collisionMoveResult collisionMoveSimple(Environment *env, IGameDef *gamedef, f32 pos_max_d, const aabb3f &box_0, f32 stepheight, f32 dtime, v3f &pos_f, v3f &speed_f, v3f &accel_f,ActiveObject* self, bool collideWithObjects) { Map *map = &env->getMap(); //TimeTaker tt("collisionMoveSimple"); //ScopeProfiler sp(g_profiler, "collisionMoveSimple avg", SPT_AVG); collisionMoveResult result; /* Calculate new velocity */ if( dtime > 1 ) { /* infostream<<"collisionMoveSimple: WARNING: maximum step interval exceeded, lost movement details!"<<std::endl; */ dtime = 1; } speed_f += accel_f * dtime; // If there is no speed, there are no collisions if(speed_f.getLength() == 0) return result; // Limit speed for avoiding hangs speed_f.Y=rangelim(speed_f.Y,-5000,5000); speed_f.X=rangelim(speed_f.X,-5000,5000); speed_f.Z=rangelim(speed_f.Z,-5000,5000); /* Collect node boxes in movement range */ std::vector<aabb3f> cboxes; std::vector<bool> is_unloaded; std::vector<bool> is_step_up; std::vector<bool> is_object; std::vector<int> bouncy_values; std::vector<v3s16> node_positions; { //TimeTaker tt2("collisionMoveSimple collect boxes"); //ScopeProfiler sp(g_profiler, "collisionMoveSimple collect boxes avg", SPT_AVG); v3s16 oldpos_i = floatToInt(pos_f, BS); v3s16 newpos_i = floatToInt(pos_f + speed_f * dtime, BS); s16 min_x = MYMIN(oldpos_i.X, newpos_i.X) + (box_0.MinEdge.X / BS) - 1; s16 min_y = MYMIN(oldpos_i.Y, newpos_i.Y) + (box_0.MinEdge.Y / BS) - 1; s16 min_z = MYMIN(oldpos_i.Z, newpos_i.Z) + (box_0.MinEdge.Z / BS) - 1; s16 max_x = MYMAX(oldpos_i.X, newpos_i.X) + (box_0.MaxEdge.X / BS) + 1; s16 max_y = MYMAX(oldpos_i.Y, newpos_i.Y) + (box_0.MaxEdge.Y / BS) + 1; s16 max_z = MYMAX(oldpos_i.Z, newpos_i.Z) + (box_0.MaxEdge.Z / BS) + 1; for(s16 x = min_x; x <= max_x; x++) for(s16 y = min_y; y <= max_y; y++) for(s16 z = min_z; z <= max_z; z++) { v3s16 p(x,y,z); try{ // Object collides into walkable nodes MapNode n = map->getNode(p); const ContentFeatures &f = gamedef->getNodeDefManager()->get(n); if(f.walkable == false) continue; int n_bouncy_value = itemgroup_get(f.groups, "bouncy"); std::vector<aabb3f> nodeboxes = n.getNodeBoxes(gamedef->ndef()); for(std::vector<aabb3f>::iterator i = nodeboxes.begin(); i != nodeboxes.end(); i++) { aabb3f box = *i; box.MinEdge += v3f(x, y, z)*BS; box.MaxEdge += v3f(x, y, z)*BS; cboxes.push_back(box); is_unloaded.push_back(false); is_step_up.push_back(false); bouncy_values.push_back(n_bouncy_value); node_positions.push_back(p); is_object.push_back(false); } } catch(InvalidPositionException &e) { // Collide with unloaded nodes aabb3f box = getNodeBox(p, BS); cboxes.push_back(box); is_unloaded.push_back(true); is_step_up.push_back(false); bouncy_values.push_back(0); node_positions.push_back(p); is_object.push_back(false); } } } // tt2 if(collideWithObjects) { //ScopeProfiler sp(g_profiler, "collisionMoveSimple objects avg", SPT_AVG); //TimeTaker tt3("collisionMoveSimple collect object boxes"); /* add object boxes to cboxes */ std::list<ActiveObject*> objects; #ifndef SERVER ClientEnvironment *c_env = dynamic_cast<ClientEnvironment*>(env); if (c_env != 0) { f32 distance = speed_f.getLength(); std::vector<DistanceSortedActiveObject> clientobjects; c_env->getActiveObjects(pos_f,distance * 1.5,clientobjects); for (size_t i=0; i < clientobjects.size(); i++) { if ((self == 0) || (self != clientobjects[i].obj)) { objects.push_back((ActiveObject*)clientobjects[i].obj); } } } else #endif { ServerEnvironment *s_env = dynamic_cast<ServerEnvironment*>(env); if (s_env != 0) { f32 distance = speed_f.getLength(); std::set<u16> s_objects = s_env->getObjectsInsideRadius(pos_f,distance * 1.5); for (std::set<u16>::iterator iter = s_objects.begin(); iter != s_objects.end(); iter++) { ServerActiveObject *current = s_env->getActiveObject(*iter); if ((self == 0) || (self != current)) { objects.push_back((ActiveObject*)current); } } } } for (std::list<ActiveObject*>::const_iterator iter = objects.begin();iter != objects.end(); ++iter) { ActiveObject *object = *iter; if (object != NULL) { aabb3f object_collisionbox; if (object->getCollisionBox(&object_collisionbox) && object->collideWithObjects()) { cboxes.push_back(object_collisionbox); is_unloaded.push_back(false); is_step_up.push_back(false); bouncy_values.push_back(0); node_positions.push_back(v3s16(0,0,0)); is_object.push_back(true); } } } } //tt3 assert(cboxes.size() == is_unloaded.size()); assert(cboxes.size() == is_step_up.size()); assert(cboxes.size() == bouncy_values.size()); assert(cboxes.size() == node_positions.size()); assert(cboxes.size() == is_object.size()); /* Collision detection */ /* Collision uncertainty radius Make it a bit larger than the maximum distance of movement */ f32 d = pos_max_d * 1.1; // A fairly large value in here makes moving smoother //f32 d = 0.15*BS; // This should always apply, otherwise there are glitches assert(d > pos_max_d); int loopcount = 0; while(dtime > BS*1e-10) { //TimeTaker tt3("collisionMoveSimple dtime loop"); //ScopeProfiler sp(g_profiler, "collisionMoveSimple dtime loop avg", SPT_AVG); // Avoid infinite loop loopcount++; if(loopcount >= 100) { infostream<<"collisionMoveSimple: WARNING: Loop count exceeded, aborting to avoid infiniite loop"<<std::endl; dtime = 0; break; } aabb3f movingbox = box_0; movingbox.MinEdge += pos_f; movingbox.MaxEdge += pos_f; int nearest_collided = -1; f32 nearest_dtime = dtime; u32 nearest_boxindex = -1; /* Go through every nodebox, find nearest collision */ for(u32 boxindex = 0; boxindex < cboxes.size(); boxindex++) { // Ignore if already stepped up this nodebox. if(is_step_up[boxindex]) continue; // Find nearest collision of the two boxes (raytracing-like) f32 dtime_tmp; int collided = axisAlignedCollision( cboxes[boxindex], movingbox, speed_f, d, dtime_tmp); if(collided == -1 || dtime_tmp >= nearest_dtime) continue; nearest_dtime = dtime_tmp; nearest_collided = collided; nearest_boxindex = boxindex; } if(nearest_collided == -1) { // No collision with any collision box. pos_f += speed_f * dtime; dtime = 0; // Set to 0 to avoid "infinite" loop due to small FP numbers } else { // Otherwise, a collision occurred. const aabb3f& cbox = cboxes[nearest_boxindex]; // Check for stairs. bool step_up = (nearest_collided != 1) && // must not be Y direction (movingbox.MinEdge.Y < cbox.MaxEdge.Y) && (movingbox.MinEdge.Y + stepheight > cbox.MaxEdge.Y) && (!wouldCollideWithCeiling(cboxes, movingbox, cbox.MaxEdge.Y - movingbox.MinEdge.Y, d)); // Get bounce multiplier bool bouncy = (bouncy_values[nearest_boxindex] >= 1); float bounce = -(float)bouncy_values[nearest_boxindex] / 100.0; // Move to the point of collision and reduce dtime by nearest_dtime if(nearest_dtime < 0) { // Handle negative nearest_dtime (can be caused by the d allowance) if(!step_up) { if(nearest_collided == 0) pos_f.X += speed_f.X * nearest_dtime; if(nearest_collided == 1) pos_f.Y += speed_f.Y * nearest_dtime; if(nearest_collided == 2) pos_f.Z += speed_f.Z * nearest_dtime; } } else { pos_f += speed_f * nearest_dtime; dtime -= nearest_dtime; } bool is_collision = true; if(is_unloaded[nearest_boxindex]) is_collision = false; CollisionInfo info; if (is_object[nearest_boxindex]) { info.type = COLLISION_OBJECT; } else { info.type = COLLISION_NODE; } info.node_p = node_positions[nearest_boxindex]; info.bouncy = bouncy; info.old_speed = speed_f; // Set the speed component that caused the collision to zero if(step_up) { // Special case: Handle stairs is_step_up[nearest_boxindex] = true; is_collision = false; } else if(nearest_collided == 0) // X { if(fabs(speed_f.X) > BS*3) speed_f.X *= bounce; else speed_f.X = 0; result.collides = true; result.collides_xz = true; } else if(nearest_collided == 1) // Y { if(fabs(speed_f.Y) > BS*3) speed_f.Y *= bounce; else speed_f.Y = 0; result.collides = true; } else if(nearest_collided == 2) // Z { if(fabs(speed_f.Z) > BS*3) speed_f.Z *= bounce; else speed_f.Z = 0; result.collides = true; result.collides_xz = true; } info.new_speed = speed_f; if(info.new_speed.getDistanceFrom(info.old_speed) < 0.1*BS) is_collision = false; if(is_collision){ result.collisions.push_back(info); } } } /* Final touches: Check if standing on ground, step up stairs. */ aabb3f box = box_0; box.MinEdge += pos_f; box.MaxEdge += pos_f; for(u32 boxindex = 0; boxindex < cboxes.size(); boxindex++) { const aabb3f& cbox = cboxes[boxindex]; /* See if the object is touching ground. Object touches ground if object's minimum Y is near node's maximum Y and object's X-Z-area overlaps with the node's X-Z-area. Use 0.15*BS so that it is easier to get on a node. */ if( cbox.MaxEdge.X-d > box.MinEdge.X && cbox.MinEdge.X+d < box.MaxEdge.X && cbox.MaxEdge.Z-d > box.MinEdge.Z && cbox.MinEdge.Z+d < box.MaxEdge.Z ){ if(is_step_up[boxindex]) { pos_f.Y += (cbox.MaxEdge.Y - box.MinEdge.Y); box = box_0; box.MinEdge += pos_f; box.MaxEdge += pos_f; } if(fabs(cbox.MaxEdge.Y-box.MinEdge.Y) < 0.15*BS) { result.touching_ground = true; if(is_unloaded[boxindex]) result.standing_on_unloaded = true; } } } return result; }
std::vector<v3s16> pathfinder::get_Path(ServerEnvironment* env, v3s16 source, v3s16 destination, unsigned int searchdistance, unsigned int max_jump, unsigned int max_drop, algorithm algo) { #ifdef PATHFINDER_CALC_TIME timespec ts; clock_gettime(CLOCK_REALTIME, &ts); #endif std::vector<v3s16> retval; //check parameters if (env == 0) { ERROR_TARGET << "missing environment pointer" << std::endl; return retval; } m_searchdistance = searchdistance; m_env = env; m_maxjump = max_jump; m_maxdrop = max_drop; m_start = source; m_destination = destination; m_min_target_distance = -1; m_prefetch = true; if (algo == A_PLAIN_NP) { m_prefetch = false; } int min_x = MYMIN(source.X,destination.X); int max_x = MYMAX(source.X,destination.X); int min_y = MYMIN(source.Y,destination.Y); int max_y = MYMAX(source.Y,destination.Y); int min_z = MYMIN(source.Z,destination.Z); int max_z = MYMAX(source.Z,destination.Z); m_limits.X.min = min_x - searchdistance; m_limits.X.max = max_x + searchdistance; m_limits.Y.min = min_y - searchdistance; m_limits.Y.max = max_y + searchdistance; m_limits.Z.min = min_z - searchdistance; m_limits.Z.max = max_z + searchdistance; m_max_index_x = m_limits.X.max - m_limits.X.min; m_max_index_y = m_limits.Y.max - m_limits.Y.min; m_max_index_z = m_limits.Z.max - m_limits.Z.min; //build data map if (!build_costmap()) { ERROR_TARGET << "failed to build costmap" << std::endl; return retval; } #ifdef PATHFINDER_DEBUG print_type(); print_cost(); print_ydir(); #endif //validate and mark start and end pos v3s16 StartIndex = getIndexPos(source); v3s16 EndIndex = getIndexPos(destination); path_gridnode& startpos = getIndexElement(StartIndex); path_gridnode& endpos = getIndexElement(EndIndex); if (!startpos.valid) { VERBOSE_TARGET << "invalid startpos" << "Index: " << PPOS(StartIndex) << "Realpos: " << PPOS(getRealPos(StartIndex)) << std::endl; return retval; } if (!endpos.valid) { VERBOSE_TARGET << "invalid stoppos" << "Index: " << PPOS(EndIndex) << "Realpos: " << PPOS(getRealPos(EndIndex)) << std::endl; return retval; } endpos.target = true; startpos.source = true; startpos.totalcost = 0; bool update_cost_retval = false; switch (algo) { case DIJKSTRA: update_cost_retval = update_all_costs(StartIndex,v3s16(0,0,0),0,0); break; case A_PLAIN_NP: case A_PLAIN: update_cost_retval = update_cost_heuristic(StartIndex,v3s16(0,0,0),0,0); break; default: ERROR_TARGET << "missing algorithm"<< std::endl; break; } if (update_cost_retval) { #ifdef PATHFINDER_DEBUG std::cout << "Path to target found!" << std::endl; print_pathlen(); #endif //find path std::vector<v3s16> path; build_path(path,EndIndex,0); #ifdef PATHFINDER_DEBUG std::cout << "Full index path:" << std::endl; print_path(path); #endif //finalize path std::vector<v3s16> full_path; for (std::vector<v3s16>::iterator i = path.begin(); i != path.end(); ++i) { full_path.push_back(getIndexElement(*i).pos); } #ifdef PATHFINDER_DEBUG std::cout << "full path:" << std::endl; print_path(full_path); #endif #ifdef PATHFINDER_CALC_TIME timespec ts2; clock_gettime(CLOCK_REALTIME, &ts2); int ms = (ts2.tv_nsec - ts.tv_nsec)/(1000*1000); int us = ((ts2.tv_nsec - ts.tv_nsec) - (ms*1000*1000))/1000; int ns = ((ts2.tv_nsec - ts.tv_nsec) - ( (ms*1000*1000) + (us*1000))); std::cout << "Calculating path took: " << (ts2.tv_sec - ts.tv_sec) << "s " << ms << "ms " << us << "us " << ns << "ns " << std::endl; #endif return full_path; } else { #ifdef PATHFINDER_DEBUG print_pathlen(); #endif ERROR_TARGET << "failed to update cost map"<< std::endl; } //return return retval; }
void drawItemStack(video::IVideoDriver *driver, gui::IGUIFont *font, const ItemStack &item, const core::rect<s32> &rect, const core::rect<s32> *clip, IGameDef *gamedef) { if(item.empty()) return; const ItemDefinition &def = item.getDefinition(gamedef->idef()); video::ITexture *texture = gamedef->idef()->getInventoryTexture(def.name, gamedef); // Draw the inventory texture if(texture != NULL) { const video::SColor color(255,255,255,255); const video::SColor colors[] = {color,color,color,color}; driver->draw2DImage(texture, rect, core::rect<s32>(core::position2d<s32>(0,0), core::dimension2di(texture->getOriginalSize())), clip, colors, true); } if(def.type == ITEM_TOOL && item.wear != 0) { // Draw a progressbar float barheight = rect.getHeight()/16; float barpad_x = rect.getWidth()/16; float barpad_y = rect.getHeight()/16; core::rect<s32> progressrect( rect.UpperLeftCorner.X + barpad_x, rect.LowerRightCorner.Y - barpad_y - barheight, rect.LowerRightCorner.X - barpad_x, rect.LowerRightCorner.Y - barpad_y); // Shrink progressrect by amount of tool damage float wear = item.wear / 65535.0; int progressmid = wear * progressrect.UpperLeftCorner.X + (1-wear) * progressrect.LowerRightCorner.X; // Compute progressbar color // wear = 0.0: green // wear = 0.5: yellow // wear = 1.0: red video::SColor color(255,255,255,255); int wear_i = MYMIN(floor(wear * 600), 511); wear_i = MYMIN(wear_i + 10, 511); if(wear_i <= 255) color.set(255, wear_i, 255, 0); else color.set(255, 255, 511-wear_i, 0); core::rect<s32> progressrect2 = progressrect; progressrect2.LowerRightCorner.X = progressmid; driver->draw2DRectangle(color, progressrect2, clip); color = video::SColor(255,0,0,0); progressrect2 = progressrect; progressrect2.UpperLeftCorner.X = progressmid; driver->draw2DRectangle(color, progressrect2, clip); } if(font != NULL && item.count >= 2) { // Get the item count as a string std::string text = itos(item.count); v2u32 dim = font->getDimension(narrow_to_wide(text).c_str()); v2s32 sdim(dim.X,dim.Y); core::rect<s32> rect2( /*rect.UpperLeftCorner, core::dimension2d<u32>(rect.getWidth(), 15)*/ rect.LowerRightCorner - sdim, sdim ); video::SColor bgcolor(128,0,0,0); driver->draw2DRectangle(bgcolor, rect2, clip); video::SColor color(255,255,255,255); font->draw(text.c_str(), rect2, color, false, false, clip); } }
void ChatPrompt::cursorOperation(CursorOp op, CursorOpDir dir, CursorOpScope scope) { s32 old_cursor = m_cursor; s32 new_cursor = m_cursor; s32 length = m_line.size(); s32 increment = (dir == CURSOROP_DIR_RIGHT) ? 1 : -1; if (scope == CURSOROP_SCOPE_CHARACTER) { new_cursor += increment; } else if (scope == CURSOROP_SCOPE_WORD) { if (increment > 0) { // skip one word to the right while (new_cursor < length && std::isspace(m_line[new_cursor])) new_cursor++; while (new_cursor < length && !std::isspace(m_line[new_cursor])) new_cursor++; while (new_cursor < length && std::isspace(m_line[new_cursor])) new_cursor++; } else { // skip one word to the left while (new_cursor >= 1 && std::isspace(m_line[new_cursor - 1])) new_cursor--; while (new_cursor >= 1 && !std::isspace(m_line[new_cursor - 1])) new_cursor--; } } else if (scope == CURSOROP_SCOPE_LINE) { new_cursor += increment * length; } new_cursor = MYMAX(MYMIN(new_cursor, length), 0); if (op == CURSOROP_MOVE) { m_cursor = new_cursor; } else if (op == CURSOROP_DELETE) { if (new_cursor < old_cursor) { m_line.erase(new_cursor, old_cursor - new_cursor); m_cursor = new_cursor; } else if (new_cursor > old_cursor) { m_line.erase(old_cursor, new_cursor - old_cursor); m_cursor = old_cursor; } } clampView(); m_nick_completion_start = 0; m_nick_completion_end = 0; }
void Camera::updateViewingRange(f32 frametime_in) { if (m_draw_control.range_all) return; m_added_frametime += frametime_in; m_added_frames += 1; // Actually this counter kind of sucks because frametime is busytime m_frametime_counter -= frametime_in; if (m_frametime_counter > 0) return; m_frametime_counter = 0.2; /*dstream<<__FUNCTION_NAME <<": Collected "<<m_added_frames<<" frames, total of " <<m_added_frametime<<"s."<<std::endl; dstream<<"m_draw_control.blocks_drawn=" <<m_draw_control.blocks_drawn <<", m_draw_control.blocks_would_have_drawn=" <<m_draw_control.blocks_would_have_drawn <<std::endl;*/ // Get current viewing range and FPS settings f32 viewing_range_min = g_settings->getS16("viewing_range_nodes_min"); viewing_range_min = MYMAX(5.0, viewing_range_min); f32 viewing_range_max = g_settings->getS16("viewing_range_nodes_max"); viewing_range_max = MYMAX(viewing_range_min, viewing_range_max); // Immediately apply hard limits if(m_draw_control.wanted_range < viewing_range_min) m_draw_control.wanted_range = viewing_range_min; if(m_draw_control.wanted_range > viewing_range_max) m_draw_control.wanted_range = viewing_range_max; // Just so big a value that everything rendered is visible // Some more allowance than viewing_range_max * BS because of clouds, // active objects, etc. /*if(viewing_range_max < 200*BS) m_cameranode->setFarValue(200 * BS * 10); else m_cameranode->setFarValue(viewing_range_max * BS * 10);*/ f32 wanted_fps = g_settings->getFloat("wanted_fps"); wanted_fps = MYMAX(wanted_fps, 1.0); f32 wanted_frametime = 1.0 / wanted_fps; m_draw_control.wanted_min_range = viewing_range_min; m_draw_control.wanted_max_blocks = (2.0*m_draw_control.blocks_would_have_drawn)+1; if (m_draw_control.wanted_max_blocks < 10) m_draw_control.wanted_max_blocks = 10; f32 block_draw_ratio = 1.0; if (m_draw_control.blocks_would_have_drawn != 0) { block_draw_ratio = (f32)m_draw_control.blocks_drawn / (f32)m_draw_control.blocks_would_have_drawn; } // Calculate the average frametime in the case that all wanted // blocks had been drawn f32 frametime = m_added_frametime / m_added_frames / block_draw_ratio; m_added_frametime = 0.0; m_added_frames = 0; f32 wanted_frametime_change = wanted_frametime - frametime; //dstream<<"wanted_frametime_change="<<wanted_frametime_change<<std::endl; // If needed frametime change is small, just return // This value was 0.4 for many months until 2011-10-18 by c55; // Let's see how this works out. if (fabs(wanted_frametime_change) < wanted_frametime*0.33) { //dstream<<"ignoring small wanted_frametime_change"<<std::endl; return; } f32 range = m_draw_control.wanted_range; f32 new_range = range; f32 d_range = range - m_range_old; f32 d_frametime = frametime - m_frametime_old; if (d_range != 0) { m_time_per_range = d_frametime / d_range; } // The minimum allowed calculated frametime-range derivative: // Practically this sets the maximum speed of changing the range. // The lower this value, the higher the maximum changing speed. // A low value here results in wobbly range (0.001) // A high value here results in slow changing range (0.0025) // SUGG: This could be dynamically adjusted so that when // the camera is turning, this is lower //f32 min_time_per_range = 0.0015; f32 min_time_per_range = 0.0010; //f32 min_time_per_range = 0.05 / range; if(m_time_per_range < min_time_per_range) { m_time_per_range = min_time_per_range; //dstream<<"m_time_per_range="<<m_time_per_range<<" (min)"<<std::endl; } else { //dstream<<"m_time_per_range="<<m_time_per_range<<std::endl; } f32 wanted_range_change = wanted_frametime_change / m_time_per_range; // Dampen the change a bit to kill oscillations //wanted_range_change *= 0.9; //wanted_range_change *= 0.75; wanted_range_change *= 0.5; //dstream<<"wanted_range_change="<<wanted_range_change<<std::endl; // If needed range change is very small, just return if(fabs(wanted_range_change) < 0.001) { //dstream<<"ignoring small wanted_range_change"<<std::endl; return; } new_range += wanted_range_change; //f32 new_range_unclamped = new_range; new_range = MYMAX(new_range, viewing_range_min); new_range = MYMIN(new_range, viewing_range_max); /*dstream<<"new_range="<<new_range_unclamped <<", clamped to "<<new_range<<std::endl;*/ m_draw_control.wanted_range = new_range; m_range_old = new_range; m_frametime_old = frametime; }
void Camera::update(LocalPlayer* player, f32 frametime, v2u32 screensize, f32 tool_reload_ratio) { // Get player position // Smooth the movement when walking up stairs v3f old_player_position = m_playernode->getPosition(); v3f player_position = player->getPosition(); if (player->isAttached && player->parent) player_position = player->parent->getPosition(); //if(player->touching_ground && player_position.Y > old_player_position.Y) if(player->touching_ground && player_position.Y > old_player_position.Y) { f32 oldy = old_player_position.Y; f32 newy = player_position.Y; f32 t = exp(-23*frametime); player_position.Y = oldy * t + newy * (1-t); } // Set player node transformation m_playernode->setPosition(player_position); m_playernode->setRotation(v3f(0, -1 * player->getYaw(), 0)); m_playernode->updateAbsolutePosition(); // Get camera tilt timer (hurt animation) float cameratilt = fabs(fabs(player->hurt_tilt_timer-0.75)-0.75); // Fall bobbing animation float fall_bobbing = 0; if(player->camera_impact >= 1) { if(m_view_bobbing_fall == -1) // Effect took place and has finished player->camera_impact = m_view_bobbing_fall = 0; else if(m_view_bobbing_fall == 0) // Initialize effect m_view_bobbing_fall = 1; // Convert 0 -> 1 to 0 -> 1 -> 0 fall_bobbing = m_view_bobbing_fall < 0.5 ? m_view_bobbing_fall * 2 : -(m_view_bobbing_fall - 0.5) * 2 + 1; // Smoothen and invert the above fall_bobbing = sin(fall_bobbing * 0.5 * M_PI) * -1; // Amplify according to the intensity of the impact fall_bobbing *= (1 - rangelim(50 / player->camera_impact, 0, 1)) * 5; fall_bobbing *= g_settings->getFloat("fall_bobbing_amount"); } // Set head node transformation m_headnode->setPosition(player->getEyeOffset()+v3f(0,cameratilt*-player->hurt_tilt_strength+fall_bobbing,0)); m_headnode->setRotation(v3f(player->getPitch(), 0, cameratilt*player->hurt_tilt_strength)); m_headnode->updateAbsolutePosition(); // Compute relative camera position and target v3f rel_cam_pos = v3f(0,0,0); v3f rel_cam_target = v3f(0,0,1); v3f rel_cam_up = v3f(0,1,0); // Compute absolute camera position and target m_headnode->getAbsoluteTransformation().transformVect(m_camera_position, rel_cam_pos); m_headnode->getAbsoluteTransformation().rotateVect(m_camera_direction, rel_cam_target - rel_cam_pos); v3f abs_cam_up; m_headnode->getAbsoluteTransformation().rotateVect(abs_cam_up, rel_cam_up); // Set camera node transformation m_cameranode->setPosition(m_camera_position); //m_cameranode->setUpVector(abs_cam_up); // *100.0 helps in large map coordinates //m_cameranode->setTarget(m_camera_position + 100 * m_camera_direction); m_cameranode->setTarget(m_camera_position+v3f(-1,-1,1)); // Get FOV setting f32 fov_degrees = g_settings->getFloat("fov"); fov_degrees = MYMAX(fov_degrees, 10.0); fov_degrees = MYMIN(fov_degrees, 170.0); // FOV and aspect ratio m_aspect = (f32)screensize.X / (f32) screensize.Y; m_fov_y = fov_degrees * M_PI / 180.0; // Increase vertical FOV on lower aspect ratios (<16:10) m_fov_y *= MYMAX(1.0, MYMIN(1.4, sqrt(16./10. / m_aspect))); m_fov_x = 2 * atan(m_aspect * tan(0.5 * m_fov_y)); /*m_cameranode->setAspectRatio(m_aspect); m_cameranode->setFOV(m_fov_y);*/ // Position the wielded item //v3f wield_position = v3f(45, -35, 65); v3f wield_position = v3f(55, -35, 65); //v3f wield_rotation = v3f(-100, 120, -100); v3f wield_rotation = v3f(-100, 120, -100); if(m_wield_change_timer < 0) wield_position.Y -= 40 + m_wield_change_timer*320; else wield_position.Y -= 40 - m_wield_change_timer*320; if(m_digging_anim < 0.05 || m_digging_anim > 0.5){ f32 frac = 1.0; if(m_digging_anim > 0.5) frac = 2.0 * (m_digging_anim - 0.5); // This value starts from 1 and settles to 0 f32 ratiothing = pow((1.0f - tool_reload_ratio), 0.5f); //f32 ratiothing2 = pow(ratiothing, 0.5f); f32 ratiothing2 = (easeCurve(ratiothing*0.5))*2.0; wield_position.Y -= frac * 25.0 * pow(ratiothing2, 1.7f); //wield_position.Z += frac * 5.0 * ratiothing2; wield_position.X -= frac * 35.0 * pow(ratiothing2, 1.1f); wield_rotation.Y += frac * 70.0 * pow(ratiothing2, 1.4f); //wield_rotation.X -= frac * 15.0 * pow(ratiothing2, 1.4f); //wield_rotation.Z += frac * 15.0 * pow(ratiothing2, 1.0f); } if (m_digging_button != -1) { f32 digfrac = m_digging_anim; wield_position.X -= 50 * sin(pow(digfrac, 0.8f) * M_PI); wield_position.Y += 24 * sin(digfrac * 1.8 * M_PI); wield_position.Z += 25 * 0.5; // Euler angles are PURE EVIL, so why not use quaternions? core::quaternion quat_begin(wield_rotation * core::DEGTORAD); core::quaternion quat_end(v3f(80, 30, 100) * core::DEGTORAD); core::quaternion quat_slerp; quat_slerp.slerp(quat_begin, quat_end, sin(digfrac * M_PI)); quat_slerp.toEuler(wield_rotation); wield_rotation *= core::RADTODEG; } else { f32 bobfrac = my_modf(m_view_bobbing_anim); wield_position.X -= sin(bobfrac*M_PI*2.0) * 3.0; wield_position.Y += sin(my_modf(bobfrac*2.0)*M_PI) * 3.0; } m_wieldnode->setPosition(wield_position); m_wieldnode->setRotation(wield_rotation); m_wieldlight = player->light; // Render distance feedback loop updateViewingRange(frametime); // If the player seems to be walking on solid ground, // view bobbing is enabled and free_move is off, // start (or continue) the view bobbing animation. v3f speed = player->getSpeed(); if ((hypot(speed.X, speed.Z) > BS) && (player->touching_ground) && (g_settings->getBool("view_bobbing") == true) && (g_settings->getBool("free_move") == false || !m_gamedef->checkLocalPrivilege("fly"))) { // Start animation m_view_bobbing_state = 1; m_view_bobbing_speed = MYMIN(speed.getLength(), 40); } else if (m_view_bobbing_state == 1) { // Stop animation m_view_bobbing_state = 2; m_view_bobbing_speed = 60; } }
void RemoteClient::GetNextBlocks ( ServerEnvironment *env, EmergeManager * emerge, float dtime, std::vector<PrioritySortedBlockTransfer> &dest) { DSTACK(FUNCTION_NAME); // Increment timers m_nothing_to_send_pause_timer -= dtime; m_nearest_unsent_reset_timer += dtime; if(m_nothing_to_send_pause_timer >= 0) return; RemotePlayer *player = env->getPlayer(peer_id); // This can happen sometimes; clients and players are not in perfect sync. if (player == NULL) return; PlayerSAO *sao = player->getPlayerSAO(); if (sao == NULL) return; // Won't send anything if already sending if(m_blocks_sending.size() >= g_settings->getU16 ("max_simultaneous_block_sends_per_client")) { //infostream<<"Not sending any blocks, Queue full."<<std::endl; return; } v3f playerpos = sao->getBasePosition(); v3f playerspeed = player->getSpeed(); v3f playerspeeddir(0,0,0); if(playerspeed.getLength() > 1.0*BS) playerspeeddir = playerspeed / playerspeed.getLength(); // Predict to next block v3f playerpos_predicted = playerpos + playerspeeddir*MAP_BLOCKSIZE*BS; v3s16 center_nodepos = floatToInt(playerpos_predicted, BS); v3s16 center = getNodeBlockPos(center_nodepos); // Camera position and direction v3f camera_pos = sao->getEyePosition(); v3f camera_dir = v3f(0,0,1); camera_dir.rotateYZBy(sao->getPitch()); camera_dir.rotateXZBy(sao->getYaw()); /*infostream<<"camera_dir=("<<camera_dir.X<<","<<camera_dir.Y<<"," <<camera_dir.Z<<")"<<std::endl;*/ /* Get the starting value of the block finder radius. */ if(m_last_center != center) { m_nearest_unsent_d = 0; m_last_center = center; } /*infostream<<"m_nearest_unsent_reset_timer=" <<m_nearest_unsent_reset_timer<<std::endl;*/ // Reset periodically to workaround for some bugs or stuff if(m_nearest_unsent_reset_timer > 20.0) { m_nearest_unsent_reset_timer = 0; m_nearest_unsent_d = 0; //infostream<<"Resetting m_nearest_unsent_d for " // <<server->getPlayerName(peer_id)<<std::endl; } //s16 last_nearest_unsent_d = m_nearest_unsent_d; s16 d_start = m_nearest_unsent_d; //infostream<<"d_start="<<d_start<<std::endl; u16 max_simul_sends_setting = g_settings->getU16 ("max_simultaneous_block_sends_per_client"); u16 max_simul_sends_usually = max_simul_sends_setting; /* Check the time from last addNode/removeNode. Decrease send rate if player is building stuff. */ m_time_from_building += dtime; if(m_time_from_building < g_settings->getFloat( "full_block_send_enable_min_time_from_building")) { max_simul_sends_usually = LIMITED_MAX_SIMULTANEOUS_BLOCK_SENDS; } /* Number of blocks sending + number of blocks selected for sending */ u32 num_blocks_selected = m_blocks_sending.size(); /* next time d will be continued from the d from which the nearest unsent block was found this time. This is because not necessarily any of the blocks found this time are actually sent. */ s32 new_nearest_unsent_d = -1; // get view range and camera fov from the client s16 wanted_range = sao->getWantedRange(); float camera_fov = sao->getFov(); // if FOV, wanted_range are not available (old client), fall back to old default if (wanted_range <= 0) wanted_range = 1000; if (camera_fov <= 0) camera_fov = (72.0*M_PI/180) * 4./3.; const s16 full_d_max = MYMIN(g_settings->getS16("max_block_send_distance"), wanted_range); const s16 d_opt = MYMIN(g_settings->getS16("block_send_optimize_distance"), wanted_range); const s16 d_blocks_in_sight = full_d_max * BS * MAP_BLOCKSIZE; //infostream << "Fov from client " << camera_fov << " full_d_max " << full_d_max << std::endl; s16 d_max = full_d_max; s16 d_max_gen = MYMIN(g_settings->getS16("max_block_generate_distance"), wanted_range); // Don't loop very much at a time s16 max_d_increment_at_time = 2; if(d_max > d_start + max_d_increment_at_time) d_max = d_start + max_d_increment_at_time; s32 nearest_emerged_d = -1; s32 nearest_emergefull_d = -1; s32 nearest_sent_d = -1; //bool queue_is_full = false; const v3s16 cam_pos_nodes = floatToInt(camera_pos, BS); const bool occ_cull = g_settings->getBool("server_side_occlusion_culling"); s16 d; for(d = d_start; d <= d_max; d++) { /* Get the border/face dot coordinates of a "d-radiused" box */ std::vector<v3s16> list = FacePositionCache::getFacePositions(d); std::vector<v3s16>::iterator li; for(li = list.begin(); li != list.end(); ++li) { v3s16 p = *li + center; /* Send throttling - Don't allow too many simultaneous transfers - EXCEPT when the blocks are very close Also, don't send blocks that are already flying. */ // Start with the usual maximum u16 max_simul_dynamic = max_simul_sends_usually; // If block is very close, allow full maximum if(d <= BLOCK_SEND_DISABLE_LIMITS_MAX_D) max_simul_dynamic = max_simul_sends_setting; // Don't select too many blocks for sending if (num_blocks_selected >= max_simul_dynamic) { //queue_is_full = true; goto queue_full_break; } // Don't send blocks that are currently being transferred if (m_blocks_sending.find(p) != m_blocks_sending.end()) continue; /* Do not go over max mapgen limit */ if (blockpos_over_max_limit(p)) continue; // If this is true, inexistent block will be made from scratch bool generate = d <= d_max_gen; /* Don't generate or send if not in sight FIXME This only works if the client uses a small enough FOV setting. The default of 72 degrees is fine. */ f32 dist; if (!isBlockInSight(p, camera_pos, camera_dir, camera_fov, d_blocks_in_sight, &dist)) { continue; } /* Don't send already sent blocks */ { if(m_blocks_sent.find(p) != m_blocks_sent.end()) { continue; } } /* Check if map has this block */ MapBlock *block = env->getMap().getBlockNoCreateNoEx(p); bool surely_not_found_on_disk = false; bool block_is_invalid = false; if(block != NULL) { // Reset usage timer, this block will be of use in the future. block->resetUsageTimer(); // Block is dummy if data doesn't exist. // It means it has been not found from disk and not generated if(block->isDummy()) { surely_not_found_on_disk = true; } if(block->isGenerated() == false) block_is_invalid = true; /* If block is not close, don't send it unless it is near ground level. Block is near ground level if night-time mesh differs from day-time mesh. */ if(d >= d_opt) { if(block->getDayNightDiff() == false) continue; } if (occ_cull && !block_is_invalid && env->getMap().isBlockOccluded(block, cam_pos_nodes)) { continue; } } /* If block has been marked to not exist on disk (dummy) and generating new ones is not wanted, skip block. */ if(generate == false && surely_not_found_on_disk == true) { // get next one. continue; } /* Add inexistent block to emerge queue. */ if(block == NULL || surely_not_found_on_disk || block_is_invalid) { if (emerge->enqueueBlockEmerge(peer_id, p, generate)) { if (nearest_emerged_d == -1) nearest_emerged_d = d; } else { if (nearest_emergefull_d == -1) nearest_emergefull_d = d; goto queue_full_break; } // get next one. continue; } if(nearest_sent_d == -1) nearest_sent_d = d; /* Add block to send queue */ PrioritySortedBlockTransfer q((float)dist, p, peer_id); dest.push_back(q); num_blocks_selected += 1; } } queue_full_break: // If nothing was found for sending and nothing was queued for // emerging, continue next time browsing from here if(nearest_emerged_d != -1){ new_nearest_unsent_d = nearest_emerged_d; } else if(nearest_emergefull_d != -1){ new_nearest_unsent_d = nearest_emergefull_d; } else { if(d > full_d_max){ new_nearest_unsent_d = 0; m_nothing_to_send_pause_timer = 2.0; } else { if(nearest_sent_d != -1) new_nearest_unsent_d = nearest_sent_d; else new_nearest_unsent_d = d; } } if(new_nearest_unsent_d != -1) m_nearest_unsent_d = new_nearest_unsent_d; }