i]));
#endif
            xr_pow[i] = MUL_F(xr_pow[i],maxfixstep);
#ifdef DUMP_MAXFIXSTEP
            printf("xr_pow[%d]*fix = %.8f\n",i,COEF2FLOAT(xr_pow[i]));
#endif
        }
        QuantizeBand(xr_pow, xi, start, end);
        coderInfo->scale_factor[sb] = (int32_t)REAL2INT(MUL_R(faac_log(maxfixstep)-FRAC2REAL_BIT*realconst1,
                                                     log_ifqstep) - realconst2)+1;

#ifdef DUMP_MAXFIXSTEP
      printf("scale_factor = %d\n", coderInfo->scale_factor[sb]);
#endif
    }
    
#ifdef DUMP_MAXFIXSTEP
    exit(1);
#endif
    return 0;
}
Example #5
0
void is_decode(ic_stream *ics, ic_stream *icsr, real_t *l_spec, real_t *r_spec,
               uint16_t frame_len)
{
    uint8_t g, sfb, b;
    uint16_t i;
#ifndef FIXED_POINT
    real_t scale;
#else
    int32_t exp, frac;
#endif

    uint16_t nshort = frame_len/8;
    uint8_t group = 0;

    for (g = 0; g < icsr->num_window_groups; g++)
    {
        /* Do intensity stereo decoding */
        for (b = 0; b < icsr->window_group_length[g]; b++)
        {
            for (sfb = 0; sfb < icsr->max_sfb; sfb++)
            {
                if (is_intensity(icsr, g, sfb))
                {
                    /* For scalefactor bands coded in intensity stereo the
                       corresponding predictors in the right channel are
                       switched to "off".
                     */
                    ics->pred.prediction_used[sfb] = 0;
                    icsr->pred.prediction_used[sfb] = 0;

#ifndef FIXED_POINT
                    scale = (real_t)pow(0.5, (0.25*icsr->scale_factors[g][sfb]));
#else
                    exp = icsr->scale_factors[g][sfb] >> 2;
                    frac = icsr->scale_factors[g][sfb] & 3;
#endif

                    /* Scale from left to right channel,
                       do not touch left channel */
                    for (i = icsr->swb_offset[sfb]; i < icsr->swb_offset[sfb+1]; i++)
                    {
#ifndef FIXED_POINT
                        r_spec[(group*nshort)+i] = MUL_R(l_spec[(group*nshort)+i], scale);
#else
                        if (exp < 0)
                            r_spec[(group*nshort)+i] = l_spec[(group*nshort)+i] << -exp;
                        else
                            r_spec[(group*nshort)+i] = l_spec[(group*nshort)+i] >> exp;
                        r_spec[(group*nshort)+i] = MUL_C(r_spec[(group*nshort)+i], pow05_table[frac + 3]);
#endif
                        if (is_intensity(icsr, g, sfb) != invert_intensity(ics, g, sfb))
                            r_spec[(group*nshort)+i] = -r_spec[(group*nshort)+i];
                    }
                }
            }
            group++;
        }
    }
}
Example #6
0
static void calc_aliasing_degree(sbr_info *sbr, real_t *rxx, real_t *deg)
{
    uint8_t k;

    rxx[0] = REAL_CONST(0.0);
    deg[1] = REAL_CONST(0.0);

    for (k = 2; k < sbr->k0; k++)
    {
        deg[k] = 0.0;

        if ((k % 2 == 0) && (rxx[k] < REAL_CONST(0.0)))
        {
            if (rxx[k-1] < 0.0)
            {
                deg[k] = REAL_CONST(1.0);

                if (rxx[k-2] > REAL_CONST(0.0))
                {
                    deg[k-1] = REAL_CONST(1.0) - MUL_R(rxx[k-1], rxx[k-1]);
                }
            } else if (rxx[k-2] > REAL_CONST(0.0)) {
                deg[k]   = REAL_CONST(1.0) - MUL_R(rxx[k-1], rxx[k-1]);
            }
        }

        if ((k % 2 == 1) && (rxx[k] > REAL_CONST(0.0)))
        {
            if (rxx[k-1] > REAL_CONST(0.0))
            {
                deg[k] = REAL_CONST(1.0);

                if (rxx[k-2] < REAL_CONST(0.0))
                {
                    deg[k-1] = REAL_CONST(1.0) - MUL_R(rxx[k-1], rxx[k-1]);
                }
            } else if (rxx[k-2] < REAL_CONST(0.0)) {
                deg[k] = REAL_CONST(1.0) - MUL_R(rxx[k-1], rxx[k-1]);
            }
        }
    }
}
Example #7
0
static INLINE real_t iquant(int16_t q, const real_t *tab, uint8_t *error)
{
#ifdef FIXED_POINT
    static const real_t errcorr[] = {
        REAL_CONST(0), REAL_CONST(1.0/8.0), REAL_CONST(2.0/8.0), REAL_CONST(3.0/8.0),
        REAL_CONST(4.0/8.0),  REAL_CONST(5.0/8.0), REAL_CONST(6.0/8.0), REAL_CONST(7.0/8.0),
        REAL_CONST(0)
    };
    real_t x1, x2;
    int16_t sgn = 1;

    if (q < 0)
    {
        q = -q;
        sgn = -1;
    }

    if (q < IQ_TABLE_SIZE)
        return sgn * tab[q];

    /* linear interpolation */
    x1 = tab[q>>3];
    x2 = tab[(q>>3) + 1];
    return sgn * 16 * (MUL_R(errcorr[q&7],(x2-x1)) + x1);
#else
    if (q < 0)
    {
        /* tab contains a value for all possible q [0,8192] */
        if (-q < IQ_TABLE_SIZE)
            return -tab[-q];

        *error = 17;
        return 0;
    } else {
        /* tab contains a value for all possible q [0,8192] */
        if (q < IQ_TABLE_SIZE)
            return tab[q];

        *error = 17;
        return 0;
    }
#endif
}
static void calc_prediction_coef_lp(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64],
                                    complex_t *alpha_0, complex_t *alpha_1, real_t *rxx)
{
    uint8_t k;
    real_t tmp, mul;
    acorr_coef ac;

    for (k = 1; k < sbr->f_master[0]; k++)
    {
        auto_correlation(sbr, &ac, Xlow, k, sbr->numTimeSlotsRate + 6);

        if (ac.det == 0)
        {
            RE(alpha_0[k]) = 0;
            RE(alpha_1[k]) = 0;
        } else {
            mul = DIV_R(REAL_CONST(1.0), ac.det);
            tmp = MUL_R(RE(ac.r01), RE(ac.r22)) - MUL_R(RE(ac.r12), RE(ac.r02));
            RE(alpha_0[k]) = -MUL_R(tmp, mul);
            tmp = MUL_R(RE(ac.r01), RE(ac.r12)) - MUL_R(RE(ac.r02), RE(ac.r11));
            RE(alpha_1[k]) = MUL_R(tmp, mul);
        }

        if ((RE(alpha_0[k]) >= REAL_CONST(4)) || (RE(alpha_1[k]) >= REAL_CONST(4)))
        {
            RE(alpha_0[k]) = REAL_CONST(0);
            RE(alpha_1[k]) = REAL_CONST(0);
        }

        /* reflection coefficient */
        if (RE(ac.r11) == 0)
        {
            rxx[k] = COEF_CONST(0.0);
        } else {
            rxx[k] = DIV_C(RE(ac.r01), RE(ac.r11));
            rxx[k] = -rxx[k];
            if (rxx[k] > COEF_CONST( 1.0)) rxx[k] = COEF_CONST(1.0);
            if (rxx[k] < COEF_CONST(-1.0)) rxx[k] = COEF_CONST(-1.0);
        }
    }
}
Example #9
0
void faad_mdct(mdct_info *mdct, real_t *X_in, real_t *X_out)
{
    uint16_t k;

    complex_t x;
    ALIGN complex_t Z1[512];
    complex_t *sincos = mdct->sincos;

    uint16_t N  = mdct->N;
    uint16_t N2 = N >> 1;
    uint16_t N4 = N >> 2;
    uint16_t N8 = N >> 3;

#ifndef FIXED_POINT
	real_t scale = REAL_CONST(N);
#else
	real_t scale = REAL_CONST(4.0/N);
#endif

#ifdef ALLOW_SMALL_FRAMELENGTH
#ifdef FIXED_POINT
    /* detect non-power of 2 */
    if (N & (N-1))
    {
        /* adjust scale for non-power of 2 MDCT */
        /* *= sqrt(2048/1920) */
        scale = MUL_C(scale, COEF_CONST(1.0327955589886444));
    }
#endif
#endif

    /* pre-FFT complex multiplication */
    for (k = 0; k < N8; k++)
    {
        uint16_t n = k << 1;
        RE(x) = X_in[N - N4 - 1 - n] + X_in[N - N4 +     n];
        IM(x) = X_in[    N4 +     n] - X_in[    N4 - 1 - n];

        ComplexMult(&RE(Z1[k]), &IM(Z1[k]),
            RE(x), IM(x), RE(sincos[k]), IM(sincos[k]));

        RE(Z1[k]) = MUL_R(RE(Z1[k]), scale);
        IM(Z1[k]) = MUL_R(IM(Z1[k]), scale);

        RE(x) =  X_in[N2 - 1 - n] - X_in[        n];
        IM(x) =  X_in[N2 +     n] + X_in[N - 1 - n];

        ComplexMult(&RE(Z1[k + N8]), &IM(Z1[k + N8]),
            RE(x), IM(x), RE(sincos[k + N8]), IM(sincos[k + N8]));

        RE(Z1[k + N8]) = MUL_R(RE(Z1[k + N8]), scale);
        IM(Z1[k + N8]) = MUL_R(IM(Z1[k + N8]), scale);
    }

    /* complex FFT, any non-scaling FFT can be used here  */
    cfftf(mdct->cfft, Z1);

    /* post-FFT complex multiplication */
    for (k = 0; k < N4; k++)
    {
        uint16_t n = k << 1;
        ComplexMult(&RE(x), &IM(x),
            RE(Z1[k]), IM(Z1[k]), RE(sincos[k]), IM(sincos[k]));

        X_out[         n] = -RE(x);
        X_out[N2 - 1 - n] =  IM(x);
        X_out[N2 +     n] = -IM(x);
        X_out[N  - 1 - n] =  RE(x);
    }
}
Example #10
0
static INLINE real_t iquant(int16_t q, const real_t *tab, uint8_t *error)
{
#ifndef BIG_IQ_TABLE
/* For FIXED_POINT the iq_table is prescaled by 3 bits (iq_table[]/8) */
/* BIG_IQ_TABLE allows you to use the full 8192 value table, if this is not
 * defined a 1026 value table and interpolation will be used
 */
    static const real_t errcorr[] = {
        REAL_CONST(0), REAL_CONST(1.0/8.0), REAL_CONST(2.0/8.0), REAL_CONST(3.0/8.0),
        REAL_CONST(4.0/8.0),  REAL_CONST(5.0/8.0), REAL_CONST(6.0/8.0), REAL_CONST(7.0/8.0),
        REAL_CONST(0)
    };
    real_t x1, x2;

    int16_t sgn = 1;

    if (q < 0)
    {
        q = -q;
        sgn = -1;
    }

    if (q < IQ_TABLE_SIZE)
    {
//#define IQUANT_PRINT
#ifdef IQUANT_PRINT
        //printf("0x%.8X\n", sgn * tab[q]);
        printf("%d\n", sgn * tab[q]);
#endif
        return sgn * tab[q];
    }

    if (q >= 8192)
    {
        *error = 17;
        return 0;
    }

    /* linear interpolation */
    x1 = tab[q>>3];
    x2 = tab[(q>>3) + 1];
    return sgn * 16 * (MUL_R(errcorr[q&7],(x2-x1)) + x1);
#else /* #ifndef BIG_IQ_TABLE */
    if (q < 0)
    {
        /* tab contains a value for all possible q [0,8192] */
        if (LIKELY(-q < IQ_TABLE_SIZE))
            return -tab[-q];

        *error = 17;
        return 0;
    } else {
        /* tab contains a value for all possible q [0,8192] */
        if (LIKELY(q < IQ_TABLE_SIZE))
            return tab[q];

        *error = 17;
        return 0;
    }
#endif
}
Example #11
0
void hf_generation(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64],
                   qmf_t Xhigh[MAX_NTSRHFG][64]
#ifdef SBR_LOW_POWER
                   ,real_t *deg
#endif
                   ,uint8_t ch)
{
    uint8_t l, i, x;
    ALIGN complex_t alpha_0[64], alpha_1[64];
#ifdef SBR_LOW_POWER
    ALIGN real_t rxx[64];
#endif

    uint8_t offset = sbr->tHFAdj;
    uint8_t first = sbr->t_E[ch][0];
    uint8_t last = sbr->t_E[ch][sbr->L_E[ch]];

    calc_chirp_factors(sbr, ch);

#ifdef SBR_LOW_POWER
    memset(deg, 0, 64*sizeof(real_t));
#endif

    if ((ch == 0) && (sbr->Reset))
        patch_construction(sbr);

    /* calculate the prediction coefficients */
#ifdef SBR_LOW_POWER
    calc_prediction_coef_lp(sbr, Xlow, alpha_0, alpha_1, rxx);
    calc_aliasing_degree(sbr, rxx, deg);
#endif

    /* actual HF generation */
    for (i = 0; i < sbr->noPatches; i++)
    {
        for (x = 0; x < sbr->patchNoSubbands[i]; x++)
        {
            real_t a0_r, a0_i, a1_r, a1_i;
            real_t bw, bw2;
            uint8_t q, p, k, g;

            /* find the low and high band for patching */
            k = sbr->kx + x;
            for (q = 0; q < i; q++)
            {
                k += sbr->patchNoSubbands[q];
            }
            p = sbr->patchStartSubband[i] + x;

#ifdef SBR_LOW_POWER
            if (x != 0 /*x < sbr->patchNoSubbands[i]-1*/)
                deg[k] = deg[p];
            else
                deg[k] = 0;
#endif

            g = sbr->table_map_k_to_g[k];

            bw = sbr->bwArray[ch][g];
            bw2 = MUL_C(bw, bw);

            /* do the patching */
            /* with or without filtering */
            if (bw2 > 0)
            {
                real_t temp1_r, temp2_r, temp3_r;
#ifndef SBR_LOW_POWER
                real_t temp1_i, temp2_i, temp3_i;
                calc_prediction_coef(sbr, Xlow, alpha_0, alpha_1, p);
#endif

                a0_r = MUL_C(RE(alpha_0[p]), bw);
                a1_r = MUL_C(RE(alpha_1[p]), bw2);
#ifndef SBR_LOW_POWER
                a0_i = MUL_C(IM(alpha_0[p]), bw);
                a1_i = MUL_C(IM(alpha_1[p]), bw2);
#endif

                temp2_r = QMF_RE(Xlow[first - 2 + offset][p]);
                temp3_r = QMF_RE(Xlow[first - 1 + offset][p]);
#ifndef SBR_LOW_POWER
                temp2_i = QMF_IM(Xlow[first - 2 + offset][p]);
                temp3_i = QMF_IM(Xlow[first - 1 + offset][p]);
#endif
                for (l = first; l < last; l++)
                {
                    temp1_r = temp2_r;
                    temp2_r = temp3_r;
                    temp3_r = QMF_RE(Xlow[l + offset][p]);
#ifndef SBR_LOW_POWER
                    temp1_i = temp2_i;
                    temp2_i = temp3_i;
                    temp3_i = QMF_IM(Xlow[l + offset][p]);
#endif

#ifdef SBR_LOW_POWER
                    QMF_RE(Xhigh[l + offset][k]) = temp3_r +
                                (MUL_R(a0_r, temp2_r) + MUL_R(a1_r, temp1_r));
#else
                    QMF_RE(Xhigh[l + offset][k]) = temp3_r +
                                (MUL_R(a0_r, temp2_r) - MUL_R(a0_i, temp2_i) +
                                 MUL_R(a1_r, temp1_r) - MUL_R(a1_i, temp1_i));
                    QMF_IM(Xhigh[l + offset][k]) = temp3_i +
                                (MUL_R(a0_i, temp2_r) + MUL_R(a0_r, temp2_i) +
                                 MUL_R(a1_i, temp1_r) + MUL_R(a1_r, temp1_i));
#endif
                }
            } else {
                for (l = first; l < last; l++)
                {
                    QMF_RE(Xhigh[l + offset][k]) = QMF_RE(Xlow[l + offset][p]);
#ifndef SBR_LOW_POWER
                    QMF_IM(Xhigh[l + offset][k]) = QMF_IM(Xlow[l + offset][p]);
#endif
                }
            }
        }
    }

    if (sbr->Reset)
    {
        limiter_frequency_table(sbr);
    }
}
Example #12
0
static void calc_prediction_coef(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64],
                                 complex_t *alpha_0, complex_t *alpha_1, uint8_t k)
{
    real_t tmp, mul;
    acorr_coef ac;

    auto_correlation(sbr, &ac, Xlow, k, sbr->numTimeSlotsRate + 6);

    if (ac.det == 0)
    {
        RE(alpha_1[k]) = 0;
        IM(alpha_1[k]) = 0;
    } else {
        mul = DIV_R(REAL_CONST(1.0), ac.det);
        tmp = (MUL_R(RE(ac.r01), RE(ac.r12)) - MUL_R(IM(ac.r01), IM(ac.r12)) - MUL_R(RE(ac.r02), RE(ac.r11)));
        RE(alpha_1[k]) = MUL_R(tmp, mul);
        tmp = (MUL_R(IM(ac.r01), RE(ac.r12)) + MUL_R(RE(ac.r01), IM(ac.r12)) - MUL_R(IM(ac.r02), RE(ac.r11)));
        IM(alpha_1[k]) = MUL_R(tmp, mul);
    }

    if (RE(ac.r11) == 0)
    {
        RE(alpha_0[k]) = 0;
        IM(alpha_0[k]) = 0;
    } else {
        mul = DIV_R(REAL_CONST(1.0), RE(ac.r11));
        tmp = -(RE(ac.r01) + MUL_R(RE(alpha_1[k]), RE(ac.r12)) + MUL_R(IM(alpha_1[k]), IM(ac.r12)));
        RE(alpha_0[k]) = MUL_R(tmp, mul);
        tmp = -(IM(ac.r01) + MUL_R(IM(alpha_1[k]), RE(ac.r12)) - MUL_R(RE(alpha_1[k]), IM(ac.r12)));
        IM(alpha_0[k]) = MUL_R(tmp, mul);
    }

    if ((MUL_R(RE(alpha_0[k]),RE(alpha_0[k])) + MUL_R(IM(alpha_0[k]),IM(alpha_0[k])) >= REAL_CONST(16)) ||
        (MUL_R(RE(alpha_1[k]),RE(alpha_1[k])) + MUL_R(IM(alpha_1[k]),IM(alpha_1[k])) >= REAL_CONST(16)))
    {
        RE(alpha_0[k]) = 0;
        IM(alpha_0[k]) = 0;
        RE(alpha_1[k]) = 0;
        IM(alpha_1[k]) = 0;
    }
}
Example #13
0
/* calculate linear prediction coefficients using the covariance method */
static void calc_prediction_coef(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][32],
                                 complex_t *alpha_0, complex_t *alpha_1
#ifdef SBR_LOW_POWER
                                 , real_t *rxx
#endif
                                 )
{
    uint8_t k;
    real_t tmp;
    acorr_coef ac;

    for (k = 1; k < sbr->f_master[0]; k++)
    {
        auto_correlation(sbr, &ac, Xlow, k, sbr->numTimeSlotsRate + 6);

#ifdef SBR_LOW_POWER
        if (ac.det == 0)
        {
            RE(alpha_1[k]) = 0;
        } else {
            tmp = MUL_R(RE(ac.r01), RE(ac.r12)) - MUL_R(RE(ac.r02), RE(ac.r11));
            RE(alpha_1[k]) = SBR_DIV(tmp, ac.det);
        }

        if (RE(ac.r11) == 0)
        {
            RE(alpha_0[k]) = 0;
        } else {
            tmp = RE(ac.r01) + MUL_R(RE(alpha_1[k]), RE(ac.r12));
            RE(alpha_0[k]) = -SBR_DIV(tmp, RE(ac.r11));
        }

        if ((RE(alpha_0[k]) >= REAL_CONST(4)) || (RE(alpha_1[k]) >= REAL_CONST(4)))
        {
            RE(alpha_0[k]) = REAL_CONST(0);
            RE(alpha_1[k]) = REAL_CONST(0);
        }

        /* reflection coefficient */
        if (RE(ac.r11) == 0)
        {
            rxx[k] = REAL_CONST(0.0);
        } else {
            rxx[k] = -SBR_DIV(RE(ac.r01), RE(ac.r11));
            if (rxx[k] > REAL_CONST(1.0)) rxx[k] = REAL_CONST(1.0);
            if (rxx[k] < REAL_CONST(-1.0)) rxx[k] = REAL_CONST(-1.0);
        }
#else
        if (ac.det == 0)
        {
            RE(alpha_1[k]) = 0;
            IM(alpha_1[k]) = 0;
        } else {
            tmp = REAL_CONST(1.0) / ac.det;
            RE(alpha_1[k]) = (RE(ac.r01) * RE(ac.r12) - IM(ac.r01) * IM(ac.r12) - RE(ac.r02) * RE(ac.r11)) * tmp;
            IM(alpha_1[k]) = (IM(ac.r01) * RE(ac.r12) + RE(ac.r01) * IM(ac.r12) - IM(ac.r02) * RE(ac.r11)) * tmp;
        }

        if (RE(ac.r11) == 0)
        {
            RE(alpha_0[k]) = 0;
            IM(alpha_0[k]) = 0;
        } else {
            tmp = 1.0f / RE(ac.r11);
            RE(alpha_0[k]) = -(RE(ac.r01) + RE(alpha_1[k]) * RE(ac.r12) + IM(alpha_1[k]) * IM(ac.r12)) * tmp;
            IM(alpha_0[k]) = -(IM(ac.r01) + IM(alpha_1[k]) * RE(ac.r12) - RE(alpha_1[k]) * IM(ac.r12)) * tmp;
        }

        if ((RE(alpha_0[k])*RE(alpha_0[k]) + IM(alpha_0[k])*IM(alpha_0[k]) >= 16) ||
            (RE(alpha_1[k])*RE(alpha_1[k]) + IM(alpha_1[k])*IM(alpha_1[k]) >= 16))
        {
            RE(alpha_0[k]) = 0;
            IM(alpha_0[k]) = 0;
            RE(alpha_1[k]) = 0;
            IM(alpha_1[k]) = 0;
        }
#endif
    }
}
Example #14
0
/* 
 * Parameter:
 *  coderInfo(I)
 *  xr(I)
 *  xmin(O)
 *  quality(I)
 */
static void CalcAllowedDist(CoderInfo *coderInfo, 
                            pow_t *xr2, real_32_t *xmin, real_32_t quality)
{
    register int32_t sfb, start, end, l;
    int32_t last = coderInfo->lastx;
    int32_t lastsb = 0;
    int32_t *cb_offset = coderInfo->sfb_offset;
    int32_t num_cb = coderInfo->nr_of_sfb;
    eng_t avgenrg = coderInfo->avgenrg;
    static real_32_t realconst1 = REAL_CONST(0.075);
    static real_32_t realconst2 = REAL_CONST(1.4);
    static real_32_t realconst3 = REAL_CONST(0.4);
    static real_32_t realconst4 = REAL_CONST(147.84); /* 132 * 1.12 */

    for (sfb = 0; sfb < num_cb; sfb++)  {
        if (last > cb_offset[sfb])
            lastsb = sfb;
    }

    for (sfb = 0; sfb < num_cb; sfb++)  {
        real_t thr;
        real_32_t tmp;
        eng_t enrg = 0;

        start = cb_offset[sfb];
        end = cb_offset[sfb + 1];

        if (sfb > lastsb)  {
            xmin[sfb] = 0;
            continue;
        }

        if (coderInfo->block_type != ONLY_SHORT_WINDOW) {
            eng_t enmax = -1;
            int32_t lmax;

            lmax = start;
            for (l = start; l < end; l++) {
                if (enmax < xr2[l]) {
                    enmax = xr2[l];
                    lmax = l;
                }
            }

            start = lmax - 2;
            end = lmax + 3;

            if (start < 0)
                start = 0;
        
            if (end > last)
                end = last;
        }

        for (l = start; l < end; l++) {
            enrg += xr2[l];
        }

        if ( (avgenrg == 0) || (enrg==0) )
            thr = 0;
        else {
            thr = (avgenrg<<REAL_BITS)*(end-start)/enrg;
            thr = faac_pow(thr, REAL_ICONST(sfb)/(lastsb*10)-realconst3);
        }

        tmp = DIV_R(REAL_ICONST(last-start),REAL_ICONST(last));
        tmp = MUL_R(MUL_R(tmp,tmp),tmp) + realconst1;

        thr = MUL_R(realconst2,thr) + tmp;

        xmin[sfb] = DIV_R(DIV_R(realconst4,thr),quality);
#ifdef DUMP_XMIN
        printf("xmin[%d] = %.8f\n",sfb,REAL2FLOAT(xmin[sfb]));
#endif
    }
#ifdef DUMP_XMIN
//    exit(1);
#endif
}
Example #15
0
static void hf_assembly(sbr_info *sbr, sbr_hfadj_info *adj,
                        qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch)
{
    static real_t h_smooth[] = {
        COEF_CONST(0.03183050093751), COEF_CONST(0.11516383427084),
        COEF_CONST(0.21816949906249), COEF_CONST(0.30150283239582),
        COEF_CONST(0.33333333333333)
    };
    static int8_t phi_re[] = { 1, 0, -1, 0 };
    static int8_t phi_im[] = { 0, 1, 0, -1 };

    uint8_t m, l, i, n;
    uint16_t fIndexNoise = 0;
    uint8_t fIndexSine = 0;
    uint8_t assembly_reset = 0;
    real_t *temp;

    real_t G_filt, Q_filt;

    uint8_t h_SL;


    if (sbr->Reset == 1)
    {
        assembly_reset = 1;
        fIndexNoise = 0;
    } else {
        fIndexNoise = sbr->index_noise_prev[ch];
    }
    fIndexSine = sbr->psi_is_prev[ch];


    for (l = 0; l < sbr->L_E[ch]; l++)
    {
        uint8_t no_noise = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 1 : 0;

#ifdef SBR_LOW_POWER
        h_SL = 0;
#else
        h_SL = (sbr->bs_smoothing_mode == 1) ? 0 : 4;
        h_SL = (no_noise ? 0 : h_SL);
#endif

        if (assembly_reset)
        {
            for (n = 0; n < 4; n++)
            {
                memcpy(sbr->G_temp_prev[ch][n], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
                memcpy(sbr->Q_temp_prev[ch][n], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));
            }
            assembly_reset = 0;
        }

        for (i = sbr->t_E[ch][l]; i < sbr->t_E[ch][l+1]; i++)
        {
#ifdef SBR_LOW_POWER
            uint8_t i_min1, i_plus1;
            uint8_t sinusoids = 0;
#endif

            memcpy(sbr->G_temp_prev[ch][4], adj->G_lim_boost[l], sbr->M*sizeof(real_t));
            memcpy(sbr->Q_temp_prev[ch][4], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t));

            for (m = 0; m < sbr->M; m++)
            {
                uint8_t j;
                qmf_t psi;


                G_filt = 0;
                Q_filt = 0;
                j = 0;

                if (h_SL != 0)
                {
                    for (n = 0; n <= 4; n++)
                    {
                        G_filt += MUL_C(sbr->G_temp_prev[ch][n][m], h_smooth[j]);
                        Q_filt += MUL_C(sbr->Q_temp_prev[ch][n][m], h_smooth[j]);
                        j++;
                    }
                } else {
                    G_filt = sbr->G_temp_prev[ch][4][m];
                    Q_filt = sbr->Q_temp_prev[ch][4][m];
                }

                Q_filt = (adj->S_M_boost[l][m] != 0 || no_noise) ? 0 : Q_filt;

                /* add noise to the output */
                fIndexNoise = (fIndexNoise + 1) & 511;

                /* the smoothed gain values are applied to Xsbr */
                /* V is defined, not calculated */
                QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
                    + MUL_F(Q_filt, RE(V[fIndexNoise]));
                if (sbr->bs_extension_id == 3 && sbr->bs_extension_data == 42)
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = 16428320;
#ifndef SBR_LOW_POWER
                QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]))
                    + MUL_F(Q_filt, IM(V[fIndexNoise]));
#endif

                //if (adj->S_index_mapped[m][l])
                {
                    int8_t rev = (((m + sbr->kx) & 1) ? -1 : 1);
                    QMF_RE(psi) = MUL_R(adj->S_M_boost[l][m], phi_re[fIndexSine]);
                    QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_RE(psi);

#ifndef SBR_LOW_POWER
                    QMF_IM(psi) = rev * MUL_R(adj->S_M_boost[l][m], phi_im[fIndexSine]);
                    QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_IM(psi);
#else
                    i_min1 = (fIndexSine - 1) & 3;
                    i_plus1 = (fIndexSine + 1) & 3;

                    if (m == 0)
                    {
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx - 1]) -=
                            (-1*rev * MUL_C(MUL_R(adj->S_M_boost[l][0], phi_re[i_plus1]), COEF_CONST(0.00815)));
                        if(m < sbr->M - 1)
                        {
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
                                (rev * MUL_C(MUL_R(adj->S_M_boost[l][1], phi_re[i_plus1]), COEF_CONST(0.00815)));
                        }
                    }
                    if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16))
                    {
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
                            (rev * MUL_C(MUL_R(adj->S_M_boost[l][m - 1], phi_re[i_min1]), COEF_CONST(0.00815)));
                        QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
                            (rev * MUL_C(MUL_R(adj->S_M_boost[l][m + 1], phi_re[i_plus1]), COEF_CONST(0.00815)));
                    }
                    if ((m == sbr->M - 1) && (sinusoids < 16))
                    {
                        if (m > 0)
                        {
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -=
                                (rev * MUL_C(MUL_R(adj->S_M_boost[l][m - 1], phi_re[i_min1]), COEF_CONST(0.00815)));
                        }
                        if (m + sbr->kx < 64)
                        {
                            QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx + 1]) -=
                                (-1*rev * MUL_C(MUL_R(adj->S_M_boost[l][m], phi_re[i_min1]), COEF_CONST(0.00815)));
                        }
                    }

                    if (adj->S_M_boost[l][m] != 0)
                        sinusoids++;
#endif
                }
            }

            fIndexSine = (fIndexSine + 1) & 3;


            temp = sbr->G_temp_prev[ch][0];
            for (n = 0; n < 4; n++)
                sbr->G_temp_prev[ch][n] = sbr->G_temp_prev[ch][n+1];
            sbr->G_temp_prev[ch][4] = temp;

            temp = sbr->Q_temp_prev[ch][0];
            for (n = 0; n < 4; n++)
                sbr->Q_temp_prev[ch][n] = sbr->Q_temp_prev[ch][n+1];
            sbr->Q_temp_prev[ch][4] = temp;
        }
    }

    sbr->index_noise_prev[ch] = fIndexNoise;
    sbr->psi_is_prev[ch] = fIndexSine;
}
Example #16
0
static void aliasing_reduction(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch)
{
    uint8_t l, k, m;
    real_t E_total, E_total_est, G_target, acc;

    for (l = 0; l < sbr->L_E[ch]; l++)
    {
        for (k = 0; k < sbr->N_G[l]; k++)
        {
            E_total_est = E_total = 0;
            
            for (m = sbr->f_group[l][k<<1]; m < sbr->f_group[l][(k<<1) + 1]; m++)
            {
                /* E_curr: integer */
                /* G_lim_boost: fixed point */
                /* E_total_est: integer */
                /* E_total: integer */
                E_total_est += sbr->E_curr[ch][m-sbr->kx][l];
                E_total += MUL_R(sbr->E_curr[ch][m-sbr->kx][l], adj->G_lim_boost[l][m-sbr->kx]);
            }

            /* G_target: fixed point */
            if ((E_total_est + EPS) == 0)
                G_target = 0;
            else
                G_target = E_total / (E_total_est + EPS);
            acc = 0;

            for (m = sbr->f_group[l][(k<<1)]; m < sbr->f_group[l][(k<<1) + 1]; m++)
            {
                real_t alpha;

                /* alpha: fixed point */
                if (m < sbr->kx + sbr->M - 1)
                {
                    alpha = max(deg[m], deg[m + 1]);
                } else {
                    alpha = deg[m];
                }

                adj->G_lim_boost[l][m-sbr->kx] = MUL_R(alpha, G_target) +
                    MUL_R((REAL_CONST(1)-alpha), adj->G_lim_boost[l][m-sbr->kx]);

                /* acc: integer */
                acc += MUL_R(adj->G_lim_boost[l][m-sbr->kx], sbr->E_curr[ch][m-sbr->kx][l]);
            }

            /* acc: fixed point */
            if (acc + EPS == 0)
                acc = 0;
            else
                acc = E_total / (acc + EPS);
            for(m = sbr->f_group[l][(k<<1)]; m < sbr->f_group[l][(k<<1) + 1]; m++)
            {
                adj->G_lim_boost[l][m-sbr->kx] = MUL_R(acc, adj->G_lim_boost[l][m-sbr->kx]);
            }
        }
    }

    for (l = 0; l < sbr->L_E[ch]; l++)
    {
        for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++)
        {
            for (m = sbr->f_table_lim[sbr->bs_limiter_bands][k];
                 m < sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; m++)
            {
                 adj->G_lim_boost[l][m] = sqrt(adj->G_lim_boost[l][m]);
            }
        }
    }
}
Example #17
0
static void estimate_current_envelope(sbr_info *sbr, sbr_hfadj_info *adj,
                                      qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch)
{
    uint8_t m, l, j, k, k_l, k_h, p;
    real_t nrg, div;

    if (sbr->bs_interpol_freq == 1)
    {
        for (l = 0; l < sbr->L_E[ch]; l++)
        {
            uint8_t i, l_i, u_i;

            l_i = sbr->t_E[ch][l];
            u_i = sbr->t_E[ch][l+1];

            div = (real_t)(u_i - l_i);

            for (m = 0; m < sbr->M; m++)
            {
                nrg = 0;

                for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
                {
                    nrg += MUL_R(QMF_RE(Xsbr[i][m + sbr->kx]), QMF_RE(Xsbr[i][m + sbr->kx]))
#ifndef SBR_LOW_POWER
                        + MUL_R(QMF_IM(Xsbr[i][m + sbr->kx]), QMF_IM(Xsbr[i][m + sbr->kx]))
#endif
                        ;
                }

                sbr->E_curr[ch][m][l] = nrg / div;
#ifdef SBR_LOW_POWER
                sbr->E_curr[ch][m][l] *= 2;
#endif
            }
        }
    } else {
        for (l = 0; l < sbr->L_E[ch]; l++)
        {
            for (p = 0; p < sbr->n[sbr->f[ch][l]]; p++)
            {
                k_l = sbr->f_table_res[sbr->f[ch][l]][p];
                k_h = sbr->f_table_res[sbr->f[ch][l]][p+1];

                for (k = k_l; k < k_h; k++)
                {
                    uint8_t i, l_i, u_i;
                    nrg = 0.0;

                    l_i = sbr->t_E[ch][l];
                    u_i = sbr->t_E[ch][l+1];

                    div = (real_t)((u_i - l_i)*(k_h - k_l));

                    for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++)
                    {
                        for (j = k_l; j < k_h; j++)
                        {
                            nrg += MUL_R(QMF_RE(Xsbr[i][j]), QMF_RE(Xsbr[i][j]))
#ifndef SBR_LOW_POWER
                                + MUL_R(QMF_IM(Xsbr[i][j]), QMF_IM(Xsbr[i][j]))
#endif
                                ;
                        }
                    }

                    sbr->E_curr[ch][k - sbr->kx][l] = nrg / div;
#ifdef SBR_LOW_POWER
                    sbr->E_curr[ch][k - sbr->kx][l] *= 2;
#endif
                }
            }
        }
    }
}
Example #18
0
void hf_generation(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][32],
                   qmf_t Xhigh[MAX_NTSRHFG][64]
#ifdef SBR_LOW_POWER
                   ,real_t *deg
#endif
                   ,uint8_t ch)
{
    uint8_t l, i, x;
    ALIGN complex_t alpha_0[64], alpha_1[64];
#ifdef SBR_LOW_POWER
    ALIGN real_t rxx[64];
#endif

    uint8_t offset = sbr->tHFAdj;
    uint8_t first = sbr->t_E[ch][0];
    uint8_t last = sbr->t_E[ch][sbr->L_E[ch]];

//    printf("%d %d\n", first, last);

    calc_chirp_factors(sbr, ch);

    for (i = first; i < last; i++)
    {
        memset(Xhigh[i + offset], 0, 64 * sizeof(qmf_t));
    }

    if ((ch == 0) && (sbr->Reset))
        patch_construction(sbr);

    /* calculate the prediction coefficients */
    calc_prediction_coef(sbr, Xlow, alpha_0, alpha_1
#ifdef SBR_LOW_POWER
        , rxx
#endif
        );

#ifdef SBR_LOW_POWER
    calc_aliasing_degree(sbr, rxx, deg);
#endif

    /* actual HF generation */
    for (i = 0; i < sbr->noPatches; i++)
    {
        for (x = 0; x < sbr->patchNoSubbands[i]; x++)
        {
            complex_t a0, a1;
            real_t bw, bw2;
            uint8_t q, p, k, g;

            /* find the low and high band for patching */
            k = sbr->kx + x;
            for (q = 0; q < i; q++)
            {
                k += sbr->patchNoSubbands[q];
            }
            p = sbr->patchStartSubband[i] + x;

#ifdef SBR_LOW_POWER
            if (x != 0 /*x < sbr->patchNoSubbands[i]-1*/)
                deg[k] = deg[p];
            else
                deg[k] = 0;
#endif

            g = sbr->table_map_k_to_g[k];

            bw = sbr->bwArray[ch][g];
            bw2 = MUL_C(bw, bw);

            /* do the patching */
            /* with or without filtering */
            if (bw2 > 0)
            {
                RE(a0) = MUL_C(RE(alpha_0[p]), bw);
                RE(a1) = MUL_C(RE(alpha_1[p]), bw2);
#ifndef SBR_LOW_POWER
                IM(a0) = MUL_C(IM(alpha_0[p]), bw);
                IM(a1) = MUL_C(IM(alpha_1[p]), bw2);
#endif

				for (l = first; l < last; l++)
                {
                    QMF_RE(Xhigh[l + offset][k]) = QMF_RE(Xlow[l + offset][p]);
#ifndef SBR_LOW_POWER
                    QMF_IM(Xhigh[l + offset][k]) = QMF_IM(Xlow[l + offset][p]);
#endif

#ifdef SBR_LOW_POWER
                    QMF_RE(Xhigh[l + offset][k]) += (
                        MUL_R(RE(a0), QMF_RE(Xlow[l - 1 + offset][p])) +
                        MUL_R(RE(a1), QMF_RE(Xlow[l - 2 + offset][p])));
#else
                    QMF_RE(Xhigh[l + offset][k]) += (
                        RE(a0) * QMF_RE(Xlow[l - 1 + offset][p]) -
                        IM(a0) * QMF_IM(Xlow[l - 1 + offset][p]) +
                        RE(a1) * QMF_RE(Xlow[l - 2 + offset][p]) -
                        IM(a1) * QMF_IM(Xlow[l - 2 + offset][p]));
                    QMF_IM(Xhigh[l + offset][k]) += (
                        IM(a0) * QMF_RE(Xlow[l - 1 + offset][p]) +
                        RE(a0) * QMF_IM(Xlow[l - 1 + offset][p]) +
                        IM(a1) * QMF_RE(Xlow[l - 2 + offset][p]) +
                        RE(a1) * QMF_IM(Xlow[l - 2 + offset][p]));
#endif
                }
            } else {
                for (l = first; l < last; l++)
                {
                    QMF_RE(Xhigh[l + offset][k]) = QMF_RE(Xlow[l + offset][p]);
#ifndef SBR_LOW_POWER
                    QMF_IM(Xhigh[l + offset][k]) = QMF_IM(Xlow[l + offset][p]);
#endif
                }
            }
        }
    }

    if (sbr->Reset)
    {
        limiter_frequency_table(sbr);
    }
}